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Abstract

Background: BRCA1 is a key regulatory protein participating in cell cycle checkpoint and DNA damage repair networks.
BRCA1 plays important roles in protecting numerous cellular processes in response to cell damaging signals. Transforming
growth factor-beta (TGF-b) is a potent regulator of growth, apoptosis and invasiveness of tumor cells. TFG-b activates Smad
signaling via its two cell surface receptors, the TbetaRII and ALK5/TbetaRI, leading to Smad-mediated transcriptional
regulation.

Methodology/Principal Findings: Here, we report an important role of BRCA1 in modulating TGF-b signaling during
oxidative stress responses. Wild-type (WT) BRCA1, but not mutated BRCA1 failed to activate TGF-b mediated transactivation
of the TGF-b responsive reporter, p3TP-Lux. Further, WT-BRCA1, but not mutated BRCA1 increased the expression of Smad3
protein in a dose-dependent manner, while silencing of WT-BRCA1 by siRNA decreased Smad3 and Smad4 interaction
induced by TGF-b in MCF-7 breast cancer cells. BRCA1 interacted with Smad3 upon TGF-b1 stimulation in MCF-7 cells and
this interaction was mediated via the domain of 298–436aa of BRCA1 and Smad3 domain of 207–426aa. In addition, H2O2

increased the colocalization and the interaction of Smad3 with WT-BRCA1. Interestingly, TGF-b1 induced Smad3 and Smad4
interaction was increased in the presence of H2O2 in cells expressing WT-BRCA1, while the TGF-b1 induced interaction
between Smad3 and Smad4 was decreased upon H2O2 treatment in a dose-dependent manner in HCC1937 breast cancer
cells, deficient for endogenous BRCA1. This interaction between Smad3 and Smad4 was increased in reconstituted HCC1937
cells expressing WT-BRCA1 (HCC1937/BRCA1). Further, loss of BRCA1 resulted in H2O2 induced nuclear export of phosphor-
Smad3 protein to the cytoplasm, resulting decreased of Smad3 and Smad4 interaction induced by TGF-b and in significant
decrease in Smad3 and Smad4 transcriptional activities.

Conclusions/Significance: These results strongly suggest that loss or reduction of BRCA1 alters TGF-b growth inhibiting
activity via Smad3 during oxidative stress responses.
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Introduction

Patients who inherit genetic defects in BRCA1 and BRCA2

have an increased lifetime risk of developing breast cancer.

BRCA1 is a multifunctional protein that has been implicated in

many cellular processes, including genomic stability, the cell-cycle

checkpoint, DNA-damage repair, apoptosis, and gene transcrip-

tion [1]. However, the precise mechanism by which loss of

BRCA1 affects specific tissues in humans is unclear. BRCA1 has

two important structural motifs, including a highly conserved

amino-terminal RING finger motif and tandem BRCT motifs at

its C-terminus [2,3]. The RING finger motif confers BRCA1 E3

ubiquitin ligase activity, one of the intriguing aspects of BRCA1

function, regulating activity, stability and distribution of target

molecules [4]. The BRCT region of BRCA1 is essential for its

DNA repair, transcriptional regulation and tumor suppressor

functions [5]. Germline mutations in BRCA1 were often seen in

the two regions [6], suggesting that the RING finger and BRCT

motifs play an important role in the development of breast and

ovarian cancers.

Emerging evidence has indicated that BRCA1 is involved in

ROS production and oxidative stress responses. BRCA1 was

shown to exert antioxidant activity by inducing antioxidant

expression [7] and Brca1-deficient mice were reported to produce

excess reactive oxygen species (ROS) and to be sensitive to

oxidative stress [8]. However, the molecules and signaling

pathways susceptible to oxidative stress due to BRCA1 inactiva-

tion remain elusive. Studies have suggested that oxidative stress

and ROS play important roles in the development of cancer

[9,10]. ROS can serve as subcellular messengers in gene regulation

and signal transduction pathways, and can damage lipids, DNA

and proteins [11,12]. Therefore, understanding the targets and

signaling pathways of ROS may provide insights into the impact of

environmental factors in cancer initiation and progression.
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The TGF-b family has been demonstrated to contribute to

normal mammary gland development as well as the progression of

human breast cancer [13]. Loss of inhibition or increased

promotion of proliferation for TGF-b is believed to contribute to

carcinogenesis in the mammary gland. TGF-b transduces signals

via phosphorylation of intracellular mediators, Smad2 and Smad3.

The TGF-b receptor-activated Smads form a complex with

Smad4 co-activator. The heteromeric Smad complexes then

translocate into the nucleus, where they induce or repress

transcription of defined genes [14]. Smad-dependent downregu-

lation of c-Myc or upregulation of p15 and p21 is related to the

anti-proliferative activity of TGF-b [15]. TGF-b also signals

independently of Smads, via phosphatidylinositol 3-kinase (PI3K),

protein phosphatase 2A/p70 S6 kinase (PP2A/p70S6K), and

various mitogen-activated protein kinase (MAPK) pathways,

which may result in promotion of proliferation [16]. Whether

and how genetic defects and/or environmental factors influence

the growth inhibitory activity of TGF-b signaling is not well

understood.

TGF-b signaling, via Smad3, was reported to suppress BRCA1-

dependent DNA repair in response to DNA-damaging agents [17].

Here, we aimed to elucidate the effects of BRCA1 inactivation on

TGF-b signaling. Since ROS can affect cell fate through cross-talk

with other signaling pathways [18], we investigated the functional

interaction between BRCA1 and Smad3 during cross-talk between

TGF-b signaling and oxidative stress responses. We describe that

the oxidative stress reagent H2O2 increases the TGF-b-induced

association between BRCA1 and Smad3 in vivo and that

inactivation of BRCA1 of loss of BRCA1 sensitizes phospho-

Smad3 protein to oxidative stress resulting in nuclear export of

phospho-Smad3 protein, and decreased Smad3-Smad4 mediated

interaction induced by TGF-b and transcriptional activation in

breast cancer cells.

