
Variance estimation in the analysis of microarray data

Yuedong Wang,
University of California, Santa Barbara, USA

Yanyuan Ma, and
Texas A&M University, College Station, USA, and Université de Neuchâtel, Switzerland

Raymond J. Carroll
Texas A&M University, College Station, USA

Summary
Microarrays are one of the most widely used high throughput technologies. One of the main problems
in the area is that conventional estimates of the variances that are required in the t-statistic and other
statistics are unreliable owing to the small number of replications. Various methods have been
proposed in the literature to overcome this lack of degrees of freedom problem. In this context, it is
commonly observed that the variance increases proportionally with the intensity level, which has led
many researchers to assume that the variance is a function of the mean. Here we concentrate on
estimation of the variance as a function of an unknown mean in two models: the constant coefficient
of variation model and the quadratic variance–mean model. Because the means are unknown and
estimated with few degrees of freedom, naive methods that use the sample mean in place of the true
mean are generally biased because of the errors-in-variables phenomenon. We propose three methods
for overcoming this bias. The first two are variations on the theme of the so-called heteroscedastic
simulation–extrapolation estimator, modified to estimate the variance function consistently. The
third class of estimators is entirely different, being based on semiparametric information calculations.
Simulations show the power of our methods and their lack of bias compared with the naive method
that ignores the measurement error. The methodology is illustrated by using microarray data from
leukaemia patients.
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1. Introduction
Microarrays are one of the most widely used high throughput technologies, enabling scientists
to measure simultaneously the expression of thousands of genes (Nguyen et al., 2002; Leung
and Cavalieri, 2003). A microarray experiment typically involves a large number of genes and
a relatively small number of replications. This new paradigm presents many challenges to
standard statistical methods. For example, the standard t-test for detecting differentially
expressed genes under two experimental conditions usually has low power (Callow et al.,
2000; Cui et al., 2005).
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One of the main problems is that conventional estimates of the variances that are required in
the t-statistic and other statistics are unreliable owing to the small number of replications.
Various methods have been proposed in the literature to overcome this lack of degrees of
freedom problem (Rocke and Durbin, 2001; Kamb and Ramaswami, 2001; Huang and Pan,
2002; Storey and Tibshirani, 2003; Lin et al., 2003; Jain et al., 2003; Strimmer, 2003; Tong
and Wang, 2006). A key idea for obtaining better estimates of variances is to borrow
information from different genes with similar variances. It is commonly observed that the
variance increases proportionally with the intensity level, which has led many researchers to
assume that the variance is a function of the mean (Chen et al., 1997; Rocke and Durbin,
2001; Huang and Pan, 2002). Chen et al. (1997, 2002), Rocke and Durbin (2001) and Weng
et al. (2006) modelled the variance–mean function parametrically whereas Kamb and
Ramaswami (2001), Huang and Pan (2002), Lin et al. (2003) and Jani et al. (2003) modelled
it non-parametrically. We shall limit ourself to parametric variance–mean models in this paper.
Specifically, for simplicity and applicability in microarray data analysis, we shall concentrate
on two models: the constant coefficient of variation model that was proposed by Chen et al.
(1997) and the quadratic variance–mean model that was proposed by Rocke and Durbin
(2001) and Chen et al. (2002). Of course, our results can be generalized to other parametric
models but, since the two mentioned are often used, we confine our attention to them.

Strimmer (2003) fitted the quadratic variance–mean model by using quasi-likelihood. He
estimated parameters in the variance function together with all mean parameters for each gene.
Since the number of genes is large, it is likely that the estimates of variance parameters are
inconsistent, i.e. this is a Neyman–Scott-type problem. Strimmer found that the variance
parameters were underestimated in his simulations. An alternative approach which could lead
to consistent estimates of variance parameters is to fit a variance–mean model by using reduced
data consisting of sample means and variances (Huang and Pan, 2002). However, as we shall
illustrate in this paper, owing to sampling error that has a similar effect here as measurement
errors, which has not been noted in the literature, naive estimates that are based on sample
means and variances are inconsistent. We shall also show that the well-known simulation–
extrapolation (SIMEX) method fails to correct biases in some estimators and propose new
consistent estimators.

Our key insight into this problem is that technically it is closely related to a measurement error
problem (Carroll et al., 2006) where the measurement error has non-constant variance and the
structure of the variance function is of interest. Thus it is amenable to analyses that are similar
to measurement error models. However, because of the special structure of the problem, where
independence between the measurement error and regression model as in the classical
measurement error model fails, and the fact that it is the variance function itself that is of
interest, direct application of measurement error methods typically does not work. This requires
new methods that do not exist in the standard measurement error literature.

