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Abstract

Control of acute murine cytomegalovirus (MCMV) infection is dependent upon both innate and adaptive
immune responses, relying primarily upon natural killer (NK) and T-cell responses for control. Although
CD28=B7 plays a clear role in T-cell responses in many antigen systems including some viral infections,
the importance of co-stimulation during MCMV infection is unconfirmed. In addition, recent data suggest
that CD28=B7 co-stimulation might also be important to Ly49Hþ NK-cell expansion. We therefore hypothesized
that CD28=B7 co-stimulation is critical to viral control after MCMV infection, and further that CD28=B7 co-
stimulation plays a role in MCMV-specific T- and NK-cell responses. To test these hypotheses, we uti-
lized C57BL=6 mice lacking the co-stimulatory molecules B7-1 and B7-2 or CD28. After primary infection with
MCMV, viral titers are significantly elevated in mice lacking CD28 or B7 compared with wild-type mice.
Impaired viral control is associated with significant defects in peripheral T-cell responses to MCMV, which
appear to be dependent upon CD28=B7 co-stimulation. Abnormal hepatic T-cell responses in CD28�=� mice
are preceded by impaired MCMV-specific Ly49Hþ NK-cell responses. Cytokine evaluations confirm that
CD28=B7 co-stimulation is not required for non-specific antiviral responses. We conclude that CD28-mediated
co-stimulation is critical for early viral control during acute MCMV infection.

Introduction

Control of acute cytomegalovirus (CMV) infection

is dependent upon both innate and adaptive immune
responses. It has been demonstrated that natural killer (NK)
cell responses are critical to early viral control following
acute CMV infection in some mouse strains (7,13,14,51,62).
Viral clearance is further dependent upon intact T-cell re-
sponses, with CMV inducing specific cytotoxic T-cell (CTL)
responses in infected hosts (16,48,52,54–56,66,67). Optimal
CTL responses require professional antigen-presenting cells
(APCs), and APC=T-cell interactions are thus critical to CTL
differentiation in infected hosts (1,19,41). Although adoptive
transfer of anti-CMV antibody is protective during acute
infection (5,22,30,32,61), humoral responses to murine CMV
(MCMV) are slower to develop than cellular responses (9),
and both B cells and antibody appear dispensable during
acute infection (29,74). Thus defects in either NK- or T-cell
responses have significant implications for viral control,
which is clinically most obvious in patients with impaired
NK- or T-cell immunity (10,63,65).

T-cell responses to CMV occur through clonally restricted
antigen receptors, resulting in proliferation and clonal ex-
pansion of CMV-specific cells (55). Generally, optimal
activation of T cells requires co-stimulation in addition to
antigen-specific signals (59). One such co-stimulatory mech-
anism is functionalized by activating receptor CD28 ex-
pressed on T-cell surfaces. Ligands for CD28, namely B7-1
and B7-2 (hereafter referred to as B7 molecules), are pro-
totypic co-stimulatory molecules expressed primarily on
antigen-presenting cells (6,23,24,34–36,59,76). Thus optimal
activation of T cells relies upon antigen presentation to the
T-cell receptor (TCR), and is enhanced by co-stimulation via
CD28=B7 ligation.

Although numerous studies demonstrate the importance
of co-stimulation in varying in-vitro antigen systems, there
are few data published on co-stimulation during anti-viral
responses, and even fewer utilizing in-vivo models. Of the
few studies done to date, CD28=B7 co-stimulation has been
shown to have varying importance for T-cell regulation of
other viruses (18,44,49,70,71, and reviewed in [8]), and there
are no studies evaluating the importance of co-stimulation in

1Department of Surgery, and 2Department of Pathology, Ohio State University Medical College, Columbus, Ohio.
3Department of Surgery, University of Michigan, Ann Arbor, Michigan.

VIRAL IMMUNOLOGY
Volume 22, Number 2, 2009
ª Mary Ann Liebert, Inc.
Pp. 91–103
DOI: 10.1089=vim.2008.0080

91



control of CMV infection. Despite this, there are circum-
stantial data suggesting that co-stimulation is important to
the control of MCMV. Included in MCMV’s immune evasion
repertoire are genes that interfere with expression of B7
molecules on APCs. MCMV has been shown to down-
regulate surface expression of both B7-1 (CD80) and B7-2
(CD86) co-stimulatory molecules in monocyte=macrophage
and dendritic cells during infection (2,37,42). Given the
known importance of these co-stimulatory proteins in de-
velopment of adaptive T-cell responses in other systems, we
hypothesized that if MCMV has evolved specific immune
evasion mechanisms that downmodulate B7 molecule ex-
pression, then CD28=B7 co-stimulation must play a critical
role in anti-viral defense to infection with MCMV.