Results

BRCA1 activates a TGF-b-responsive reporter
To understand whether inactivation of BRCA1 by germline

mutations affects the TGF-b signaling pathway, we investigated

the effect of BRCA1 mutations on TGF-b1 transactivation activity

by performing a cell-based reporter assay with a TGF-b-

responsive reporter, p3TP-Lux [19]. We found that wild type

BRCA1 increases the basal level of p3TP-Lux reporter activity in a

dose-dependent manner in COS-7 cells (Figure 1A). We further

examined the effect of wild type BRCA1 on TGF-b1-mediated

transcriptional regulation. TGF-b1-mediated transactivation of

the p3TP-Lux reporter was increased by wild type BRCA1

(Figure 1B). Similarly, wild type BRCA1 augmented constitutively

active form of TGF-b receptor II (caTbRII)-mediated transactiva-

tion activity (Figure 1B). To understand how BRCA1 mutations

affect TGF-b1-mediated transactivation, we examined several

mutants of BRCA1 that are frequently seen in BRCA1 familial

breast cancer patients [20]. Intriguingly, mutants of BRCA1,

including BRCA1-M1775R, BRCA1-P1749R, BRCA1-Y1853x,

BRCA1 (1–683aa), and BRCA1 (1301–1863aa), not only failed to

induce the basal activity of the p3TP-Lux reporter, but also failed

to increase the TGF-b1-mediated activation of the reporter

(Figure 1C). Thus, these data suggest that wild type BRCA1

upregulates TGF-b1-mediated transcription, which is impaired

upon inactivation of BRCA1 by germline mutations.

It has been demonstrated that BRCA1 increases Smad3-

dependent transcription [17]. We also observed that wild type

BRCA1 and Smad3 cooperate to increase the luciferase activity of

the p3TP-Lux reporter (Figure 2A), while Smad4 largely increases

the Smad3-dependent transactivation activity of the reporter

(Figure 2A).

Lysates from the p3TP-Lux reporter assay were examined for

the expression of Flag-Smad3 protein. Interestingly, the expression

levels of Flag-Smad3 protein were increased in conjunction with

wild type BRCA1 co-expression (data not shown). Wild type

BRCA1 increased the expression levels of Flag-Smad3 protein in a

dose-dependent manner, as compared to the control caTbRII

(Figure 2B). Notably, the BRCA1 mutants could not increase the

expression levels of Smad3 protein (Figure 2C). Taken together,

these data suggest that an increase in the expression levels of

Smad3 protein by wild type BRCA1 may contribute to increased

Smad3-mediated reporter activation.

Interaction of endogenous WT-BRCA1 with Smad3
An interaction between HA-BRCA1 and Flag-Smad3 was

observed in HEK293T cells cotranfected with HA-BRCA1 and

Flag-Smad3 (Figure 3A), consistent with a previous report [17].

TGF-b1 stimulation in COS-7 cells increased the association

between HA-BRCA1 and Flag-Smad3 in a time-dependent

manner (Figure 3B). Further, endogenous interaction of

BRCA1 with Smad3 was increased with upon TGF-b1

stimulation in MCF-7 cells (Figure 3C). Thus, these data

suggest that TGF-b1 regulates the association between BRCA1

and Smad3.

Next, we mapped the Smad3-binding site on the BRCA1

protein by using HEK293T cell lysates that were transfected with

Flag-Smad3 plasmid and a series of GST-BRCA1 protein

fragments [20]. Flag-Smad3 was shown to bind to the BRCA1

(298–436aa) protein fragment (Figure 3D). The interaction

between HA-BRCA1 (298–436aa) and Flag-Smad3 was further

demonstrated in HEK293T cells (Figure 3E–3G), indicating that

Smad3 protein binds to one of two major protein-protein

interacting surfaces in BRCA1.

Smads share two conserved regions denoted the Mad homology

1 (MH1) and MH2 domains [21,22]. The MH1 domain of certain

Smads directly binds to DNA, whereas the MH2 domain possesses

intrinsic transactivation activity. To identify the BRCA1 binding

site in Smad3, Flag-Smad3NL that covers MH1 and linker

domains (from 1 to 206aa) and Flag-Smad3C that covers MH2

domain (from 207 to 426aa) were generated and used for the GST

pull-down assay with GST-BRCA1 (298–436) protein. Flag-

Smad3C was shown to bind to the GST-BRCA1 (298–436)

protein (Figure 3F, 3G), suggesting that the MH2 domain, the

transcriptional activation domain in Smad3 protein, mediates the

association of Smad3 with BRCA1.

Hydrogen peroxide increases the interaction between
Smad3 and BRCA1 in the presence of TGF-b1

Given that BRCA1 is implicated in DNA damage-related

cellular processes, we explored whether oxidative stress regulates

the BRCA1 and Smad3 interaction. In the presence of TGF-b1,

H2O2 increased the BRCA1 and Smad3 interaction at the

endogenous level in human keratinocyte HaCaT cells (Figure 4A)

and wild type BRCA1-reconstituted HCC1937 breast cancer cells

(HCCBRCA1) (Figure 4B). The confocal analyses showed that

H2O2 induces an increasing colocalization between TGF-b1-

activated phospho-Smad3 and BRCA1 protein in HCCBRCA1

(Figure 4C) and MCF-7 cells (data not shown). In the absence of

TGF-b1 ligand, the Smad3 and BRCA1 interaction was not

induced by H2O2 in these cells (data not shown). Thus, these data

suggest that oxidative stress increases the TGF-b1-dependent

interaction between BRCA1 and Smad3.

