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Abstract
Dysfunctions of the brain serotonin (5-HT) system are often associated with affective disorders, such
as depression. The raphe nuclei target the limbic system and most forebrain areas and constitute the
main source of 5-HT in the brain. All 5-HT neurons express tryptophan hydroxylase-2 (TPH2), the
brain specific, rate-limiting enzyme for 5-HT synthesis. ERbeta agonists have been shown to
attenuate anxiety-and despair-like behaviors in rodent models. Therefore, we tested the hypothesis
that ERbeta may contribute to the regulation of gene expression in 5-HT neurons of the dorsal raphe
nuclei (DRN) by examining the effects of systemic and local application of the selective ERbeta
agonist diarylpropionitrile (DPN) on tph2 mRNA expression.

Ovariectomized (OVX) female rats were injected subcutaneously (s.c.) with DPN or vehicle once
daily for 8 days. In situ hybridization revealed that systemic DPN-treatment elevated basal tph2
mRNA expression in the caudal and mid-dorsal DRN. Behavioral testing of all animals in the open
field (OF) and on the elevated plus maze (EPM) on days 6 and 7 of treatment confirmed the anxiolytic
nature of ERbeta activation.

Another cohort of female OVX rats was stereotaxically implanted bilaterally with hormone-
containing wax pellets flanking the DRN. Pellets contained either 17-beta-estradiol (E), DPN, or no
hormone. Both DPN and E significantly enhanced tph2 mRNA expression in the mid-dorsal DRN.
DPN also increased tph2 mRNA in the caudal DRN. DPN- and E-treated rats displayed a more active
stress-coping behavior in the forced-swim test (FST). No behavioral differences were found in the
OF or on the EPM.

These data indicate that ERbeta acts at the level of the rat DRN to modulate tph2 mRNA expression
and thereby influence 5-HT synthesis in DRN subregions. Our results also suggest that local
activation of ERbeta neurons in the DRN may be sufficient to decrease despair-like behavior, but
not anxiolytic behaviors.
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INTRODUCTION
Major depressive disorder (MDD) affects about 17% of Americans (Kessler et al., 1994;
Williams et al., 2007), and is a complex, heterogeneous disease (Winokur, 1997; Ellard,
2001; Weissman, 2002). A deficiency in 5-HT neurotransmission is a leading hypothesis
regarding the development and pathophysiology of this disease (Owens and Nemeroff, 1994;
Arango et al., 2002; Perlis et al., 2002; Lesch, 2004). An influence of gonadal hormones on
the etiology of depression is indicated based on the incidence, duration, severity and rate of
reoccurrence of depressive disorders, which are over twice as high in women compared to men
(Earls, 1987; Angold and Worthman, 1993; Weissman et al., 1993; Kornstein et al., 1995).
Moreover, women also tend to respond differently than men to common antidepressant
treatments, such as selective serotonin-reuptake inhibitors (Kornstein, 1997; Gorman, 2006).
These observations, together with animal studies reporting sex differences in the regulation of
emotion (Steenbergen et al., 1990; Caldarone et al., 2003; Shors and Leuner, 2003; Toufexis,
2007) and interactions between estrogen and the 5-HT system (for review see (Amin et al.,
2005)) suggest an involvement of estrogen receptors (ERs) in the etiology of MDD.

In animal models, estrogen can exert both anxiolytic, and anxiogenic actions depending on the
behavioral context (Koss et al., 2004; Hiroi and Neumaier, 2006). This ambiguity may be
explained by the existence of two different estrogen receptor systems, ERalpha and ERbeta.
The endogenous ligand estradiol binds to and activates both receptor types with similar affinity
(Kuiper et al., 1997). However, ERalpha-selective agonists are anxiogenic, while ERbeta-
selective compounds are anxiolytic and anti-depressive (Walf et al., 2004; Lund et al., 2005;
Weiser et al., 2009). Moreover, in flinders-sensitive rats, a strain selectively bred for
depressive-like behaviors, ERbeta agonists reduce the animals’ passive floating and immobility
behavior (Overstreet et al., 2006) during the forced swim test (FST), a test established to assess
despair-like behavior in rodents (Porsolt et al., 1977). This rat strain also displays abnormal
levels of 5-HT(2A) receptor mRNA in the perirhinal cortex, piriform cortex, medial
anterodorsal amygdala and in the hippocampus, a phenotype that is reversed by estradiol-
treatment (Osterlund et al., 1999).

The brainstem dorsal raphe nuclei (DRN) constitute the primary 5-HT system of the brain.
Distinct DRN subdivisions give rise to axons that innervate most forebrain areas, including
areas crucial for the regulation of emotion and stress-coping behavior, such as the amygdala
and the paraventricular nucleus of the hypothalamus (Imai et al., 1986; Petrov et al., 1992).
Other subregions of the DRN send projections to motivational areas like the prefrontal cortex
(Lowry, 2002; Abrams et al., 2004), while axons from the caudal DRN target limbic structures,
such as the hippocampus, the entorhinal cortex and the septum (Kohler and Steinbusch,
1982).

Tryptophan-hydroxylase 2 (TPH2), the brain-specific version of TPH (Walther et al., 2003;
Zhang et al., 2004), catalyses the rate-limiting step of 5-HT synthesis. Disruption or
dysfunction of the tph2 gene is strongly correlated with affective disorders (Zill et al., 2004;
Zhang et al., 2005; Haghighi et al., 2008), and abnormal tph2 mRNA expression may be
responsible for many of those pathologies.

