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Human cancers frequently show a loss of heterozygosity on chromosome 7q31, which indicates the existence of broad-range
tumour-suppressor gene(s) at this locus. Truncating mutations in the ST7 gene at this locus are seen frequently in primary colon
cancer and breast cancer cell lines. Therefore, the ST7 gene represents a novel candidate gene for the tumour suppressor at this
locus. However, more recent studies have reported that ST7 mutations are infrequent or absent in primary cancer and cell lines. To
ascertain the frequency of mutations of the ST7 gene in cancer cells, we examined mutations in the ST7 coding sequence in 48
colorectal, 48 gastric, and 48 hepatocellular carcinomas using polymerase chain reaction–single-strand conformational polymorphism
and direct sequencing. We detected somatic mutations, which were located near the exon– intron junction in intron 8, in only three
out of 144 cases. We conclude that mutations in the ST7 gene are rare in primary colorectal, gastric, and hepatocellular carcinomas.
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Loss of heterozygosity (LOH) on human chromosome 7q31.1 is
found frequently in different human neoplasms, which include
cancers of the colon (Zenklusen et al, 1995), stomach (Nishizuka
et al, 1997), pancreas (Achille et al, 1996), breast (Bieche et al,
1992), prostate (Latil et al, 1995), ovary (Edelson et al, 1997; Koike
et al, 1997), head and neck (Zenklusen et al, 1995), kidney
(Shridhar et al, 1997), myeloid system (Liang et al, 1998; Koike
et al, 1999), and thyroid gland (Zhang et al, 1998). Previous studies
on these cancers have suggested the existence of broad-range
tumour-suppressor gene(s) in this chromosomal region.

To date, several genes, such as CAV1, CAV2 (Chang et al, 1994),
MET (Vande Woude et al, 1997), CAPZ (Caldwell et al, 1989),
WNT2 (Dale et al, 1996), ALP1 (Zenklusen et al, 2001), and CFTR
(Seibert et al, 1997), have been located within this region.
However, these genes are rarely inactivated by mutations or
aberrant promoter methylation. The tumour-suppressor gene(s)
responsible for this critical region have not yet been identified
(Zenklusen et al, 1999).

The ST7 gene, which in other contexts is designated as RAY1
(Vincent et al, 2000) or HELG (Hughes et al, 2001), maps within
this critical region. Recently, frameshift mutations in the ST7
gene have been observed frequently in primary colon cancer and
breast cancer cell lines (Zenklusen et al, 2001). The introduction of

ST7 cDNA suppressed the tumorigenicity of a prostate cancer
cell line in vivo (Zenklusen et al, 2001). These results suggest that
the ST7 gene is a candidate tumour-suppressor gene within this
critical region. However, there have been reports that somatic
mutation in the ST7 gene is extremely rare (Hughes et al, 2001;
Thomas et al, 2001; Brown et al, 2002; Dong and Sidransky, 2002).
Thus, the previous data on ST7 gene mutations show conflicting
results.

In this study, we investigated the true frequency of ST7 gene
mutations by examining 48 primary colorectal cancers, 48 primary
gastric cancers that frequently show LOH on 7q31 (Nishizuka et al,
1997), and 48 primary hepatocellular carcinomas that show high-
level expression of the ST7/RAY1 gene (Vincent et al, 2000;
Zenklusen et al, 2001). We surveyed mutations in the entire ST7
coding sequence using polymerase chain reaction–single-strand
conformational polymorphism (PCR– SSCP) analysis and direct
DNA sequencing.

MATERIALS AND METHODS

Tissue specimens and DNA extraction

Specimens from 48 colorectal, 48 gastric, and 48 hepatocellular
carcinomas and corresponding noncancerous tissues were ob-
tained at surgery from Japanese patients. The samples were frozen
immediately in liquid nitrogen and stored at �801C until use.
High-molecular-weight DNA was extracted using the standard
phenol/chloroform procedure.
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Polymerase chain reaction –single-strand conformational
polymorphism analysis

All samples were examined by PCR–SSCP analysis for mutations
throughout the entire coding sequence of the ST7 gene (exons 1a–
16b). The exon–intron boundaries were identified by comparing
the cDNA sequences of ST7 (GenBank accession no. AY009152)
and the genomic DNA sequence of chromosome 7q31 (AC002542).
Using this information, we designed intronic primers for each
genomic region, except for exons 1b and 16b (Table 1). The
primers for exons 1b and 16b were prepared as described
previously (Thomas et al, 2001).