BRCA1 Interaction with Smad3

PLoS ONE | www.plosone.org 2 September 2009 | Volume 4 | Issue 9 | e7091



The TGF-b1-induced Smad3 and Smad4 interaction is
regulated by H2O2 and BRCA1

We further investigated whether H2O2 affects TGF-b1-induced

Smad3 and Smad4 interaction. In HEK293T cells, H2O2

treatment increased the caTbRII-induced interaction between

Flag-Smad3 and HA-Smad4 (Figure 5A). In addition, H2O2

slightly increased the TGF-b1-dependent interaction between

Smad3 and Smad4 at the endogenous level in HaCaT cells

(Figure 5B). Notably, in HCC1937 cells, the TGF-b1-induced

interaction between Smad3 and Smad4 was decreased upon H2O2

treatment in a dose-dependent manner (Figure 5C). However,

HCCBRCA1 cells in the TGF-b1-induced increased Smad3 and

Smad4 interaction (Figure 5D). The expression levels of phospho-

Smad3 protein were not changed upon H2O2 treatment in either

cell line (data not shown). These results suggest that loss of BRCA1

sensitizes TGF-b1 signaling to H2O2, leading to a decrease in the

TGF-b1-induced Smad3 and Smad4 interaction.

Loss of BRCA1 results in H2O2-induced nuclear export of
phospho-Smad3 protein

We further investigated whether H2O2 regulates the nuclear

retention of phospho-Smad3 protein. Cells were pretreated with

TGF-b1 for 1 hour and then incubated with or without H2O2 for

an additional 1 hour. Cytosolic and nuclear proteins were separated

to determine the expression levels of phospho-Smad3 protein.

Phospho-Smad3 protein was translocated into the nucleus by TGF-

b1 ligand stimulation, but not by H2O2 treatment (data not shown).

Intriguingly, the TGF-b1-induced phospho-Smad3 protein present

in the nucleus was markedly redistributed into the cytoplasm upon

H2O2 treatment in HCC1937 cells, but not significantly redispersed

in HCCBRCA1 and HaCaT cells (Figure 6A), or COS-7 and MCF-

7 cells (data not shown). siRNA-mediated knockdown of endoge-

nous BRCA1 in HCCBRCA1 cells resulted in a decrease in the

levels of phospho-Smad3 protein in the nucleus and in a

redistribution of phospho-Smad3 protein into the cytoplasm after

H2O2 treatment (Figure 6B). Thus, these data suggest that loss of

BRCA1 sensitizes phospho-Smad3 protein in the nucleus to H2O2-

induced nuclear export.

Figure 1. Effects of BRCA1 on p3TP-Lux promoter activity. (A)
Wild type BRCA1 activates the p3TP-Lux promoter. 0.1 mg of p3TP-Lux
and 10 ng of pCMVb-galactosidase plasmids were co-transfected with
Flag-Smad3 and HA-BRCA1 plasmids into COS-7 cells, as indicated. A
pcDNA3 empty vector plasmid was used to adjust total DNA amounts.
At 36 hrs after transfection, luciferase and b-galactosidase assays were
performed. The luciferase activities were normalized to b-galactosidase
activity and the relative luciferase activities (fold increase) were
calculated as the ratio of the normalized luciferase activity with

effectors to that without effectors. The average6S.D. was calculated
from triplicate plates and experiments were repeated three times with
similar results. The bars in the graphs represent mean6SD. *, P,0.05
versus empty vector only. (B) Wild type BRCA1 enhances TGF-b-
mediated p3TP-Lux promoter activity. 0.1 mg of p3TP-Lux and 10 ng of
pCMVb-galactosidase plasmids were co-transfected with 0.25 mg of
caTbRII plasmid or 0.1 mg of HA-BRCA1 plasmid into COS-7 cells, as
indicated. 24 hrs after transfection, the indicated cells were incubated
with 2 ng/ml of TGF-b1 ligand overnight, followed by luciferase and b-
galactosidase assays. The luciferase activities were normalized to b-
galactosidase activity and the relative luciferase activities (fold increase)
were calculated as the ratio of the normalized luciferase activity with
effectors to that without effectors. The average6S.D. was calculated
from triplicate plates and experiments were repeated three times with
similar results. The bars in the graphs represent mean6SD. (C) BRCA1
mutants could not activate the p3TP-Lux promoter. 0.1 mg of p3TP-Lux
and 10 ng of pCMVb-galactosidase were co-transfected with 0.1 mg of
wild type or various mutant forms of HA-BRCA1 into COS-7 cells. 24 hrs
after transfection, the cells were treated with or without 2 ng/ml of
TGF-b1 overnight, followed by luciferase and b-galactosidase assays.
The luciferase activities were normalized to b-galactosidase activity and
the relative luciferase activities (fold increase) were calculated as the
ratio of the normalized luciferase activity with effectors to that without
effectors. The average6S.D. was calculated from triplicate plates and
experiments were repeated three times with similar results. WT: wild
type BRCA1; M, P, and Y: BRCA1-M1775R, BRCA1-P1749R, and BRCA1-
Y1853x, respectively; N-: BRCA1 (1–683aa); C-: BRCA1 (1301–1863aa).
doi:10.1371/journal.pone.0007091.g001
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Effect of silenced BRCA1 on Smad3 and Smad4
interaction and transcriptional activation in breast cancer
cells

Next, to examine the effects of silencing WT-BRCA1, by siRNA

for BRCA1, on TGF-b mediated effects, MCF-7 breast cancer

cells were either treated with si-GFP or siBRCA1. We confirmed

the expression of BRCA1 to be significantly reduced by siBRCA1

in MCF7 cells (data not shown). As shown in Fig. 7a, silencing of

BRCA1 significantly inhibited Smad3 and Smad4 transcriptional

activation. Further, MCF-7 treated with siBRCA1 showed

significant reduction of Smad3 with Smad4 TGF-b-induced

interaction as well as reduced expression of Smad3 and Smad4.

Taken together, these results show that loss of BRCA1 or reduced

BRCA1 expression significantly modulated TGF-b induced

activation of Smad3 and Smad4 in breast cancer cells.