Previous studies have demonstrated that ERbeta is robustly expressed within the DRN of
rodents (Shughrue et al., 1997a; Lu et al., 2001; Mitra et al., 2003; Nomura et al., 2005;
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Vanderhorst et al., 2005), primates (Gundlah et al., 2000; Gundlah et al., 2001) and guinea pigs
(Lu et al., 1999), whereas ERalpha is only expressed to a small extent in the DRN of these
species. Given the importance of the 5-HT system in anxiety- and depressive disorders together
with the anxiolytic nature of ERbeta and its presence in the raphe complex, we speculate that
ERbeta activation may regulate gene expression in 5-HT neurons.

Results from earlier studies suggest that ERbeta activation can regulate transcription and
neurotransmission in the brainstem. Alves et al. (2000) reported estradiol-induced progestin
receptor expression in the DRN of ERalpha null mice, suggesting a role for ERbeta. Also,
phytoestrogens that selectively bind ERbeta have been shown to improve mood and 5-HT
neurotransmission in the cynomolgus monkey (Shively et al., 2003). In turn, ERbeta null mice
are characterized by increased anxiety in conjunction with lower 5-HT content and decreased
tph mRNA in the DRN (Imwalle et al., 2005; Nomura et al., 2005). In macaques, estradiol and
a combination of the ovarian steroids progesterone and estradiol each caused an elevation of
tph2 mRNA in the DRN (Sanchez et al., 2005). In rats, a recent study showed that estradiol
itself increases tph2 mRNA expression specifically in those DRN subregions that are associated
with attenuated anxiety (Hiroi et al., 2006).

These findings support the hypothesis that ERbeta activation in the DRN may be sufficient to
alter behavioral parameters and 5-HT-neuronal gene expression in the DRN. Therefore, we
examined the effects of chronic systemic versus local, intracerebral delivery of the ERbeta
agonist, diarylpropionitrile (DPN), in OVX female rats on anxiety-and despair-like behaviors
and on tph2 mRNA expression in the DRN.

EXPERIMENTAL PROCEDURES
Animals

All animal surgeries, behavioral tests and experimental protocols followed NIH guidelines and
were approved by the Animal Care and Use Committee (ACUC) at Colorado State University.
Young adult female Sprague-Dawley rats (200–250 g body weight, Charles River Laboratories,
Wilmington, MA) were fed a phytoestrogen-free diet (modified AIN-93G with corn oil
substituted for soy oil; Dyets, Philadelphia, PA), double housed, and kept under standard
laboratory conditions (12:12 h light-dark cycle, lights on at 0600 h, 22 °C, 60 % humidity, and
ad libitum access to water and food). The animals were handled and their weight monitored
every other day for the duration of both experiments. Surgical procedures were performed
under isoflurane- (for OVX) or ketamine-anaesthesia (100mg/kg of 93% ketamine / 5%
xylazine / 2% acepromazine for stereotaxic surgeries).

Experimental design & Surgical procedures
One week after arrival, all rats underwent bilateral OVX to remove circulating gonadal steroids.
This procedure also ensured a constant level of ERbeta expression within the brain because
receptor levels are regulated by hormones (Suzuki and Handa, 2005). Chronic 8-day systemic
(s.c.) or local (intracerebral) treatment with ER ligands began one week after OVX. All animals
were double housed with a partner of the same treatment group.

I. Experiment 1: Systemic DPN treatment—Rats were injected s.c. with the ERbeta
agonist, diarylpropionitrile (DPN, 2 mg/kg; n=8) or vehicle (27% hydroxypropyl-beta-
cyclodextrin from CTD Inc., High Springs, FL; n=8) in phosphate buffered saline once per day
at 0600 h. DPN was synthesized de novo following an established protocol (Lund et al.,
2005). In the morning of day 6, rats were tested for anxiety-like behavior in the OF, and on
day 7 on the EPM. All animals were killed by decapitation on day 8 between 1000 and 1200
h under basal, non-stress conditions. This occurred 4 h after the last DPN injection to avoid
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potential acute effects of agonist treatment. For all animals, brains were removed from the
skull, fresh-frozen in pre-cooled 2-methylbutane (−40° C) and stored at −80° C until sectioning.

II. Experiment 2: Local treatment with DPN or estradiol—Three groups of rats were
stereotaxically implanted bilaterally with wax pellets (2.00 mm long, 0.25 mm in diameter)
flanking the DRN at coordinates: 8.0 mm posterior to bregma, ± 1.5 mm lateral, 5.5 mm deep,
at a 7° angle. Each pellet contained either 0.5 μM DPN (n=10), 0.5 μM 17-beta-estradiol
(Sigma, St. Louis, MO; E, n=10) or beeswax only (VWR International, Bristol, CT; vehicle
control, n=10). The dosage of DPN and E and the procedure for stereotaxic wax pellet
implantation was based on previous studies by Lund et al. (2006). A second control group of
OVX animals remained unoperated (C, n=7). All animals were tested in the OF, EPM and FST
on days 5, 6 and 7 of treatment. Animals were returned to their home cage after each test. All
animals were killed on day 8 between 1000 and 1200 h, their brains removed, fresh-frozen and
stored at −80° C until sectioning.