In this paper, we propose two methods for attacking the problem.

a. The first is a novel modification of the SIMEX method, which we call permutation
SIMEX. The key notion is that the ordinary SIMEX method requires that the responses
and the additional noise that is added in a part of the algorithm be independent. In our
problem, this independence does not hold. Our method breaks this connection
between the response and the noise, thus allowing the possibility of consistent
estimation that classical SIMEX cannot obtain.

b. The second approach is based on our insight of casting the problem in a
semiparametric framework while treating the unobservable variable distribution as a
nuisance parameter. We employ a projection approach to achieve consistency without
making any distributional assumptions about the mean gene expression.
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We consider an asymptotic approach for increasing number of genes and fixed number of
replications. Section 2 introduces the model and briefly describes a moment estimator and a
regression estimator for the constant coefficient of variation model and the quadratic variation
model respectively. We show that the naive estimators are inconsistent. Section 3 applies a
SIMEX approach to the moment estimators and shows that the resulting estimators are
consistent. Section 4 illustrates that, in general, SIMEX is prone to be implemented improperly,
because of the special structure of our problem. A novel modified SIMEX-type methodology
that applies to all parametric models is described. Because it is based on a permutation-type
philosophy, it is termed permutation SIMEX. Section 5 takes an entirely different approach
and casts this problem within the context of semiparametric models (Bickel et al., 1993). We
show how to construct general estimators that are consistent and have local semiparametric
efficiency. We apply the methods to a data example in Section 6 and conduct simulation studies
in Section 7. Discussion and concluding remarks are given in Section 8. All the technical
derivations are provided in Appendix A. Derivations that are largely algebraic in nature are
included in supplemental materials that are available from
http://www.pstat.ucsb.edu/faculty/yuedong. Computer code is available from
http://www.blackwellpublishing.com/rss

2. The model
The central model of interest arising from microarray data analysis has the form

(1)

where Yi,j is the jth replicate of observed expression level of gene i, Xi is the expected expression
level of gene i, εi,j are independent random errors with mean 0, variance 1 and at least finite
fourth moments and θ is a d-dimensional parameter vector. For convenience, throughout the
paper we assume that εi,j is a standard normal random variable. As in any SIMEX-type method,
strictly speaking this normality is required, although it is well known that the methods are
robust to modest departures from normality (Carroll et al. (2006), page 101). The
semiparametric methods can be applied for any distribution. Our goal is to estimate θ in the
variance function g(·) from the observations Yij s, for i = 1, …, n and j = 1, …, m.

The most popular parametric models for the variance function in the microarray data analysis
literature include the constant coefficient of variation model and the quadratic variance–mean
model. The constant coefficient of variation model has the form

(2)

Chen et al. (1997) assumed this model for complementary DNA microarray data. Although it
is adequate for genes with high expression levels, it is inaccurate when the signal is weak in
comparison with the background. To overcome this problem, Rocke and Durbin (2001), Chen
et al. (2002) and Strimmer (2003) considered the quadratic model

(3)
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where θ = (α, β). For ease of exposition, we assume that the background (stray) signal has been
removed. One may estimate the background signal by including a linear term in model (3)
(Strimmer, 2003).

For simplicity, we use the notations g(x; θ) and g(x) interchangeably. Let Ȳi,· be the sample
mean for the ith unit, and let Si be the sample variance based on Yi,j. In the hypothetical situation
when X is observed, two simple consistent estimators can be obtained by using either the
method of moments or least squares. For the constant coefficient of variation model (2), the
two estimators have the form

(4)

and

(5)

whereas, for the quadratic model (3), they are respectively given as

(6)

and

(7)
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The least squares estimators in equation (7) are minimizers of . For
simplicity, least squares instead of weighted least squares is used. The moment estimator θ ̂M

is derived from the equation matching the first moment . The moment
estimators α̂M and β ̂M are derived from the following equations matching the first two
moments:

(8)

Note that the normality assumption was used in the derivation of equation (8). We take the
positive square root for β since β ≥ 0.