The genomic DNA template (50 ng) was incubated in a total
volume of 10 ml PCR buffer that contained 10 mM Tris-HCl (pH
9.0), 50 mM KCl, 1.5 mM MgCl2, 100 nM of each primer, 200 mM of
each deoxynucleotide triphosphate, 1.5 Ci of alpha-[32P]dCTP
(Amersham Pharmacia), and 0.5 U of rTaq DNA polymerase
(TaKaRa). The following PCR conditions were employed: 30 s at
951C, 30 s at 581C or 621C, and 90 s at 721C for 35 cycles, followed
by 10 min at 721C in a thermal cycler (GeneAmp 9700; Applied
Biosystems). Single-strand conformational polymorphism analysis
was performed with the low-pH buffer system, which allowed
improved separation of fragments of up to 800 bp in length (Kukita
et al, 1997). The 32P-labelled PCR products were denatured, loaded
on nondenaturing polyacrylamide gels that contained 10%
polyacrylamide (99 : 1 acrylamide to bisacrylamide) and TPE
(30 mM Tris (pH 6.8), 20 mM PIPES, and 1 mM Na2EDTA), and
electrophoresed in TPE buffer at 101C. The gels were dried and
analysed with the BAS 2000 system (Fuji Photo Films). To exclude
potential PCR artefacts, all positive cases were tested indepen-
dently at least three times.

Sequencing analysis

PCR fragments that showed different mobilities were purified
using the QIAquick PCR Purification Kit (QIAGEN), and directly
sequenced in both directions using the BigDye Terminator Kit and
the ABI 3100 DNA Sequencing System (Applied Biosystems).

Analysis of microsatellite instability

We assessed microsatellite instability using five reference markers
(D2S123, BAT25, BAT26, D5S346, and D17S250) and the criteria

recommended by the National Cancer Institute workshop (Boland
et al, 1998; Yamada et al, 2002).

Statistical analysis

Statistical analysis was performed using the StatView 5.0. program
(SAS Institute Inc.). The w2, Fisher’s exact, and Mann–Whitney U-
tests were used for background and clinicopathological data. A P-
value of less than 0.05 was considered to be statistically significant.

Ethics

This study was carried out with the approval of the ethical
committee of Gunma University Faculty of Medicine.

RESULTS

We detected a somatic mutation in the polypyrimidine tract within
the splice-acceptor site of the intron 8– exon 9 junction. Deletions
in intron 8 (�32 nucleotides from exon 9) were found in one out of
48 (2.1%) of the colorectal cancers, and in two out of 48 (4.1%) of
the gastric cancers (Table 2). The number of deleted nucleotides in
one tumour sample ranged from one to three bases, which
demonstrates the highly heterogeneous nature of the tumour. A
representative case is shown in Figure 1. All the three patient
groups exhibited high-frequency microsatellite instability (micro-
satellite instability-high; MSI-H).

We also detected a G to A substitution at the first nucleotide of
codon 143 (GenBank accession no. AY009152) in exon 5 of one of
the colorectal cancer cases (Figure 2, Table 2). This substitution
resulted in an amino-acid change from Ala to Thr. The same
substitution was found in the corresponding normal tissue from
the same patient. Thus, the change represents a germline mutation
or rare polymorphism.

In addition, we identified four single-nucleotide polymorphisms
(SNPs) in introns 8, 10, 11, and 15 of the ST7 gene (Table 3). There
were no correlations between these SNPs and the clinicopatholo-
gical data.

DISCUSSION

We detected somatic mutations in the polypyrimidine tract within
the splice-acceptor site of intron 8, although the frequency of

Table 1 Primer sequences for PCR–SSCP analysis of the ST7gene

Primer sequences (50 –30)

Exon Product size (bp) Tm (1C) Sense Antisense

1a 273 62 gaatcatcccggcagacac gcgcgagttgcactaacttt
1b 234 58 agcagagaggagcgctgaa ttgcactaactttccggggc
2 148 62 ccttgttcttctccctttctc ttaaatgagaaggactccacc
3 230 58 aacagtgaccataaacacgct aaataatattgcaaactgaagg
4 162 62 gtagtgtcactgaacttacgc ctgtctttgctctctgaacc
5 369 58 aggtcttgcttttctctctca gaggggactcatttcaacata
6 220 62 ggattgacttggtgttttctc atcctccagttcaaatgcagt
7 176 62 gtgactctctctgaatgttcc tcatttggttagaagtagggc
8 237 62 ggctttgtaattgatggtggc acaattctgatccccccaatgc
9 342 58 tcaacatcctcactcaaaagc tctgtaagccactgatcccaa

10 195 58 attccttggtttcttctgccc gggaaaatacatcaaaagagg
11 191 58 cctgcaaacttatgtgttcct aacacatctcaattccggtca
12 168 62 ggatggtttttgtctttctgc atcataacgagttcctgtggg
13 237 62 attaacacaagtgtgtcctgc ttagcaccttttcatgctctt
14 209 62 cacaaacattggacatctctg ctggctgaagagaggtgaga
15 351 58 gggtcagatgttggctatgg cttggctttccccatccatt
16a 200 62 ggtttctgctgacttctgtg aaggagttggcacagaggag
16b 225 58 aggcgagtgcaatcagaaag gaggaggagcagttttggtg
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mutation was low. The polypyrimidine tract is essential for
efficient branch-point utilisation and splice-site recognition, and
deletions within this region affect splicing efficiency (Roscigno
et al, 1993). We were unable to examine whether the mutation at
the polypyrimidine tract induced insufficient splicing, because the
appropriate RNA samples were not available. Therefore, we could
not confirm the involvement of this mutation in carcinogenesis
and the progression of colorectal and gastric cancers. However,
considering the fact that mutations were found only in the tumour
samples and not in the corresponding noncancerous samples, we
cannot exclude the possibility that this mutation confers
advantages upon these cancer cells under selective pressure.