Behavioral testing
To measure anxiety-like behaviors, all rats were tested in the OF and on the EPM on two
consecutive days between 1000 and 1200 h for 5 min each. In the OF, the following parameters
were scored: locomotor activity (total of square line crossings), number of rears at walls, time
spent in center squares, time spent in outer squares, time spent grooming, and number of fecal
boli. On the EPM, the latency until first open arm entry, the time spent in the open and closed
arms, the number of closed and open arm entries (locomotor activity), the time spent grooming,
and the number of fecal boli were recorded as described in Lund et al. (2005)

To measure despair-like behavior, rats were tested in the FST (Porsolt et al., 2001) for 5 min
on day 7, using 25 °C tap water. In the afternoon of the previous day, all rats were trained for
the FST for 3 min each, without recording their behavior. The time spent paddling (normal
stress-coping behavior: slow-pace front and hind leg movements), the time spent struggling
(active behavior: high-pace front leg paddling and strong hind leg strokes), the time spent
floating (passive, despair-like behavior: minimal leg movements; stiff, floating body posture)
and the number of dives (active behavior) was recorded.

Tph2 riboprobe design
For the production of a riboprobe specific for tph2 mRNA, total RNA was isolated from
microdissected DRN tissue samples (Palkovits et al., 1975), following the protocol established
by Chomczynski and Sacchi (1987). 1 μg RNA was reverse transcribed into 10 total cDNA
with the reverse transcriptase MMLV-RT (Invitrogen, Carlsbad, CA) at 37° C for 50 min, using
1 μl oligo dT primers, dNTPs (100 mM each), 1st strand buffer (100 mM Tris–Cl–900 mM
KCl–1 mM MgCl) and 2.5 mM DTT. Subsequently, a 583 bp fragment of tph2 cDNA was
amplified by RT-PCR (forward primer: 5′-GGG GTG TTG TGT TTC GGG-3′, reverse primer:
5′-GTG GTG ATT AGG CAT TCC-3′). PCR conditions were: 45 s denaturation at 95° C, 45
s annealing at 55° C, 45 s elongation at 72° C, and a final 7-min elongation step at 72° C after
35 cycles. The 50 μl PCR reaction volume contained 1.5 mM Mg2+, 0.2 mM dNTPs, 0.2 μM
forward and reverse primer, 50 ng template cDNA, and 1.0 unit Taq DNA polymerase
(Eppendorf, Westbury, NY). After gel-purification (Qiagen, Valencia, CA), the PCR product
was subcloned into the linearized 4.0 kb TOPO-vector pCR®II (Invitrogen, Carlsbad, CA),
and amplified in chemically competent TOP10 bacterial cells (Invitrogen). Successful clones
were verified via sequencing (Retrogen, San Diego, CA). Antisense and sense (control) tph2
cRNAs were transcribed from the plasmid in the presence of [35S]-UTP, following linearization
with restriction enzymes, BlpI or XbaI respectively. As confirmed in two hybridization test
runs, the antisense probe specifically detected tph2 mRNA in the dorsal and median raphe
nuclei, but did not hybridize with tph1 mRNA in the pineal gland (Patel et al., 2004; Malek et
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al., 2005). There was no hybridization above background seen when using the sense-directed
control probe.

Tissue preparation & In situ hybridization
A series of coronal 16-μm brainstem sections between bregma −6.5 mm to −9.5 mm (Paxinos
and Watson, 1998) was cut at −20° C using a cryostat (Leica, Wetzlar, Germany) and thaw-
mounted onto positively charged slides (Superfrost Plus, VWR Scientific, West Chester, PA).
All sections were stored at −80° C until assayed. For in situ hybridization, tissue sections were
thawed at room temperature, fixed within 10% paraformaldehyde, acetylated with 0.25% acetic
anhydride, dehydrated in a graded series of alcohols, and air-dried. Next, sections were
incubated with hybridization solution (50% formamide, 0.60 M NaCl, 0.02 M Tris, 0.01 M
EDTA, 10% dextran sulfate, 2 M Denhart’s solution, 50 mM dithiothreitol, 0.2% SDS, 100
mg/ml salmon testis DNA, 500 mg/ml total yeast RNA, and 50 mg/ml yeast transfer RNA),
containing radiolabeled cRNA at a concentration of 2 × 107 cpm/ml, in humidified chambers
at 60° C overnight. After hybridization, slides were rinsed in 2 × SSC. Non-hybridized RNA
was digested in a 30 mg/ml RNase A solution for 30 min at 37° C. A final high stringency
wash (0.1 × SSC, room temperature) preceded dehydration in graded alcohols. Hybridization
was first examined by opposing slides to a 35S-sensitive Biomax MR film (Kodak, Rochester,
NY) for 14 hours. Subsequently, hybridization was detected using photographic emulsion-
coated slide autoradiography (NTB-3; Kodak). After a 2 day-incubation at 4° C in the dark,
all slides were developed (Kodak D-19) and counterstained with cresyl violet.

Validation of pellet implantation
We assumed that the compounds used in the present study successfully diffused into all rostro-
caudal and medial-to-lateral subregions of the DRN if both pellets were placed within a
maximal radius of 0.5 mm from the center of a coronal DRN section. This criterion was defined
empirically by Lund et al. (2006) who found the diffusion of [3H]-labeled E to be confined
within a 0.5 mm area surrounding the wax pellet. Based on this anatomical criterion, one
individual of the vehicle-group had to be excluded from data analysis. Each section containing
the DRN (12 sections per animal) was evaluated using bright-field microscopy and the center
location of each pellet was estimated and mapped using a rat brain atlas (Paxinos and Watson,
1998).