Since Ȳi,· is an unbiased estimator of Xi, a naive approach in the absence of Xis is to replace
Xi in expressions (4)–(7) by Ȳi,·. Unfortunately, this approach ignores the sampling error in
Ȳi,· and leads to inconsistent estimates in general. See lemmas 1 and 4 in Appendices A.1 and
A.2 for detailed calculations. Asymptotically, the parameters θ in model (2) and β in model
(3) are underestimated, resulting in the classic problem of attenuation to the null hypothesis.
Throughout this paper, asymptotics are based on n → ∞ with a fixed m.

3. The simulation–extrapolation moment estimator
Models described in expression (1) with Xi unobserved are latent variable models. They can
also be viewed as heteroscedastic measurement error models, because by their very nature the
Yi,j are error prone unbiased measures of Xi with non-constant variation. This viewpoint enables
us to adopt a SIMEX method that is developed in the heteroscedastic measurement error model
framework; see Devanarayan and Stefanski (2002). The method requires that we specify a
method for parameter estimation in the case that Xi is observed. When the method of moments
is specified, the resulting SIMEX algorithm is as follows.

• Step 1: generate Zb,i,j ~ IID N(0, 1), i = 1, …, n, j = 1, …, m, b = 1, …, B. Let

• Step 2: for i = 1, …, n, j = 1, …, m and b = 1, …, B, let Wi,j = Yi,j and

Then E{Wb,i (ζ)|Xi} = Xi and var{Wb,i(ζ)|Xi} = {(1 + ζ)/m} g(Xi).

• Step 3: estimate θ by replacing Xi in equations (4) and (6) by Wb,i(ζ) for each b and
then average over b.

• Step 4: extrapolate back to ζ = −1.
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In general, the essential idea of a SIMEX-type method is to add via simulation (the SIM-step)
increasing amounts of measurement error to understand how measurement error affects a
parameter estimate, and then to extrapolate (the EX-step) back to the case of no measurement
error. Steps 1–3 above are the SIM-step for heteroscedastic models, although see Section 4 for
a subtlety. Note that as ζ increases, since var{Wb,i(ζ)|Xi} = {(1 + ζ)/m} g(Xi), the measurement
error also increases, and in this sense the Wb,i(ζ) fulfil the requirement of adding noise. Also
note that, when ζ = −1, var{Wb,i(ζ)|Xi} = 0, and hence extrapolating back to ζ = −1 is a means
to obtain an estimator that avoids bias.

The resulting estimators for models (2) and (3) as a function of ζ are

and

respectively for any fixed extrapolant point ζ.

Theorem 1
The SIMEX approach leads to consistent moment estimators. Specifically, θ ̂S–M(ζ) →p s1(ζ),
α̂S–M(ζ) →p s2(ζ), β ̂S–M(ζ) →p s3(ζ) as n → ∞, and s1(−1) = θ, s2(−1) = α and s3(−1) = β. In
addition, for any smooth extrapolant function including the correct one, the SIMEX moment
estimators are asymptotically normally distributed.

Proof
The actual forms of sk s can be found in Appendices A.1–A.3. The proofs are in the
supplemental materials.

Remark 1
In Appendix A.3, we provide an explicit analysis of the SIMEX moment estimator θ ̂S–M(ζ) for
the constant coefficient of variation model (2). Similar analysis can be performed for all other
variance models. In practice however, the bootstrap could be more effective and
straightforward albeit computationally expensive; see Carroll et al. (2006) and Section 6 for
details.
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4. The permutation simulation–extrapolation estimator
4.1. A subtlety and problems with the simulation–extrapolation approach

There is a subtlety that makes theorem 1 rather surprising. In general, SIMEX-type methods
and indeed most measurement error methods require non-differential measurement error, i.e.
the measurement error is independent of the response. However, this is not so here: the
‘response’ Si can be shown to be not independent of Wb,i(ζ), and hence the measurement error
in the SIMEX steps is differential. This makes theorem 1 very unexpected: the measurement
error is differential and yet SIMEX works for method of moments.

As it turns out, asymptotic validity of the SIMEX method that was described in the previous
section is not general, and it fails for the regression estimators. Consider the constant coefficient
of variation model (2) and the regression through the origin estimator (5). If Xi were observable,

then  is a consistent estimator of θ. However, if we use heteroscedastic
SIMEX and replace Xi by Wb,i(ζ), the limiting value as n → ∞ for any ζ is (lemma 2 in Appendix
A)

and does not extrapolate to θ when ζ = −1. Similarly, the SIMEX approach fails to correct
biases in the regression estimators for the quadratic model (3) (lemma 5 in Appendix A) as
well.

In summary, the usual heteroscedastic SIMEX approach is not a general prescription for this
problem, and we need new methods.