In addition to antigen-specific T-cell responses, NK-cell
subsets have recently been shown to expand in response to
specific antigenic stimuli (21,26,58). One example is Ly49Hþ

NK-cell subset expansion in response to MCMV, which is
triggered by activating receptor Ly49H binding to its re-
cently described ligand MCMV protein m157 (4,12,21,25,
51,64,73). Because this NK subset expansion is similar to
adaptive T-cell responses, it has been postulated that co-
stimulation might also be important to NK-cell expansion
and effector function (26,45). Murine NK cells have been
shown to express CD28, and current data suggest that CD28
activation is important for optimal NK proliferation by en-
hancing cytokine production in these cells (26,45). Ad-
ditionally, NK-cell cytotoxicity is enhanced by either type of
B7 molecule (26,39,75), although B7-stimulated NK cytolysis
does not absolutely require CD28 (17,40). Taken together,
these data suggest that co-stimulation could indeed play an
important role in NK-cell subset expansion in response to
MCMV infection.

To test these hypotheses, we utilized C57=BL6 mice lack-
ing the co-stimulatory molecules B7-1 and B7-2 or CD28.
After infection with MCMV, these mice demonstrate signif-
icant defects in viral control associated with impaired T- and
NK-cell responses. Impaired cellular responses to infection
do not appear to be consequent to defective cytokine re-
sponses after infection in knockout mice. Thus our study
for the first time confirms that CD28=B7-mediated co-
stimulation is critical for early viral control during acute
MCMV infection, and provides evidence that co-stimulation
plays a role in adaptive cellular responses to MCMV.

Materials and Methods

Mice

Male C57BL=6 mice deficient of both B7-1 (CD80) and B7-2
(CD86) (referred to as B7�=�) (11) or deficient of CD28 (re-
ferred to as CD28�=�) (26,60) were obtained from our colony.
Age-matched male C57BL=6 mice 8–10 wk of age (Charles
River Laboratories, Boston, MA) were used as controls. All
animals were housed in a pathogen-free environment, ad-
hering to the ‘‘Guide for the Care and Use of Laboratory
Animals,’’ prepared by the National Research Council (Na-
tional Institutes of Health Publication No. 86-23, revised
1985). After humane euthanasia, mice liver and spleen tis-
sues were dissected aseptically, and underwent cellular iso-
lation for flow cytometry analysis, viral titer analysis, or
were frozen immediately in liquid nitrogen, then stored at
�808C for later analysis.

Viral infection

Primary CMV infection was achieved by IP injection
of tissue culture passaged (once) through salivary gland–
derived 5�104 PFU Smith strain MCMV (VR-1399=1981)
obtained from the ATCC (Rockville, MD). Prior to infection
(day 0) cohorts of 3 animals underwent analysis as controls.
For infection experiments, 6 each of wild type, B7�=�, and
CD28�=� mice were infected, with cohorts of 3 animals each
euthanized at 2 and 6 days post-infection (dpi).

Antibodies and flow cytometry

Fluorescent dye–conjugated antibodies specific for CD3
(PerCP-Cy5.5), NK1.1 (PE), interferon-g, and bromodeox-
yuridine (BrdU, PRB-1) were all purchased from BD Phar-
Mingen (San Diego, CA). Cells isolated from livers or spleens
of mice were stained with fluorescent dye–conjugated mAbs
and were analyzed by flow cytometry (FACScalibur, Becton
Dickinson, Mountain View, CA) (26). Intracellular IFN-g was
analyzed in splenic NK cells (not further stimulated ex vivo)
using FITC-conjugated mAb to IFN-g from BD PharMingen
as previously described (27). Ly49H (APC) antibody was a
kind gift from Dr. Wayne Yokoyama.

Isolation of hepatic mononuclear leukocytes

Hepatic mononuclear cells (MNCs) were isolated as pre-
viously described (26). Briefly, livers were perfused through
the portal vein with 10 mL phosphate-buffered saline (PBS)
to remove blood cells. Individual livers were ground with a
3-mL syringe insert and suspended in 10 mL of medium.
Single-cell suspensions were collected and centrifuged, and
tissue debris was discarded. Cells were re-suspended in 2 mL
40% Percoll (Pharmacia, Uppsala, Sweden), and layered on
2.5 mL 70% Percoll in 15-mL conical tubes. MNCs were re-
covered at the interface between 40% and 70% Percoll after
centrifugation at 1600 rpm at room temperature for 25 min.
Remaining red blood cells in MNCs were lysed by ammo-
nium chloride solution. Hepatic MNCs were then subjected
to flow cytometry analysis.