Image analysis & Quantification of mRNA expression
Cytoplasmic detection of tph2 mRNA in individual 5-HT neurons was verified via
photomicrographs. Counterstaining with cresyl violet allowed for distinction between
silvergrain-labeled tph2 mRNA localized around purple-labeled nuclei. Dark-field images
were captured by a Zeiss AxioCam HR camera on an Axioplan 2 microscope controlled by
Axiovision, version 3.1, software. Three rostral, mid and caudal sections per animal were atlas
matched (Paxinos and Watson, 1998) and used for analysis via ImageJ software (version 1.31).
Matched dark-field images were inverted in order to cause silvergrains to appear as dark pixels
in the inverted picture. Matrices in approximate shape of the DRN subregions of interest were
then utilized to assess tph2 mRNA expression within the DRN. The density of black pixels
was measured and expressed as arbitrary density units [AdU] for each subregion. After
subtraction of background activity (determined in an adjacent area devoid of labeling), six (for
the lateral DRN) or three values each (for the dorso-rostral, ventro-rostral, dorso-mid, ventro-
mid, dorso-caudal, ventro-caudal DRN) were averaged per animal to obtain an individual value
for statistical analysis.
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Statistics
All data are expressed as the mean ± standard error of the mean (SEM). For studies with only
two treatment groups, Student’s t- test was used for pair-wise data comparison. Results of all
studies with more than two treatment groups were analyzed by one-way ANOVA (factor
treatment) followed by Tukey’s post hoc test where appropriate, using SPSS 12.0 for Windows
software. Results were considered significantly different when p < 0.05.

RESULTS
Experiment 1 (systemic treatment)

Weight gain—Vehicle animals gained 25.16 ± 2.79 g, DPN-treated animals 31.17 ± 3.90 g
from day 1 to day 8 of treatment. There were no significant group differences in weight gain.

Systemic delivery of DPN decreases anxiety-like behavior—Animals were tested
for anxiety-like behaviors in the open field (OF) and on the elevated plus maze (EPM). In the
OF (Fig. 1A), DPN-treated animals displayed more rears at the walls than their vehicle-treated
counterparts (p < 0.01). The total number of square line crossings (a measure of overall activity)
did not differ between the two groups, suggesting that there was no overall effect on activity.
The total time spent in inner or outer squares, the time spent grooming and the number of fecal
boli were not significantly different between the two treatment groups.

On the EPM, DPN treatment caused the rats to enter the open arms sooner (p < 0.01), more
often (p < 0.05), and stay on the open arms longer (p < 0.05) than vehicle controls (Fig. 1B).
The number of entries into the closed arms did not differ between the two treatment groups,
again indicating that DPN did not increase the rats’ overall activity or locomotor behavior.
None of the other parameters recorded (time grooming, time in closed arms, fecal boli) revealed
significant group differences.

Systemic DPN increases tph2 mRNA expression in the caudal and dorso-mid
DRN—To test the hypothesis that systemic ERbeta activation may upregulate tph2 mRNA
expression, in situ hybridization was performed, and the density of tph2 mRNA expression
was measured in all subregions of the DRN. Fig. 2 displays representative dark-field
photomicrographs of tph2 mRNA hybridization in the DRN of systemically treated rats.
Compared to vehicle-treated animals, daily s.c. administration of DPN significantly enhanced
tph2 mRNA levels in the dorso-mid (p < 0.05), the dorso- caudal (p < 0.05) and the ventro-
caudal (p < 0.05) DRN (Fig. 3A). Accordingly, total tph2 mRNA levels in the entire caudal
DRN were almost doubled in the DPN group (p < 0.01; Fig. 3B), compared to vehicle controls.
Tph2 mRNA expression in the rostral DRN was not elevated by DPN. Fig. 3C illustrates in
principle the matrix-based, digital analysis of inverted dark-field images that was used for all
photomicrographs.

Experiment 2 (central treatment)
Weight gain—The average weight gain during experiment 2 was 28.57 ± 1.87 g for the
unoperated control group, 25.00 ± 2.21 g for the vehicle control animals, 25.80 ± 3.30 g for E-
treated animals, and 30.50 ± 2.25 g in the DPN group. No significant differences in weight
gain were found between any of the treatment groups.

Evaluation of in situ hybridization and wax pellet placement—Fig. 4A shows a
representative bright-field photomicrograph of the bilaterally implanted wax pellets placed to
flank the DRN. To confirm the cellular silvergrain-labeling of neurons containing tph2 mRNA,
brain tissue was counterstained with cresyl violet at an intensity sufficient to label the nucleus,
but light enough to not alter or interfere with the identification of silvergrains (Fig. 4B). A
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schematic of actual bilateral wax pellet localization in the brainstem of all animals in
experiment 2 is depicted in Fig. 4C. If the center of any of the two pellets was found to be more
than 0.5 mm away from the estimated center of the DRN, the respective animal was excluded
from all data analysis. This was true for one vehicle-treated rat (black dots in Fig. 4C), which
reduced the size of this group from 10 to 9 animals.

Local DPN or E administration does not alter anxiety-like behaviors, but
enhances active stress-coping behavior—All animals were tested for anxiety-related
behavior in the OF and on the EPM. Local, DRN-targeted delivery of neither DPN nor E altered
any of the parameters measured in the OF and the EPM, compared to unoperated and vehicle
controls (Fig. 5, A and B). In the FST, rats that were implanted with bilateral, DRN-flanking
E- or DPN-pellets displayed a more active stress-coping strategy by spending more time
actively struggling in the water than did vehicle controls (Fig. 5C; F3,32=4.628; p < 0.05).
Animals of all treatment groups spent about the same time paddling (neutral stress-coping
behavior). Neither E- nor DPN-treatment significantly altered the time spent floating,
compared to controls. However, DPN-treated animals spent more time passively floating than
their E-treated counterparts (Fig. 5C; F3,32=6.040; p<0.05). The number of dives did not differ
between any of the groups.