4.2. The permutation simulation–extrapolation estimator
The fact that Si and Wb,i(ζ) are constructed from the same repeated measures Yi,j can cause
perfectly plausible estimators to fail to extrapolate correctly because of the induced correlation
of the response and the measurement errors. We now describe a method that guarantees correct
extrapolation, in the sense that the limiting value as first n → ∞ and then ζ= −1 is the correct
population level quantity.

The main idea is to ‘break’ the connection between the response and the measurement errors,
and to force non-differential error, thus placing the estimator within the context of standard
heteroscedastic SIMEX. The method requires that m ≥3. The algorithm is as follows, where

the construction of  is based on all observations except Yi,j and then its deviation  is
measured against the Yi,j, as in step 1, part (b).

• Step 1: do, for j = 1, …, m,

a. generate Zb,i,k ~ IIDN(0, 1), i = 1, …, n, k = 1, …, m −1 and b = 1, …, B; let

b. for i = 1, …, n, k = 1, …, m −1 and b = 1, …, B, let
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Then  and .

• Step 2: note that, by construction, Yi,j and  are independent, and hence the

measurement error in  as a predictor of Yi,j is non-differential. It is this fact that
makes permutation SIMEX work. Hence, estimate θ by replacing Si and Xi in

expressions (4)–(7) by  and  respectively, for each combination of j and b,
and then average over all j and b.

• Step 3: extrapolate to ζ= −1.

Remark 2
An alternative approach when m ≥4 is to split m replications into two parts with at least two
replications in each part: one part for computing sample variances (unbiased and independent
of simulated samples from SIMEX) and one part for the SIMEX procedure.

Because we have forced non-differential measurement error by construction, the estimators in
step 2 can be either the moment estimator or the regression estimator. For any ζ and the constant
coefficient of variation model (2), the moments and regression estimators are respectively

For the quadratic model (3), the moment and regression estimators are
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Theorem 2
The permutation SIMEX approach leads to consistent moment and regression estimators.
Specifically, θ ̂PS–M(ζ) →p s4(ζ), α̂PS–M(ζ) →p s5(ζ), β ̂PS–M(ζ) →p s6(ζ), θ ̂PS–R(ζ) →p s7(ζ),
α̂PS–R(ζ) →p s8(ζ), β ̂PS–R(ζ) →p s9(ζ) as n → ∞, and s4(−1) = s7(−1) = θ, s5(−1) = s8(−1) = α
and s6(−1) = s9(−1) = β.

Proof
The actual forms of the sk s can be found in Appendices A.1 and A.2. The proofs are in the
supplemental materials.

5. The semiparametric estimator
The insight of viewing the unobservable variable Xi as latent allows us to treat the problem in
the semiparametric framework. The choice of using a projection approach instead of estimating
the latent variable distribution, while still achieving consistency, makes the approach very
appealing. As far as we know, despite the fact that general semiparametric methodology is well
developed, no consistent estimator is known for this specific problem.

5.1. Method development
To facilitate the computation of multidimensional integration, we consider here a slightly more
general model Yi,j = Xi + aj g1/2(Xi; θ)εi,j. The only difference between this model and model
(1) is the inclusion of the known constants aj, j = 1, …, m. The original model (1) corresponds
to aj = 1. The need for such generalization will become evident when we look into the
implementation in Section 5.2. The probability density function of a single observation Yi =
(Yi,1, …, Yi,m)T is

where C is a constant and η(Xi) represents the unspecified density function of the latent variable
Xi. The problem of estimation of θ is thus a semiparametric estimation problem. We proceed
to construct a class of semiparametric estimators of θ through deriving its efficient influence
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function. The efficient influence function contains the unknown nuisance parameter η(·), the
estimation of which is difficult. In line with several related techniques (Tsiatis and Ma, 2004;
Ma et al., 2005), we avoid estimating η(·) and argue instead that various possibly misspecified
η*(·) can be plugged into the resulting estimating equation to obtain a class of consistent
estimators. When η*(·) happens to be the truth, which is denoted by η0(·), then the resulting
estimator is optimal in terms of its asymptotic efficiency.