Discussion

In this study, we uncovered an important role of BRCA1 in the

TGF-b signaling pathway during oxidative stress responses.

BRCA1 protein associated with Smad3 protein and increased

the expression levels of Smad3 protein, resulting in an increase in

Smad3-mediated transcriptional activity. Further, endogenous

BRCA1 associated with Smad3 protein in a TGF-b1-dependent

manner. The oxidative stress reagent H2O2 increased the TGF-

b1-induced BRCA1 and Smad3 endogenous interaction. Of note,

in BRCA1-mutated HCC1937 cells, the TGF-b1-induced Smad3

and Smad4 interaction was decreased in a dose-dependent

manner upon H2O2 treatment, while reconstitution of wild type

BRCA1 in HCC1937 cells restored the TGF-b1-induced Smad3

and Smad4 interaction. In addition, the TGF-b1-phosphorylated

Smad3 protein was sensitive to H2O2 treatment in HCC1937 cells,

resulting in nuclear export of phospho-Smad3 protein, which may

contribute to the decrease in its association with Smad4 protein.

We observed that wild type BRCA1 associates with and

increases the expression levels of Smad3 protein, resulting in

Smad3-mediated reporter activity and an increase in Smad3 and

Smad4 association in vitro. Compared to Smad4 protein, which

significantly augmented Smad3-mediated reporter activity,

BRCA1 moderately increased Smad3-mediated transactivation,

implying that wild type BRCA1 regulates Smad3-mediated

transcription by an alternate mechanism involving Smad4.

BRCA1, via the N-terminal region (298–436 aa), associated with

Figure 2. Effects of BRCA1 on Smad3 protein. (A) Wild type BRCA1
and Smad3 cooperate to increase p3TP-Lux promoter activity. 0.1 mg of
p3TP-Lux and 10 ng of pCMVb-galactosidase plasmids were co-
transfected with 10 ng of Flag-Smad3, 50 ng of HA-Smad4, and
0.1 mg of wild type HA-BRCA1 plasmids into COS-7 cells, as indicated.
36 hrs after transfection, luciferase and b-galactosidase assays were
performed. The luciferase activities were normalized to b-galactosidase

activity and the relative luciferase activities (fold increase) were
calculated as the ratio of the normalized luciferase activity with
effectors to that without effectors. The average6S.D. was calculated
from triplicate plates and experiments were repeated three times with
similar results. The bars in the graphs represent mean6SD. *, P,0.05
versus empty vector only. (B) Wild type BRCA1 increases Smad3 protein
abundance. 0.15 mg of Flag-Smad3 plasmid was co-transfected with
0.1 mg, 0.25 mg, and 0.5 mg of wild type HA-BRCA1 or 0.1 mg and
0.25 mg of caTbRII into HEK293 cells. 36 hrs after transfection, 10 mg of
total cell lysates was subjected to Western blotting with anti-Flag
monoclonal antibody. Anti-CSK polyclonal antibody was used to
monitor equal loading. Flag-Smad3 expression levels were normalized
to CSK and are represented graphically. This is a representative
experiment out of 4 experiments. (C) BRCA1 mutants could not
increase Smad3 protein abundance. 0.15 mg of Flag-Smad3 was co-
transfected with 0.1 mg of wild type or various mutant forms of HA-
BRCA1 into HEK293 cells. 10 mg of total cell lysates was subjected to
Western blotting with anti-Flag monoclonal antibody. Anti-CSK
polyclonal antibody was used to monitor equal loading. Flag-Smad3
expression levels were normalized to CSK and are represented
graphically. This is a representative experiment out of 4 experiments.
doi:10.1371/journal.pone.0007091.g002
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Smad3 protein. In functional assays, mutants of BRCA1 could not