Animals from the unoperated control group did not differ from the regular vehicle control group
in any of the behavioral paradigms, indicating that there was no effect of brain surgery on
anxiety-like behaviors.

Local exposure to E or DPN strongly elevates tph2 mRNA expression—To
investigate whether site-specific activation of ERs through local delivery of DPN or E itself is
sufficient to enhance the expression of tph2 mRNA, in situ hybridization was performed. Fig.
6 displays representative dark-field photomicrographs of tph2 mRNA hybridization in the
brainstem of locally DPN-, E-, or vehicle-treated rats. In the dorso-mid DRN, local DPN-
administration elevated tph2 mRNA expression to approximately 2.5-fold of the level seen in
controls (Fig 7A; F3,32=18.197; both p < 0.01), resulting in a more than 1.5-fold overall increase
of tph2 mRNA expression for the entire mid-DRN, compared to vehicle and unoperated
controls (Fig. 7A and B; F3,32=9.096; both p < 0.01). Regarding its effect on tph2 mRNA in
the mid DRN, local DPN treatment also resulted in a stronger response than that of E (Fig. 7A
and B; p < 0.01). In both the dorso- and ventro-caudal DRN, a 2- to 3-fold increase in tph2
mRNA expression (dorso-caudal: F3,32=13.720; p < 0.01; ventro-caudal: F3,32=14.962; p <
0.05) was seen when DPN-treated animals were compared to unoperated and vehicle-treated
controls. In summary, local DPN-treatment more than doubled the expression of tph2 mRNA
in the entire caudal DRN, compared to vehicle (Fig. 7A and B; F3,32=6.040; p < 0.01) and
unoperated controls (p < 0.05). Tph2 mRNA expression in the rostral DRN was not elevated
by DPN.

Treatment with estradiol caused similar, but less intense, effects on tph2 mRNA expression
compared to DPN. Local E-treatment caused tph2 mRNA levels in the dorso-mid DRN to be
about 1.8-fold higher than in either control group (Fig. 7A; F3,32=10.007; p < 0.05), resulting
in an overall 1.5-fold increase of tph2 mRNA in the entire mid DRN (Fig. 7A and B;
F3,32=7.902; p < 0.05), compared to both control groups. In the dorso-caudal subregion of the
DRN, local delivery of E caused a significant increase in tph2 mRNA compared to the vehicle
control group (Fig. 7A; F3,32=14.665; p < 0.05), in the ventro-caudal part compared to the
unoperated control group (Fig. 7A; F3,32=9.192; p < 0.05). Overall expression of tph2 mRNA
in the caudal DRN was almost doubled by local E-treatment compared to vehicle controls (Fig.
7A and B; F3,32=8.360; p < 0.05).
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Tph2 mRNA levels did not differ for any subregion between the vehicle- and the unoperated
control group, ensuring that the implantation of wax pellets adjacent to the DRN did not alter
tph2 gene expression.

DISCUSSION
The results of our studies show that both systemic and local activation of ERbeta in or around
the DRN increased the expression of tph2 mRNA in a subregion-dependent manner. Estrogen
treatment caused similar overall effects, but to a lesser extent than DPN. Furthermore, animals
treated locally with DPN or E showed decreased despair-like behavior. However, only systemic
delivery of DPN decreased anxiety-like behavior, while local administration of DPN failed to
have the same effect.

The systemic delivery of DPN to OVX rats reduced several anxiety-related behaviors,
confirming the anxiolytic nature of ERbeta (Krezel et al., 2001; Lund et al., 2005; Rocha et
al., 2005; Weiser et al., 2009). In contrast, local DPN- or estradiol-treatment of the raphe nuclei
failed to decrease anxiety-like behavior, indicating that estradiol’s action in regulating anxiety-
like behaviors may primarily involve other brain areas, such as the hypothalamic PVN (Herman
et al., 2002; Donner et al., 2007; Blume et al., 2008; Neumann, 2008), the lateral septum
(Henry et al., 2006), the amygdala (Bosch et al., 2007), or the bed nucleus of the stria terminalis
(Davis et al., 1997; Walker et al., 2003). Interestingly, our studies demonstrate that local
delivery of DPN or estradiol is sufficient to decrease despair-like behaviors in the FST. It
remains unclear why DPN-treated rats spent less time with passive floating behavior than
estradiol-treated animals. Yet, in accordance with studies from other research groups, both
estradiol and DPN increased the time rats spent actively struggling. While recent studies
already revealed an antidepressant function of ERbeta (Walf et al., 2004; Rocha et al., 2005;
Hughes et al., 2008), our experiments indicate a site of action for the observed effect. Thus,
high anxiety and despair-like behavior may be closely related to the phenotype of depression
(Chaby et al., 1993; Leibbrand et al., 1999; Farabaugh et al., 2005; Godart et al., 2006; Mittal
et al., 2006), but the involvement of ERbeta may be through two distinct neuroanatomical
regions. Further studies will be required to determine how ERbeta-mediated elevations of
tph2 mRNA expression in the mid-dorsal and caudal DRN are coupled to the attenuation of
despair-like behavior.