All of the cases with the polypyrimidine-tract mutation showed
high-frequency microsatellite instability. It is known that a simple
mononucleotide repeat can act as a mutational target in tumours
that show high-frequency MSI (Perucho, 1999; Yamada et al,
2002). Therefore, the polypyrimidine tract, in which we found
mutations, may be a mutational target in MSI-positive tumours,
and mutations therein may be involved in carcinogenesis and the
progression of MSI-positive tumours. Microsatellite instability-
high is found rarely in hepatocellular carcinomas, and we could
not detect any mutations in the polypyrimidine tract in the 48

cases of hepatocellular carcinoma (Saeki et al, 2000; Yamamoto
et al, 2000; Wang et al, 2001).

We also detected a single-nucleotide substitution with amino-
acid change in one patient with colon cancer. This substitution was
identical to that identified previously in the breast cancer cell line
MDA-MB435 (Thomas et al, 2001). Since the corresponding
noncancerous cell line was not available, these investigators could
not determine whether the change was somatic or germline
specific. In contrast, we found the same substitution in the
corresponding normal tissue from the same patient. Therefore, the
change is not somatic, but represents a germline mutation or rare
polymorphism. Further functional studies are needed to clarify the
ramifications of this amino-acid substitution.

In addition, we detected four SNPs in the ST7 gene locus. There
were no correlations between these SNPs and the clinicopatholo-
gical data. The consequences of these SNPs for colorectal, gastric,
and hepatocellular carcinomas are unclear.

Contrary to the result of Zenklusen et al, we rarely detected
mutations in the ST7 gene of patients with colorectal, gastric, or
hepatocellular carcinoma, a finding that has been corroborated by
other groups (Hughes et al, 2001; Thomas et al, 2001; Brown et al,
2002; Dong and Sidransky, 2002). In our study, there were no

Table 2 Mutations in the ST7 gene

Case Type of tumour Locations Mutations
Amino-acid
substitution Status

Microsatellite
instability

CRC39 Colorectal Intron 8 (�32 nt from exon 9) 1 to 3 nt deletion
(heterogeneous)

None Somatic mutation MSI-H

GC18 Gastric Intron 8 (�32 nt from exon 9) 1 to 3 nt deletion
(heterogeneous)

None Somatic mutation MSI-H

GC28 Gastric Intron 8 (�32 nt from exon 9) 1 to 3 nt deletion
(heterogeneous)

None Somatic mutation MSI-H

CRC18 Colorectal Exon 5 427 G to A (heterozygous) 143 Ala to Thr Germline mutation or
rare polymorphism

MSS

nt¼ nucleotide; CRC¼ colorectal cancer; GC¼ gastric cancer; MSI-H¼microsatellite instability-high; MSS¼microsatellite stable.

N     T N     T

GC     27 28
GC 28 N

GC 28 T

TGTATTTTTTTTTTTTTTAAATGTTGGTGTTTT

T14/13

T10/11/12

1- to 3-bp
deletion of

poly(T) tract

TGTATTTTTTTTTTTTTAAATGTTGGTGTTTTA

TGTATTTTTTTTTTTTTT AAATGTTGGTGTTTT
TGTATTTTTTTTTTTTT AAATGTTGGTGTTTTA

AAATGTTGGTGTTTTATA
AAATGTTGGTGTTTTATAT

AAATGTTGGTGTTTTAT

A B

Figure 1 Representative example of an ST7 frameshift mutation. (A) SSCP analysis of the intron 8–exon 9 junction of the ST7 gene. The solid arrow
indicates a shifted band in the tumour sample. T: tumour samples; N: corresponding normal tissue samples. (B) Sequence analysis. The open arrow indicates
deletions in the polypyrimidine tract within the splice-acceptor site of intron 8 (�3 nucleotides from exon 9). The number of nucleotides deleted ranged
from one to three.
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technical problems in detecting mutations; the frequent detection
of SNPs demonstrates the high sensitivity of our procedure.
Although the reason for the discrepancy between our results and
those of Zenklusen et al is unclear, we (and the aforementioned
groups) propose the following possible explanations: the use of
selected specimens, the presence of PCR artefacts, and the effects

of culture passages (Hughes et al, 2001; Thomas et al, 2001; Brown
et al, 2002).

We conclude that ST7 gene mutations are rare in colorectal,
gastric, and hepatocellular carcinomas. Our results do not exclude
the possibility that the ST7 gene is inactivated by other molecular
mechanisms, such as aberrant hypermethylation or haplo-insuffi-
ciency (Merlo et al, 1995; Largaespada, 2001). Since there have
been no reports on the expression of the ST7 gene in cancer cells,
further studies are needed to understand the role of this gene in
carcinogenesis and the progression of these cancers.
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