activate the TGF-b1-responsive reporter or the expression levels of

Smad3 protein, suggesting that inactivation in BRCA1 impairs

TGF-b signaling. Mutations in BRCA1 are often seen in BRCA1-

associated breast and ovarian cancers, indicating that genetic

mutations in BRCA1 are linked to loss of function in Smad3-

Figure 3. BRCA1 and Smad3 association. (A) HA-BRCA1 interacts with Flag-Smad3 in HEK293T cells. 0.5 mg of wild type HA-BRCA1 and 0.50 mg
of Flag-Smad3 plasmids were co-transfected into HEK293T cells, as indicated. 36 hrs later, total cell lysates were subjected to immunoprecipitation
and Western blotting with anti-Flag monoclonal antibody and anti-HA-monoclonal antibody, as indicated. 10 mg of total cell lysates was used to
examine the expression levels of Flag-Smad3 and HA-BRCA1 protein. The blots are representative experiment out of 3 experiments. (B) TGF-b1
increases the interaction between HA-BRCA1 and Flag-Smad3 in COS-7 cells. 0.50 mg of Flag-Smad3 and 0.50 mg of HA-BRCA1 plasmids were co-
transfected into COS-7 cells. 24 hrs later, cells were treated with or without 2 ng/ml of TGF-b1 as indicated. Total cell lysates were
immunoprecipitated with anti-Flag monoclonal antibody followed by Western blotting with anti-HA monoclonal antibody. The membrane was re-
probed with anti-Flag antibody. The increases in HA-BRCA1 were normalized to Flag-Smad3 and are represented graphically. The expression levels of
HA-BRCA1 protein were detected in 10 mg of total cell lysates. This is a representative experiment out of 3 experiments. (C) TGF-b1 increases BRCA1
and Smad3 interaction in MCF-7 cells. Cells were stimulated with 2 ng/ml of TGF-b1 for 1 hour. Total cell lysates were immunoprecipitated by anti-
Smad3 polyclonal antibody, followed by Western blotting with anti-BRCA1 antibody. The membrane was re-probed with anti-Smad3 antibody. The
increases in BRCA1 were normalized to Smad3 and are represented graphically. The expression levels of BRCA1 protein were determined in 30 mg of
total cell lysates. This is a representative experiment out of 4 experiments. (D) Smad3 binding site in BRCA1. 10 mg of the individual GST-BRCA1
protein fragments and HEK293T cell lysates transfected with Flag-Smad3 plasmid were subjected to a GST-pull down assay. To monitor expression
levels, 10 mg of individual GST-BRCA1 protein fragments were separated on 15% and 8% SDS-PAGE, followed by Coomassie staining. (E) Interaction of
BRCA1 (1–683aa) with Smad3 protein in HEK293T cells. 0.5 mg of HA-BRCA1(1–683aa) and 0.5 mg of Smad3 plasmids were co-transfected into
HEK293T cells, followed by immunoprecipitation and Western blotting, as indicated. The membrane was re-probed with anti-Flag monoclonal
antibody to examine the levels of Smad3 protein expression. The levels of HA-BRCA1(1–683aa) expression were determined in 10 mg of total lysates.
(F) BRCA1 binds to the MH2 domain in Smad3. 10 mg of GST and GST-BRCA1 (298–436aa) proteins and HEK293T cell lysates transfected with Flag-
Smad3 (1–206aa) or Flag-Smad3 (207–426aa) were subjected to a GST pull-down assay. The expression levels of Flag-Smad3 (1–206aa) and Flag-
Smad3 (207–426aa) protein were determined in 10 mg of total cell lysates. This is a representative experiment out of 4 experiments. (G) Flag-Smad3
and HA-BRCA1 (298–436aa) interaction. HA-BRCA1 (298–436aa) and Flag-Smad3 plasmids were co-transfected into HEK293T cells, followed by
immunoprecipitation and Western blotting, as indicated. The membrane was re-probed with anti-Flag antibody to monitor Flag-Smad3 expression.
10 mg of total cell lysates was used to examine the expression levels of HA-BRCA1 (298–436aa) protein.
doi:10.1371/journal.pone.0007091.g003
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PLoS ONE | www.plosone.org 5 September 2009 | Volume 4 | Issue 9 | e7091



mediated TGF-b signaling. One of the biochemical functions of

BRCA1 is E3 ubiquitin ligase activity, which was shown to

ubiquitinate and stabilize its binding partners [23]. Whether the

observation that wild type BRCA1 increases Smad3 protein

expression is due to wild type BRCA1-mediated ubiquitination of

Smad3 protein remains to be investigated.

Figure 4. Effects of H2O2 on the association and colocalization between Smad3 and BRCA1. (A & B) H2O2 increases Smad3 and BRCA1
interaction in HaCaT and HCCBRCA1 cells. Cells were treated with TGF-b1 (2 ng/ml) and H2O2 (100 mM) for 1 hour, as indicated. Total cell lysates were
subjected to immunoprecipitation with anti-Smad3 polyclonal antibody and Western blotting with anti-BRCA1 polyclonal antibody. The increases in
Smad3-binding to BRCA1 were normalized to Smad3 protein expression and are represented graphically. The expression levels of Smad3 and BRCA1
proteins were determined in 20 and 30 mg of total cell lysates, respectively. The shifted bands of BRCA1 after H2O2 treatment are shown in HaCaT
cells. This is a representative experiment out of 4 experiments. (C) H2O2 increases phospho-Smad3 and BRCA1 colocalization in HCCBRCA1 cells.
HCCBRCA1 cells were treated with 2 ng/ml of TGF-b1 and 100 mM of H2O2 for 1 hour as indicated. Anti-BRCA1 monoclonal antibody (Ab-3) and anti-
phospho-Smad3 polyclonal antibody were used to immunostain BRCA1 protein (Red) and phospho-Smad3 protein (Green), respectively. Merge
shows the colocalization of BRCA1 and phospho-Smad3 protein. This is a representative experiment out of 4 experiments.
doi:10.1371/journal.pone.0007091.g004

BRCA1 Interaction with Smad3
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Figure 5. Effects of H2O2 on the TGF-b1-induced association between Smad3 and Smad4. (A) H2O2 increases the interaction between
Smad3 and Smad4 in HEK293T cells. HEK293T cells were co-transfected with 0.5 mg of Flag-Smad3, 0.5 mg of HA-Smad4, and 0.15 mg of caTbRII
plasmids, as indicated. 24 hours later, cells were treated with 200 mM of H2O2 for 2 hours, followed by immunoprecipitation and Western blotting, as
indicated. The membrane was re-probed with anti-Flag monoclonal antibody to examine the expression levels of Flag-Smad3 protein. The increases
in Flag-Smad3-binding to HA-Smad4 were normalized to Flag-Smad3 protein expression and are represented graphically. The expression levels of
HA-Smad4 protein were determined in 10 mg of total cell lysates. This is a representative experiment out of 4 experiments. (B) H2O2 increases the
interaction between Smad3 and Smad4 in HaCaT cells. HaCaT cells were treated or untreated with 2 ng/ml of TGF-b1 and 100 mM of H2O2 for 1 hour
as indicated, and subjected to immunoprecipitation with anti-Smad3 polyclonal antibody and Western blotting with anti-Smad4 monoclonal
antibody. The membrane was re-probed with anti-Smad3 antibody to examine the levels of Smad3 protein. The increases in Smad3-binding to
Smad4 were normalized to Smad3 protein expression and are represented graphically. The expression levels of Smad4 protein were determined in
20 mg of total cell lysates. This is a representative experiment out of 4 experiments. (C) TGF-b1-induced Smad3 and Smad4 interaction is decreased by
H2O2 in HCC1937 cells. HCC1937 cells were treated or untreated with 2 ng/ml of TGF-b1 and 100 (+), 200 (++), and 300 mM (+++) of H2O2 for 1 hour as
indicated. Immunoprecipitation was done as in Figure 5b (HaCaT cells). The membrane was re-probed with anti-Smad3 antibody to examine the
levels of Smad3 protein. The decreases in Smad3-binding to Smad4 were normalized to Smad3 protein expression and are represented graphically.
The expression levels of Smad4 protein were determined in 20 mg of total cell lysates. This is a representative experiment out of 4 experiments. (D)
Wild type BRCA1 restores the TGF-b1-induced Smad3 and Smad4 interaction against H2O2 in HCCBRCA1 cells. The experiment was done as in
Figure 5c (HCC1937 cells). The increases in Smad3-binding to Smad4 were normalized to Smad3 protein expression and are represented graphically.
This is a representative experiment out of 4 experiments.
doi:10.1371/journal.pone.0007091.g005
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To support our data regarding the BRCA1 and Smad3 interaction,