The approach that we take to derive the influence function is geometric. Consider the Hilbert
space ℋ of all the mean 0 functions of Y with finite variance, where the inner product of ℋ
is defined as the covariance between two functions. Here all the expectations in ℋ are
calculated under the true distribution of Y. We decompose ℋ into a nuisance tangent space
Λ and its orthogonal complement Λ⊥, so that each function in Λ⊥ corresponds to an influence
function (Bickel et al., 1993; Tsiatis, 2006). The efficient influence function can be calculated
via orthogonal projection of the score function of pY (Yi, θ, η) with respect to θ. In Appendix
A, we calculate the projection to be

(9)

where Sθ(Y, θ, η) = ∂ log{pY (Y, θ, η)}/∂θ is the score function, and f(X) satisfies

(10)

Estimation based on the form of Seff given in equations (9) and (10) is not realistic, since it
depends on η(X), which itself is unknown and notoriously difficult to estimate. However, the
structure of the estimator allows us to plug an ‘arbitrary’ model η*(X) into the computation and
the consistency will be retained. Intuitively, this is because E(Seff) = E{E(Seff |X)}, whereas E
(Seff |X) = 0 is guaranteed by our operation in equation (10), whether or not computed under a
true η.

The algorithm for the semiparametric estimator is as follows.

• Step 1: propose a distribution model for the latent variable Xi, say η* (X).

• Step 2: solve for f(X, θ) from the equation

(11)

where ; E* represents the expectation calculated
under η*.

• Step 3: form the estimating equation

(12)

where .

• Step 4: solve equation (12) to obtain θ ̂.
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Various proposals for η* lead to different consistent estimators. Within this class of estimators,
the optimal one occurs when η*(·) = η0(·). Hence, a practical and reasonable approach is to

propose an η*(·) that is based on some averaged observations . The optimal
weights ωj naturally should minimize the variance of Ỹi,·, and it can be easily verified to be

.

5.2. Implementation
In implementing the algorithm, the integral equation (11) can be solved by using various
numerical methods, e.g. discretization, to convert it to a problem of solving a linear system.
The computation of E*{f(X, θ)|Y} can be typically performed by the approximation

where the sls are the support points for X and the wls are weights that we choose to approximate
the proposed η* (X), and K is the total number of approximation points that we take.

The computation of conditional expectations E(·|X) is more challenging, especially when m is
large, because it involves an m-dimensional integration. Although many computational
methods exist to compute multiple-dimensional integration, the nature of the problem itself
dictates that they are all highly time consuming. Incorporation of such an integration procedure
in an estimating equation solving procedure demands even more computational capacity. Thus,
direct calculation of equation (11) is not really feasible.

To lower the dimensionality, we propose to separate the m components of Yi into either two
or three groups, and to use the average value of each group as if they formed the observed data.
If the original Yi,j has variance g(Xi, θ), then the average observation in the kth group has
variance , where  is the inverse of the number of observations in the kth group. This
is why we considered the problem in a more general form than model (1) in this section. With
this convention in mind, solving equation (11) is relatively straightforward. We then have the
following result.

Theorem 3
Under regularity conditions, the estimator in equation (12) is asymptotically consistent, and

in distribution when n→ ∞, where  and . If η* = η0, then A =
B and A−1BA−T = B−1 achieves the optimal semiparametric efficiency bound.

Here, the regularity conditions mainly include some sufficient smoothness conditions to permit
differentiation and the exchange of differentiation and expectation. It also includes some non-
singularity conditions of the variance matrix to exclude the existence of superefficient
estimators. Details of these regularity conditions can be found in Newey (1990). The variance
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matrix A−1BA−T can be estimated via the sample average to compute A and B. In choosing
η* in our problem, we could use Ȳi,·, i = 1, …, n, to obtain an approximation of η0 and proceed
with the estimator. Although the approximation is not a valid consistent estimator of η0, it
usually provides a reasonable approximation. The proof of theorem 3 is in the supplemental
materials.

6. Application
We applied our methods to the leukaemia data from high density Affymetrix oligonucleotide
arrays (Golub et al., 1999). After preprocessing and filtering as in Golub et al. (1999), the data
consist of the expression level of 3051 genes from 38 bone marrow samples: 27 acute
lymphocytic leukaemia (ALL) and 11 acute myelogenous leukaemia. The data were calibrated
and background corrected. To remove possible artefacts due to arrays, as in Huang and Pan
(2002), observations on each array are standardized by subtracting the median expression level
and dividing by the interquantile range of the expression levels on that array. To avoid negative
values in the expression level, we then subtract the smallest value across all tumours and all
genes from the data set.