Not only the route and site of drug administration (systemic versus local), but also the different
time course of delivery (once daily s.c. versus constant intracerebral) may have contributed to
the discrepancy regarding anxiety-related behaviors between our two experiments. The
concentration of DPN in the plasma of male rats that received a 1mg/kg s.c. injection of DPN
has been shown to peak after 1 hour and decrease rapidly to undetectable levels within 3 hours
post injection (Patisaul et al., 2009). However, this doesn’t mean that the biological activity of
DPN decreases within the same timeframe. Lund et al. (2005) used an in vitro binding approach
and differential centrifugation for separation of bound and unbound receptors to estimate that
DPN occupies neural ERs with a half life of about 8 hours. These and other studies indicate
that DPN, phytoestrogens, and estradiol itself are likely to be sequestered by ERs in
reproductive tissues and in the brain, and are able to exert physiological effects for many hours
after incorporation (Blaustein et al., 1979; Dehennin et al., 1982; Morton et al., 1997; Walf et
al., 2004; Walf and Frye, 2005). Although animals in our experiment weren’t sacrificed until
4 hours after the last s.c. injection of DPN, it is therefore not unlikely that the behavioral
discrepancies observed were due to delayed acute effects of the last DPN injection, compared
to a constant chronic exposure to the compound diffusing from locally implanted wax pellets.
Chronic wax-mediated, application of DPN for 7 days around the paraventricular nucleus has
previously proven sufficient to inhibit the neuronal and corticosterone response of the
hypothalamo-pituitary adrenal axis to an acute stressor (Lund et al., 2006). The effects of local
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DPN-treatment on cellular parameters (tph2 mRNA) in our study further strengthen the
assumption that DPN is stable and biologically active for a long time when dissolved and
administered in beeswax. However, it would be of further interest to identify the biological
stability and metabolic fate of DPN following administration.

The observed DPN- or estrogen-induced increase in tph2 mRNA expression was mainly
restricted to the dorso-mid and the caudal DRN. These findings are consistent with observations
by Hiroi et al. (2006), who reported elevated tph2 mRNA expression specifically in the dorso-
and ventro-caudal DRN following systemic estrogen treatment in female OVX rats.
Furthermore, recent studies in rats and mice indicate that depression-related behavioral
paradigms (Keeney and Hogg, 1999; Becker et al., 2007) like social defeat (Gardner et al.,
2005) or inescapable stress (Grahn et al., 1999; Amat et al., 2005) selectively activate the dorsal
and caudal parts of the DRN. These subregions correspondingly give rise to projections
targeting forebrain areas involved in the control of emotional behavior (Lowry et al., 2005;
Lowry et al., 2008). The mid-dorsal DRN, for instance, sends out collateral projections to
emotion- and stress-related brain areas, that could, for instance, simultaneously modulate the
hypothalamic PVN and the basolateral or central nucleus of the amygdala (Lowry, 2002; Hale
et al., 2008b; Hale et al., 2008a). 5-HT axons from the caudal DRN target limbic structures
like the hippocampus, the entorhinal cortex and the septum (Kohler et al., 1982; Kohler and
Steinbusch, 1982), indicating that an alteration in tph2 expression and 5-HT neurotransmission
by estrogens may improve memory and learning deficits that are associated with depression
(Shors et al., 1998; Burriss et al., 2008; Liu et al., 2008). Within the entire caudal DRN it is
the dorso-caudal subdivision that has been suggested to play a crucial role in changes associated
with affective disorders (Commons et al., 2003). In clinical studies of drug-free, depressed
suicide victims, the dorso-caudal DRN subregions also exhibited elevated TPH2 protein and
tph2 mRNA expression (Bonkale et al., 2006; Bach-Mizrachi et al., 2008). However, a
pathological increase in tph2 expression may explain this apparent paradox. Pathologically
elevated tph2 mRNA and protein may reflect a compensatory feedback response to low overall
5-HT concentrations in the brain of depressed patients (Mann et al., 1989; Owens and
Nemeroff, 1994; Placidi et al., 2001). Also, most of the brains assessed in these clinical studies
were derived from male individuals, not females. Consequently, more detailed studies
quantifying TPH2 protein and local 5-HT release and turnover within the DRN itself
(autoregulation) and in target areas of the DRN in both male and female animal models of
anxiety and depression are required to answer this question.

Overall, local estradiol treatment had a similar, but less intense effect on tph2 mRNA
expression and on despair-like behavior than the selective ERbeta agonist. This difference
between E and DPN could be explained by the non-selective action of estradiol on both ERalpha
and ERbeta. Our previous data and those of others suggest that ERalpha and ERbeta have
opposing actions on stress related behaviors (Liu et al., 2002; Lund et al., 2005; Toufexis et
al., 2007; Weiser et al., 2009). While increased ERalpha mRNA and single nucleotide
polymorphisms (SNPs) in the gene coding for ERalpha are associated with mental illness,
specifically with depression (Perlman et al., 2005; Mill et al., 2008), ERbeta-mediated actions
have been found to exert anxiolytic and antidepressant effects in various animal models
(Imwalle et al., 2005; Lund et al., 2005; Rocha et al., 2005). Since estradiol can bind to both
receptor types with equal affinity (Kuiper et al., 1997; Lund et al., 2005), the possibility exists
that it could activate two functionally opposing mechanisms, both ultimately balancing tph2
mRNA expression and 5-HT-dependent behaviors.