we sought an inducer for the BRCA1 and Smad3 association. We

found that H2O2 increases the TGF-b1-induced BRCA1 and Smad3

endogenous association, suggesting that the association of BRCA1 and

Smad3 occurs during signaling cross-talk between TGF-b and

oxidative stress. BRCA1 activates or inhibits many nuclear transcrip-

tion factors through protein-protein interactions. In addition, BRCA1

was shown to act as a scaffold protein or utilize its E3 ubiquitin ligase

activity to regulate nuclear proteins. Thus, BRCA1 regulated the

interactions of Phospho-Smad3 and its cellular localization.

Figure 6. Effects of H2O2 on the trafficking of phospho-Smad3 protein. (A) H2O2 induces the nuclear export of TGF-b1-activated phospho-
Smad3 protein (p-Smad3) in HCC1937 cells, but not in HCCBRCA1 or HaCaT cells. Cells were pretreated with 2 ng/ml of TGF-b1 for 1 hour and were
then incubated with or without 100 mM of H2O2 for an additional 1 hour. Cytosolic and nuclear proteins were subjected to Western blotting with
anti-phospho-Smad3 antibody. The membranes were re-probed with anti-GAPDH and anti-Lamin B1 antibodies to monitor fractionation efficiency
and equal loading for the cytosolic and nuclear proteins. Increases or decreases in the amount of phospho-Smad3 protein were normalized to the
amount of GAPDH and Lamin B1 protein in the cytosol and nucleus, respectively. Cyt.: cytosolic fraction; Nuc.: nuclear fraction. This is a representative
experiment out of 4 experiments. (B) Knockdown of endogenous BRCA1 in HCCBRCA1 cells sensitizes phospho-Smad3 protein to H2O2 and induces
redistribution of the protein into the cytoplasm. HCCBRCA1 cells were transfected with siRNAs against BRCA1 and GL2 (control). 48 hours later, cells
were pretreated with 2 ng/ml of TGF-b1 for 1 hour and were then incubated with or without 100 mM of H2O2 for an additional 1 hour. Cytosolic and
nuclear proteins were subjected to Western blotting with anti-phospho-Smad3 antibody (p-Smad3). The membranes were re-probed with anti-Lamin
B1 and anti-GAPDH antibodies, as indicated, to monitor fractionation efficiency and equal loading. The changes in the amount of phospho-Smad3
protein were normalized to the amount of GAPDH and Lamin B1 protein in the cytosol and nucleus, respectively. The right panel shows the
knockdown of nuclear BRCA1 protein after siRNA against BRCA1. Cyt.: cytosolic fraction; Nuc.: nuclear fraction. This is a representative experiment out
of 4 experiments.
doi:10.1371/journal.pone.0007091.g006

BRCA1 Interaction with Smad3

PLoS ONE | www.plosone.org 8 September 2009 | Volume 4 | Issue 9 | e7091



H2O2-activated ERK signaling was reported to increase the

association between Smads and the Sp1 transcription factor,

which is required for p21WAF1/Cip1 expression by TGF-b1 [24].

Here, we found that H2O2 increases the TGF-b1-induced Smad3

and Smad4 interaction in HaCaT cells, suggesting that H2O2 may

induce p21WAF1/Cip1 expression through regulating Smad3 and

Smad4 interaction. However, upon H2O2 treatment, the TGF-b1-

induced Smad3 and Smad4 interaction was markedly decreased in

a dose-dependent manner in BRCA1-mutated HCC1937 cells. Of

note, wild type BRCA1-reconstituted HCC1937 cells were

insensitive to increasing amounts of H2O2, resulting in restoration

of the TGF-b1-induced Smad3 and Smad4 interaction. This

suggests that wild type BRCA1 plays an important role in

regulating the Smad3 and Smad4 association during oxidative

stress responses. Furthermore, H2O2 treatment induced the

nuclear export of TGF-b1-phosphorylated Smad3 protein in

HCC1937 cells, but not in HCCBRCA1, MCF-7, COS-7 or

HaCaT cells. Knockdown of endogenous BRCA1 in

HCCBRCA1 cells resulted in a reduction in the basal levels of

phospho-Smad3 protein in the nucleus and induced the nuclear

export of phospho-Smad3 protein upon H2O2 treatment. These

data suggest that loss of BRCA1 causes a loss of nuclear phospho-

Smad3 protein upon H2O2 treatment, which may contribute to a

decrease in the TGF-b1-induced Smad3 and Smad4 interaction.