Strimmer (2003) used these data to illustrate a quasi-likelihood approach to the estimation of
parameters in the quadratic model. To illustrate our methods, we select two subsets, one with
two tumour samples (tumours 1 and 27) and the other with five tumour samples (tumours 1,
8, 13, 21 and 27), from 27 ALL samples. We fit the quadratic model to these two subsets by
using the naive moment, SIMEX moment and semiparametric methods, where the η*-function
that is used in the semiparametric method is the result of a non-parametric estimation of the
averaged tumour sample densities. Observations and fits are shown in Fig. 1. As expected, the
naive estimator underestimates the trend. Estimates based on other subsets of ALL samples
behave similarly.

R, MATLAB and Fortran codes have been developed for computing SIMEX and
semiparametric estimators. These codes are available from the first author. The central
processor unit times that were required for computing the parameter estimators are reasonable.
For example, the permutation SIMEX estimator for five selected tumours took about 17 s
central processor unit time. The semiparametric method took 7 s and 98 s respectively for two-
and three-group estimators.

7. Simulations
We conducted two simulation experiments: one for the constant coefficient of variation model
and one for the quadratic variance–mean model. For all simulations, we set B = 200 for the
SIMEX methods.

7.1. Simulations in the constant coefficient of variation model
For the constant coefficient of variation model, we generate 100 simulation data sets from
model (2) with Xi = uniform[1, 3]. We used a factorial design with n = 250 or n = 500, m = 3
or m = 9 and θ = 0.25 or θ= 1.

Tables 1 and 2 list squared biases, empirical variances, the average of the estimated variances
and empirical mean-squared errors. Labels ‘N–M’ and ‘N–R’ correspond to the naive moment
and regression estimators, ‘C–M’ and ‘C–R’ correspond to the corrected moment and
regression estimators defined in equations (15) and (16), ‘S–M’ and ‘S–R’ correspond to the
SIMEX moment and regression estimators, ‘PS–M’ and ‘PS–R’ correspond to the permutation
SIMEX moment and regression estimators, and ‘Semi–3’ and ‘Semi–2’ correspond to the
semiparametric estimator, where Yi is partitioned into three and two groups respectively. To
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emphasize the semiparametric estimator’s ability to tolerate a misspecified model η*, we used
a normal model with a pre-fixed mean 2 and variance 1 in the simulation.

The simulation confirms the asymptotic results:

a. the naive approach leads to underestimation for both moment and regression
estimators;

b. the SIMEX approach corrects bias in the moment estimator but does not corrects bias
in the regression estimator and is badly biased when m = 3;

c. the permutation SIMEX and semiparametric approaches correct bias in both the
moment and the regression estimators.

Bias in the SIMEX regression estimator increases with θ and decreases with m.

It is clear from Tables 1 and 2 that the moments-based approaches are all considerably more
efficient that the regression-based approaches. The SIMEX-type moments-based approaches
are sometimes less efficient and sometimes more efficient than the semiparametric approaches.
It is striking that the moments-based permutation SIMEX method is so competitive with the
semiparametric method. When Yis are partitioned into three groups, the semiparametric
estimation improved over using two groups. However, such improvement requires much more
computation; hence, in practice, one may be content with a two-group partition.

For the SIMEX and permutation SIMEX, we used the bootstrap procedure to estimate variances
of the moment and regression estimators. Variances of the semiparametric estimators were
estimated directly. Specifically, consider a data matrix with elements Yi,j given in model (1).
The 1000 bootstrap samples were generated by resampling rows of the data matrix with
replacement. The SIMEX, permutation SIMEX moment or regression estimates were then
computed for each bootstrap sample. The variances of these estimates were used as the
bootstrap estimates of variances. The averages of the estimated variances are also listed in
Tables 1 and 2. The estimated variances all match reasonably well with the empirical variances.

7.2. Simulations in the quadratic variation model
In a simulation that is not reported here, where the true error distribution is normal, we have
observed that the permutation SIMEX method and the semiparametric method had similar
performance.

However, to conduct a simulation that is based on an actual data application, we use the
leukaemia data in Section 6 to create simulation settings. We first created  as the collection
of gene-specific sample means from the 27 ALL samples with a few very large values excluded.
We then fit a quadratic variance model to the 27 ALL samples and create ℛ as centred and
scaled residuals. We note that the distribution of ℛ is asymmetric and has a heavy right-hand
tail. Therefore, the assumptions that were made in our theory do not hold and this simulation
provides a challenge to our methods.