At present, the exact patterns for ERbeta expression in DRN 5-HT neurons are controversial.
Lu et al. (2001) demonstrated that 5-HT neurons of the DRN of rats contain ERbeta, whereas
Sheng et al. (2004) were unable to identify ERbeta in 5-HT neurons. In mice, Nomura et al.
(2005) revealed that ERbeta, but not ERalpha is located within 5-HT neurons. ERbeta has also
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been shown in 5-HT neurons of the guinea pig (Lu et al., 1999) and rhesus monkey (Gundlah
et al., 2001). Furthermore, ERbeta2 (Chung et al., 2007), a novel splice variant carrying an 18-
amino acid insert between the fifth and the sixth exon in the ligand-binding domain of ERbeta,
has been shown in the DRN of female rats. In contrast, ERalpha may only be expressed in
non-5-HT-, but possibly GABAergic interneurons (Hart et al., 2001; Su et al., 2001), placing
ERalpha in a position to interfere with the negative feedback regulation of 5-HT-neuronal
function (Haddjeri et al., 2000; Liu et al., 2000). Differences in the expression of ERalpha
versus ERbeta in the midbrain of rats (Shughrue et al., 1997a; Shughrue et al., 1997b; Lu et
al., 2001), mice (Nomura et al., 2005; Vanderhorst et al., 2005), guinea pigs (Lu et al., 1999;
Warembourg and Leroy, 2004), and cats (VanderHorst et al., 1998) suggest that species
differences may exist in the modulation of the 5-HT system by gonadal steroids. In non-human
primates, ERbeta, but not ERalpha, seems to be the predominant ER expressed in raphe 5-HT
neurons (Gundlah et al., 2000; Gundlah et al., 2001; Vanderhorst et al., 2009). While ER
expression in the human DRN remains to be fully described, estrogens would be expected to
exert mainly anxiolytic and anti-depressive actions in humans if our expression profile of
ERbeta in the brain resembles the pattern found in other primates.

The molecular mechanisms by which ERbeta and ERalpha may directly or indirectly modulate
tph2 gene expression are still unknown. Although most ER-induced changes in gene
transcription are due to classic effects of the steroid receptors acting as nuclear transcription
factors, it is possible that other mechanisms may be present, particularly given the recent studies
showing rapid, membrane mediated mechanisms of ER action (Cato et al., 2002; Mhyre and
Dorsa, 2006; Levin, 2008).

In conclusion, our results show that chronic, local activation of ERbeta alters tph2 mRNA
expression in the DRN in a subregion-dependent manner, and, at the same time, facilitates
active stress-coping behavior. Interactions between ERbeta and 5-HT neurons of the DRN may
be key regulators of anti-depressive behavior, whereas other brain circuits seem to be necessary
for ERbeta to exert its anxiolytic actions. Our observations also raise the question whether
physiological changes in circulating estradiol can differentially influence behaviors in women
across the menstrual cycle. One possibility is that an altered ratio of ERalpha versus ERbeta
expression or a disruption of normal ER-regulation of tph2 expression in the midbrain might
contribute to mood disorders like premenstrual syndrome (Rubinow, 1992; Arpels, 1996;
Schmidt et al., 1998) or premenstrual dysphoric disorder (Gorman, 2006). These data
demonstrate the potential of ERbeta as a pharmaceutical target for treating affective disorders.
The future development of an ERbeta agonist for clinical use that facilitates 5-HT function and
emotional stability in menopausal women without the risk of breast- or gynecological cancer
associated with ERalpha-mediated actions (Chen et al., 2008) would be highly beneficial.
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E  
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ER  
estrogen receptor

5-HT  
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EPM  
elevated plus maze