The mechanism by which H2O2 induces the nuclear export of

phospho-Smad3 remains elusive. ROS are reported to activate

MAP kinase [25], PKC [26], and Akt [27], which were shown to

regulate Smad3 protein activity [28–31]. Whether these kinases

are involved in the nuclear export of Smad3 protein is under

investigation. Several studies have suggested that the durability of

Smad proteins in the nucleus is also regulated by nuclear import/

export machinery [32]. The nuclear export components CRM1

(chromosome region maintenance 1) and exportin 4 were

demonstrated to mediate the nuclear export of Smad proteins

[33–35]. In addition, Smad-interacting proteins also affect the

retention of Smads in the cytoplasm and nucleus by interfering

with the nuclear import or export machinery. FoxH1 (forkhead

box H1) and ATF2 (activating transcription factor 2) block nuclear

export of Smad2 or Smad3 by inhibiting the interaction of Smads

with nuclear export components. FoxH1 competes with the

nucleoporin Nup153 for binding to the MH2 region of Smad2,

inhibiting Smad2 export from the nucleus [36]. Of note, wild type

BRCA1 binds to the MH2 domain in Smad3, the same site for

exportin 4 and Nup153 binding, offering the possibility that

BRCA1 competes with the nuclear export components for binding

to the MH2 domain in Smad3. The H2O2-induced BRCA1 and

Smad3 interaction may contribute to the inhibition of oxidative

stress-induced nuclear export of phospho-Smad3 protein, avoiding

loss of the Smad3 and Smad4 interaction.

BRCA1 was shown to induce antioxidant expression, while loss

of BRCA1 resulted in overproduction of ROS in cultured cells [7].

Recently, Cao et al. demonstrated that Brca1-deficient mice

produce excessive ROS and are sensitive to oxidative stress [8],

indicating that BRCA1 plays important roles in ROS production

and oxidative stress responses. Loss of BRCA1 is known to impair

DNA-damage repair. Our studies demonstrate that wild type

BRCA1 associates with and modulates Smad3 protein activity

during oxidative stress responses, acting as a regulator of oxidative

stress-sensitive proteins. Thus, inactivation of BRCA1 also affects

cellular signaling pathways during oxidative stress responses.

Several studies have revealed that BRCA1 modulates transcription

factors by coupling with environmental stresses. In response to

Figure 7. Effects of silencing BRCA1 in MCF-7 cells on Smad3 and Smad4. (A) si-BRCA1 decreases Smad3-Smad4-mediated transcriptional
activation of p3TP-Lux reporter in MCF7 cells. MCF7 cells were transfected with 5 nM of siRNAs in 24 well plate. After 16–24 hours, the cells were
transfected with p3TP-Lux, pCMV-b-galactosidase, Smad3, Smad4, and empty vector plasmids as indicated. The cells were maintained in cell culture
medium containing 0.1% FBS overnight, followed by luciferase and b-galactosidase assays. The fold increase of luciferase activity was obtained from
triplicate of three independent experiments, after being normalized by b-glactosidase activity. The Excel software was used to calculate the standard
deviation. * P,0.05 as compared to si-GFP treatments+Smad3+Smad4. (B) Depletion of BRCA1 decreases TGF-b-induced Smad3-Smad4 interaction in
MCF-7 cells. MCF-7 cells were transfected with 5 nM siGL2 or siBRCA1. After overnight, cells were starved for 3 hours, followed by 1 ng/ml of TGF-b1
treatment for 45 min. Total lysates were subjected to immunoprecipitation with anti-Smad4 antibody and Western blotting with anti-Smad3
antibody as indicated. The membrane was re-probed with anti-Smad4 antibody to monitor the levels of Smad4 protein. The levels of Smad3 protein
was detected from 20 mg of total lysatesby using anti-Smad3 antibody. This membrane was reprobed with anti-Actin antibody to monitor equal
loading.
doi:10.1371/journal.pone.0007091.g007
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hypoxia, wild type BRCA1 increases the nuclear accumulation of

HIF-1a, resulting in vascular endothelial growth factor (VEGF)

expression and secretion [37]. In addition, wild type BRCA1

induces the transcription of antioxidants through the Nrf2

transcription factor during oxidative stress responses [7].

Loss of growth inhibition by TGF-b occurs early in breast cell

transformation. Our observations suggest that inactivation of

BRCA1 may result in a reduction in Smad3-mediated growth

inhibitory activity during oxidative stress responses. Understand-

ing of whether the pro-oncogenic activity of TGF-b signaling is

increased during oxidative stress responses in BRCA1-deficient

cells is of great interest. Given that BRCA1-deficiency causes

excess ROS generation in vivo, our data suggest that ROS

downregulate ROS-sensitive signaling molecules. With the

BRCA1 genetic defect as a model system, underlying cross-talk

between developmental signals and environmental factors may

help elucidate the breast cancer risk factors in breast cancer

initiation and progression.

Materials and Methods

Cell culture
HEK293, HEK293T, MCF-7, HaCaT, and COS-7 cells were

purchased from American Type Culture Collection (ATCC,

Manassas, VA, USA). The BRCA1-mutated HCC1937 breast

cancer cell line and wild type BRCA1-reconstituted HCC1937

cells (HCCBRCA1) were kindly provided by Dr. Chen [38]. All

cell lines were maintained in RPMI-1640 medium supplemented

with 10% FBS (Atlanta Biologicals, Norcross, GA, USA), 2.9 mg/

ml Glutamine and 100 U/ml Penicillin/Streptamycin, and

incubated in a 5% CO2 incubator at 37uC.

Plasmids and materials
Mammalian expression plasmids for wild type and mutated

forms of BRCA1 and bacterial expression plasmids encoding

GST-BRCA1 protein fragments were previously described [20].

Smad-related constructs were previously described [39,40].

Deletion mutants of Smad3 constructs were generated by inserting

PCR products into a pCMV-Flag vector (Sigma, St. Louis, MO,

USA). The HA-Smad4 plasmid was generated by inserting the

PCR product of Smad4 into a pcDNA3 vector [20]. All constructs

generated after PCR amplification were confirmed by sequencing.