We generated 1000 simulation data sets according to model (1) with Xi sampled with
replacement from , g(x) = 0.2037 + 0.1779x2, which is the semiparametric estimate based
on tumours 1 and 27 (the full curve in Fig. 1(a)), and εi,j sampled with replacement from ℛ.
We set n = 3051, which is the sample size of the leukaemia data, and m = 5, 10, 15, 20.

Note that equation (8) is derived on the basis of the normality assumption and especially on
fourth moments. As expected, we find that moment estimators have large biases in this
simulation since the distribution of ℛ is far from normal. Therefore, the moment estimator is
excluded. The asymptotic extrapolant functions for α̂PS–R and β ̂PS–R have the non-linear form
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(a + bζ+ cζ2)/(c + dζ+ ζ2), which is difficult to implement. We tested various lower order
polynomial approximations and found that quartic polynomial functions have the best overall
performance for α̂PS–R and β ̂PS–R. Therefore, in our simulations, quartic functions are used for
permutation SIMEX regression estimators. To implement the semiparametric method, we used
a gamma model for η* (X) with mean and variance estimated from the samples generated. Such
a gamma model allows for the heavier right-hand tail that we see in ℛ.

Table 3 lists squared biases, variances and the mean-squared errors. Both naive and ordinary
SIMEX estimators overestimate α and underestimate β, drastically so when m is small. The
bias is especially large for the SIMEX estimator. Both findings are consistent with the
simulation in Section 7.1. The permutation SIMEX estimator reduces both biases and variances
in the estimates of β, and the reduction is still substantial even when m = 20. The permutation
SIMEX estimator increases the biases in the estimates of α, especially when m is small.
Nevertheless, except for m = 5, the permutation SIMEX estimator reduces variances and thus
the mean-squared errors of the estimates of α.

The semiparametric estimator provides excellent estimation in terms of mean-squared errors
for all m-values. Noting that Table 3 gives squared bias multiplied by 100, we see that even
for m = 20 it has an approximate 13% bias for estimating β. The gain in mean-squared error is
largely through greatly decreased variability.

It is interesting to see what we would obtain from the regression-type approaches that SIMEX
is based on. To do this, we also computed least squares estimates in the ideal situation where
the true means X s are used as the regressor. This ideal estimator serves as a benchmark. It has
small biases but variances that are approximately the same as that of permutation SIMEX.
Indeed, the semiparametric estimator performs better than the ideal regression estimator with
X known for all m. This is not surprising since the least squares that are used to derive all
estimators except the semiparametric estimator are sensitive to very large values in ℛ. The
performance of the permutation SIMEX estimator is close to that of the ideal estimator when
m = 15 or m = 20. Therefore, it is likely that the performance of the permutation SIMEX
estimator is caused by non-robustness associated with the least square method and the fact that
ℛ has a heavy right-hand tail. A robust approach could have been used, although this is beyond
the scope of this paper. A comparison with the ideal estimator indicates that the performances
of both permutation SIMEX and the semiparametric methods are acceptable, even when the
distributional assumption about the random errors is violated. We would like to caution that
such seemingly robust behaviour does not have a theoretical justification and further research
is needed before similar behaviour can be expected in general situations.

7.3. Simulation conclusions and recommendations
There are a few major points that can be gleaned from these simulations. The bias in the naive
moment and least squares estimators can be substantial, whether the error distribution is normal
or not. When the errors are normal, both permutation SIMEX and the semiparametric methods
perform well. Which one works better depends on factors such as m. In practice, the errors
could be far from normal. In this case, the permutation SIMEX method performs well for the
least squares estimator; however a robust estimator should be used. Whether the SIMEX and
permutation SIMEX methods will reduce bias in a robust estimator remain to be investigated,
both in theory and in simulations. The semiparametric method performs well in the real data
simulation, at least when the chosen distribution for the errors is tuned to the data. It has the
ability to be adapted to other specified error distributions. For now, the semiparametric method
is recommended. We note that both permutation SIMEX and the semiparametric method can
be improved further: a better extrapolant can improve the performance of permutation SIMEX,
and a better approximation of the high dimensional integrals can improve the performance of
the semiparametric method.
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8. Discussion
The key insights of this paper are that the naive approach of ignoring sampling error will lead
to inconsistent estimates, and the well-known heteroscedastic SIMEX approach to dealing with
the measurement error should be applied with caution, especially outside the constant
coefficient of variation model. Two parametric variance–mean models that are used in
microarray data analysis, the constant coefficient of variation model and the quadratic
variance–mean model, are used to illustrate these insights. We believe that the inconsistency
problems that are associated with the naive and direct SIMEX estimators persist for general
models and the permutation SIMEX and semiparametric methods proposed work for general
models.