OF  
open filed

FST  
forced swim test

MDD  
major depressive disorder

OVX  
ovariectomy/ovariectomized
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Figure 1.
Effect of systemic delivery of the ERbeta agonist, DPN, on anxiety-like behaviors of female
OVX rats. Animals were tested in the open field (A) and on the elevated plus maze (B). Panel
A shows (left to right) the number of rears at the walls of the OF, the time the animals spent
in the center squares, and the total number of square line crossings. Panel B displays the percent
time the animals spent in the open arms of the EPM, the latency until the first open arm entry,
the number of open arm entries and the number of closed arm entries (left to right). Each column
represents the group mean ± SEM of 8 individuals per group. Veh = vehicle treated group,
DPN = DPN-treated group. * (p < 0.05) and ** (p < 0.01) indicate significant differences versus
vehicle controls (Student’s t-test).
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Figure 2.
Representative dark-field photomicrographs from experiment 1. Shown are cells expressing
tph2 mRNA in the rostral (left side, bregma −7.3), mid- (middle, bregma −8.0) and caudal
DRN (right side, bregma −8.7) of systemically vehicle- or DPN-treated OVX animals. Vehicle-
treated animals (Veh) are shown in the top row of panels, DPN-treated rats (DPN) in the lower
row of panels. dr = dorso-rostral, vr = ventro-rostral, dm = dorso-mid, vm = ventro-mid, lat-
m = lateral mid, dc = dorso-caudal, vc = ventro-caudal. Scale bar: 40 μm.
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Figure 3.
Effects of systemic DPN-treatment on tph2 mRNA in OVX females. DPN increases tph2
mRNA in the dorso-mid and in the dorso- and ventro-caudal DRN. The table in panel A lists
densitometry-determined values for tph2 mRNA expression in seven subregions throughout
the rostro-caudal extent of the DRN (regular letters). For the rostral, mid and caudal DRN, the
sum of respective subregional values is displayed in bold letters. Animals were treated s.c. with
DPN or vehicle for 8 days. Each value represents the mean ± SEM of 8 animals per group
(numbers on parentheses). * (p < 0.05) and ** (p < 0.01) indicate significance versus vehicle
controls. Data were analyzed by Student’s t-test for all regions. Panel B: This diagram is a
graphic illustration of tph2 mRNA expression levels in the entire rostral, mid and caudal DRN,
as listed in bold letters in Panel A. All columns represent means ± SEM of n = 8 per group.
Veh = vehicle (hydroxypropyl-beta-cyclodextrin) group, DPN = DPN-treated group. AdU =
arbitrary density units. ** (p < 0.01) indicates significance versus vehicle controls (Student’s
t-test). Panel C: Schematic representation of matrix-based densitometry analysis of inverted,
normalized dark-field pictures. Silvergrains appear as dark dots in the inverted picture. In this
example, the densities of silver grains in the dorso-mid (dm), ventro-mid (vm) and lateral mid
(lat-m) DRN were measured and subsequently summarized for total tph2 mRNA expression
in the entire mid DRN. Data collection of rostral and caudal subregions of the DRN was
performed accordingly. Scale bar: 40 μm.
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Figure 4.
Localization of hormone containing pellets implanted in experiment 2. Wax pellets containing
0.5 μM DPN or 0.5 μM E were stereotaxically implanted lateral to the DRN. A: Bright-field
image of silvergrain-labeled (small black grains) cells at bregma −8.2, hybridized with a
riboprobe detecting tph2 mRNA, and counterstained with cresyl-violet (purple), are shown.
The spread of a compound diffusing from a wax pellet was estimated to be confined within a
radius of 0.5 mm (Lund et al. 2006). The predicted center of the DRN is indicated by the
crossing point of the two dotted lines. Scale bar: 100 μm. B: Magnification of the outlined area
from picture A. The arrow marks a concentration of silvergrain-labeled tph2 mRNA around a
cell nucleus (purple). Scale bar: 20 μm. C: Schematic picture of the rat brainstem at Bregma
−7.80 mm (Paxinos & Watson 1998). Each gray dot represents the center of an implanted wax
pellet.
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Figure 5.
Effect of local DPN- or E-treatment on anxiety- and depressive-like behavior. Animals were
tested in the OF (A) and on the EPM (B) for anxiety-related behavior, and in the FST (C) for
depression-related behavior. Panel A shows (left to right) the number of rears at the walls of
the OF, the time the animals spent in the center squares, and the total number of square line
crossings. Panel B displays the percent time the animals spent in the open arms of the EPM,
the latency until the first open arm entry, the number of open arm entries and the number of
closed arm entries. Panel C depicts the time spent floating, struggling or paddling when the
animals were forced to swim. Each column represents the mean ± SEM for 7–10 animals per
group. * (p<0.05) indicates significant difference versus vehicle controls, # (p<0.05) versus E-
treated animals. C = OVX control group without brain surgery (n=7), Veh = vehicle control
group (blank wax pellets, n=9), E = estradiol-treated animals (n=10), DPN = DPN-treated
animals (n=10). ANOVA (factor treatment) was performed, followed by Tukey’s post hoc test
where appropriate.
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Figure 6.
Representative dark-field photomicrographs from experiment 2. Shown are cells expressing
tph2 mRNA in the rostral (left side, bregma −7.3), mid- (middle, bregma −8.0) and caudal
(right side, bregma −8.7) DRN of female OVX rats stereotaxically implanted with vehicle-, E-
or DPN-containing pellets. Vehicle-treated animals (Veh) are shown in the top row of panels,
E-treated rats (E) in the middle row of panels, and DPN-treated rats (DPN) in the lower row
of panels. dr = dorso-rostral, vr = ventro-rostral, dm = dorso-mid, vm = ventro-mid, lat-m =
lateral mid, dc = dorso-caudal, vc = ventro-caudal. Scale bar: 40 μm.
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Figure 7.
Effect of local DPN- or E-treatment on tph2 mRNA levels of OVX females. DPN and E both
act locally to enhance tph2 expression in mid- and caudal subregions of the DRN. The table
in panel A lists densitometry-determined values for tph2 mRNA expression in seven subregions
throughout the rostro-caudal extent of the DRN (regular letters). For the rostral, mid and caudal
DRN, the sum of respective subregional values is displayed in bold letters. OVX rats were
implanted with DRN-flanking wax pellets containing nothing (vehicle group), E or DPN. An
additional control group remained without brain surgery. Numbers in parentheses indicate
group size. Each value represents the mean ± SEM. Panel B: This diagram is a graphic
illustration of tph2 mRNA expression levels in the rostral, mid and caudal DRN, as listed in
bold letters in Panel A. Each value represents the mean ± SEM. * (p < 0.05) and ** (p < 0.01)
indicate significance versus vehicle controls, + (p < 0.05) and ++ (p < 0.01) versus unoperated
controls, and # (p < 0.05) and ## (p < 0.01) versus E-treated animals. C = OVX control group
without brain surgery (n=7), Veh = vehicle control group (blank wax pellets, n=9), E =
estradiol-treated animals (n=10), DPN = DPN-treated animals (n=10). ANOVA (factor
treatment) was performed, followed by Tukey’s post hoc test where appropriate.
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