Anti-HA monoclonal antibody (HA.11) and anti-Flag mono-

clonal antibody (M2) were purchased from Covance (Denver, PA,

USA) and Sigma, respectively. Anti-Smad4 monoclonal antibody,

anti-Lamin B1 polyclonal antibody, and anti-Myc monoclonal

antibody (9E10) were purchased from Santa Cruz (Santa Cruz,

CA, USA). Anti-BRCA1 polyclonal antibody (9010) and anti-

BRCA1 C-terminal monoclonal antibody (Ab-3) were purchased

from Cell Signaling Technology (Danvers, MA, USA) and

Calbiochem (San Diego, CA, USA), respectively. An anti-BRCA1

polyclonal antibody against a 428-683aa fragment of BRCA1,

generated in our laboratory, was used for immunostaining. Anti-

actin monoclonal antibody was purchased from Chemicon

(Temecula, CA, USA). Anti-GAPDH monoclonal antibody was

purchased from Abcam (Cambridge, MA, USA). H2O2 was

purchased from Sigma and the TGF-b1 ligand was obtained from

Chemicon. An anti-Smad3 [pSpS423/425] polyclonal antibody (44–

246G) from Biosource International (Camarillo, CA, USA) was

used for Western blotting. Anti-phospho-Smad3 (Ser423/425)

(C25A9) polyclonal antibody obtained from Cell Signaling

Technology (Danvers, MA, USA) was used for immunostaining.

The anti-Smad3 polyclonal antibody was obtained from Upstate

(Charlottesville, VA, USA).

Transfection, immunoprecipitation, and Western blotting
LipofectAMINE plus reagent (Invitrogen, Carlsbad, CA, USA)

were used to transiently transfect mammalian cells. At 24 hours

after transfection, cells were treated with 2 ng/ml of TGF-b1 with

or without H2O2, as indicated. COS-7 cells were harvested in lysis

buffer (25 mM Tris-HCl, pH 7.6, 300 mM NaCl, 1% Triton X-

100, 10% Glycerol) containing a protease inhibitor cocktail

(Roche, Basel, Switzerland). For endogenous immunoprecipita-

tion, cells treated with 2 ng/ml of TGF-b1, with or without H2O2,

were lysed in HKMG buffer (10 mM Hepes, pH 7.8, 100 mM

KCl, 5 mM MgCl2, 10% Glycerol, 1 mM DTT, 0.5% NP40)

containing a protease inhibitor cocktail. The lysates were pre-

cleared by incubation with protein-G Sepharose beads (Amersham

Pharmacia, Buckinghamshire, UK) for one hour followed by

immunoprecipitation with the indicated antibodies. After four

extensive washes with cell lysis buffer, the immunocomplexes were

eluted by boiling in sample buffer (125 mM Tris-HCl, pH 6.8, 4%

SDS, and 20% glycerol) for 5 min. The samples were separated by

SDS-PAGE and transferred onto a PVDF membrane (Millipore,

Billerica, MA, USA). The membranes were blocked with 5%

nonfat dried milk in PBS-0.1% Tween 20, followed by incubation

with primary antibodies overnight at 4uC. The horseradish

peroxidase-conjugated secondary antibodies (Amersham Pharma-

cia, Buckinghamshire, UK) were incubated for 1 hour at room

temperature followed by enhanced chemiluminescence treatment

(PerkinElmer, Waltham, MA, USA). For total protein extraction,

cells were lysed in sample buffer, followed by boiling for 5–10 min.

GST pull-down assay
The GST pull-down assay was performed with HEK293T total

cell lysates transfected with Flag-Smad3 plasmid and 10 mg of

bacterially-purified GST-BRCA1 protein fragments, as described

[20].

Luciferase activity assay
COS-7 cells were transfected with the indicated plasmids by

using LipofectAMINE plus reagent. The cells were treated with

2 ng/ml of TGF-b1 overnight 24 hours after transfection.

pCMVb-galactosidase plasmid (Clontech, Palo Alto, CA, USA)

was used for monitoring transfection efficiency. The luciferase and

b-galactosidase activities were assayed by using a Luciferase assay

kit (Promega, Madison, WI, USA).

Knockdown of BRCA1 by Small interfering RNA (siRNA)
siRNA against BRCA1 was chemically synthesized (Dharma-

con, Chicago, IL, USA). Transfection of siRNAs was performed

by using OligofectAMINE reagent (Invitrogen, Carlsbad, CA,

USA). The sequence of siRNA-BRCA1 is as follows: 59-AAC

CUG UCU CCA CAA AGU GUG-39 [41]. The control siRNA-

GL2 was purchased from Dharmacon.

Confocal assay
46104 of HCCBRCA1 cells were plated on 8-well glass slides

(Lab-TekII Chamber Slide system) (Nalge Nunc International,

Rochester, NY, USA). Cells were treated with 2 ng/ml of TGF-b1

and 300 mM of H2O2 for 1 hour as indicated. Cells were fixed

with 3% paraformaldehyde/PBS for 10 minutes and permeabi-

lized with 0.5% Triton X-100/PBS for 5 minutes. The

permeabilized cells were blocked with 10% goat serum, 0.1%

Triton X-100 in PBS for 2 hours, followed by incubation with

anti-BRCA1 (Ab-3) monoclonal antibody and anti-phospho-

Smad3 polyclonal antibody overnight. Cells were washed three

times with 0.1% Triton X-100/PBS for 30 minutes, and then anti-

BRCA1 Interaction with Smad3

PLoS ONE | www.plosone.org 10 September 2009 | Volume 4 | Issue 9 | e7091



mouse Rhodamine-conjugated IgG and anti-Rabbit FITC-conju-

gated IgG antibodies (Jackson ImmunoResearch Laboratories,

West Grove, PA, USA) were added (diluted at 1:250). After

1 hour, cells were washed three times with 0.1% Triton X-100/

PBS for 30 minutes, followed by mounting. Images were analyzed

using a Zeiss LSM 5 image examiner at the Harvard Center for

Neurodegeneration and Repair.
Statistical analysis. Data are reported as the

mean6standard error of the mean (SEM). The Student’s t test

was used to assess the significance of three independent

experiments. P,0.05 was used as the criterion to determine

statistical significance.
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