The key to our analysis of SIMEX-type methods was to note that direct application of standard
heteroscedastic SIMEX will not generally work because of an induced differential
measurement error. Our permutation SIMEX approach avoids this problem, forcing non-
differential error, and in all cases considered equals or vastly outperforms ordinary
heteroscedastic SIMEX. The key to our semiparametric method was to note that this is indeed
a measurement error problem, and to realize that grouping observations can lead to great gains
in computationally efficiency. Both the theoretical derivation and the simulation studies
demonstrated the satisfactory performance of our two methods in terms of asymptotic
consistency and valid inference.

One important future research topic is to evaluate the effect of the methods proposed on
microarray data analysis and to compare them with alternative methods such as VarMixt
(Delmar et al., 2005) and data-driven Haar–Fisz methods (Motakis et al., 2006).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix A: Theoretical results
This appendix states the major results, with some derivations. Derivations that are largely
algebraic in nature are included in supplemental material that is available at
http://www.pstat.ucsb.edu/faculty/yuedong. The main techniques that are used in the proofs
are the law of large numbers and the central limit theorem.

A.1. Limiting results for the constant coefficient of variation model (2)
Lemma 1

The naive approach that replaces Xi by Ȳi,· has moments and regression estimates that have
limiting values

(13)

(14)

On the basis of equations (13) and (14), simple corrections to the naive moment and regression
estimators are (taking the positive solution in the regression estimator)

(15)

(16)

It is easy to see that θ ̂C–M is consistent. These corrected estimators work very well in
simulations (see Tables 1 and 2). However, it is difficult to obtain simple corrections for other
estimators.

Lemma 2
The SIMEX approach has moments and regression estimates that have limiting values
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Lemma 3
The permutation SIMEX approach has moments and regression estimates that have limiting
values

(17)

(18)

A.2. Limiting results for the quadratic variation model (3)
Lemma 4

The naive approach that replaces Xi by Ȳi,· has moments and regression estimates that have
limiting values
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where

Lemma 5
The SIMEX approach has moments and regression estimates that have limiting values

where
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Lemma 6
The permutation SIMEX approach has moments and regression estimates that have limiting
values

where

A.3. Asymptotic normality of simulation–extrapolation estimates
Asymptotic normality for all the estimators follows along the same lines as the asymptotic
theory for constant variation SIMEX (Carroll et al., 1996).
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Here we merely sketch the argument for the SIMEX moment estimator θ ̂S–M(ζ) for the constant
coefficient of variation model (2): all other estimators follow along similar lines. For any fixed
b, the estimator θ ̂S–M,b(ζ) solves

and of course . It is not difficult to show that (see the supplemental
materials)

As seen in lemma 2,

Using standard estimating equation calculations, we see that, for any fixed b,

Since B is fixed, this means that

Since

the central limit theorem shows that, for any finite set (ζ1 = 0, …, ζM),
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(19)

has a joint multivariate normal limiting distribution. The extrapolated (to ζ = −1) estimators
are smooth functions of expression (19); the delta method shows that the extrapolated
estimators are asymptotically normally distributed as well.

It is possible to estimate the joint limiting covariance matrix (19) by using the following

algorithm. Because from fact 8  is a consistent estimate of{1 + (1 +
ζ)/m} E (X2), a consistent estimate of the asymptotic covariance matrix is just the sample
covariance matrix of the terms

A.4. Derivation of Λ, ΛT and Seff

Replacing the nuisance function η(X) with pX (X, γ) for some finite dimensional parameter γ,
then the score function of pY (Y, θ, γ) with respect to γ has the form

Since pX(X, γ) is an arbitrary probability density function, ∂ log{pX (X, γ)} can be an arbitrary
mean 0 function of X. Taking into consideration all possible parameterizations of η(X), we
obtain the nuisance tangent space

The nuisance tangent space orthogonal complement Λ⊥ can be easily verified to be

The projection of the score function to Λ⊥, Seff, needs to satisfy two conditions: Seff ∈ Λ⊥ and
Sθ−Seff ∈ Λ. It can be easily verified that this leads to the expressions (9) and (10).
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Fig. 1.
Leukaemia data illustration (•, sample variances versus sample means; – – –, naive moment;
— —, SIMEX moment;———, semiparametric estimate): (a) subset with two tumour samples;
(b) subset with five tumour samples
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