BrdU incorporation assay in vivo

To determine cell proliferation in vivo, BrdU (1 mg=
0.1 mL=mouse; Sigma, St Louis, MO) was injected IP into
mice 3 h prior to acquiring liver and spleen tissues. Spleno-
cytes and hepatic MNCs were isolated, stained with
fluorescent-conjugated mAbs to CD3, NK1.1, and Ly49H,
followed by intracellular staining with FITC-labeled mAb to
BrdU, and were analyzed by four-color flow cytometry as
previously described (26). Subsets of CD3þNK1.1�, CD3-
NK1.1þLy49Hþ, and CD3�NK1.1þLy49H� cells were re-
spectively gated to analyze BrdU incorporation. Ly49H
monoclonal antibody was a gift from Dr. Wayne Yokoyama
and biotinylated in our laboratory.

In vitro plaque assay

Spleen and liver tissues from 0, 2, and 6 dpi underwent
in-vitro plaque assay (IVPA) analysis to determine viral titer,
as well as real-time PCR to determine viral load. For IVPA,
mouse embryo fibroblasts were grown to confluence in 6-
well plates in DMEM (Gibco BRL, Carlsbad, CA). Following
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centrifugation (1000�g for 10 min) of 5 mL of homogenized
tissue, 1 mL of supernatant was placed in each well. These
plates were centrifuged at 1000 g, and incubated at 378C in
5% CO2 for 3–4 h. The plates were washed three times with
PBS, then covered with 3 mL of 1% agar in DMEM. Fol-
lowing 6–7 days of incubation (378C in 5% CO2), the plates
were fixed in 10% formalin, stained with 1% crystal violet,
and analyzed by low-power phase contrast microscopy for
plaque formation. All IVPA experiments were performed in
duplicate, and viral titers are reported as mean� standard
error of mean of both experiments.

IVPA techniques are time consuming and laborious, so we
performed side-by-side comparisons of IVPA to real-time
PCR to quantitate viral load in liver and spleen tissues.
Linear regression analysis showed good correlation between
IVPA and real-time PCR results (R2 0.89; p< 0.001, data not
shown). A drawback to real-time PCR is that occasionally
it was not sensitive enough to detect low viral copies, re-
quiring the use of IVPA. Therefore when copy numbers are
adequate enough to allow detection, real-time quantitative
PCR is an accurate surrogate for IVPA to quantify viral load
in tissues.

DNA isolation

DNA was extracted from tissues using QIAamp Tissue Kit
(Qiagen GmbH, Hilden, Germany). DNA extracted from tissue
homogenates was eluted in 100mL of distilled water and stored
at�208C until analysis. DNA were amplified in a total volume
of 25mL with 200 nm of each primer and 1.0 U of Taq DNA
polymerase (Gibco BRL) added in 2.5mL of a PCR buffer
(50 mM KCl, 20 mM Tris-HCl [pH 8.4], and 1.5 mM MgCl2).

Quantitative real-time PCR

Primer sets and fluorescence resonance energy transfer type
probes were designed and optimized for MCMV GB and b-
actin genes. Plasmids homologous to the sequences amplified
by our PCR primers were cloned for these genes, and using
serial dilutions of known plasmid concentrations, standard
curves were constructed for quantitation. Regression equa-
tions had very high R2 values (.95 b-actin and .99 gB), and were
used for subsequent copy number calculations. Real-time
PCR results are expressed as copies of DNA=mRNA per copies
of b-actin. All samples were analyzed in duplicate, and results
are expressed as mean copies� standard error of mean. Se-
quences for the real-time primers=probes designed were as
follows: b-actin forward: attgtgatggactccggtga, reverse: agct-
catagctcttctccag, probe: cacccacactgtgcccatctac, CMV GB; for-
ward: tgtactcgaagggagagct, reverse: cgttcaccaccgaagacac, and
probe: cgcctcgaacgtgttcagcctg. For cytokine analyses, primers
for IL-1, TNF-a and IFN-g were obtained from Super Array
(Biosciences). Sequences of other primers are as follows from 50

to 30: IL-2, forward: tcactcctcacagtgacctcaagt; reverse, agcg
cttactttgtgctgtcct; IL-12a, forward: tgtcttagccagtcccgaaacct,
reverse: gtgaagcaggatgcagagcttcatt; IL-15, forward: ccatctc
gtgctacttgtgtttcct, reverse: caggacgtgttgatgaacatttggac; IL-7a,
forward: atccacctcacacgaggcacaagt, reverse: caaacacgaagca
gtttgggacc; IFN-a, forward: tgtctgatgcagcaggtgg, reverse: aag
acagggctctccagac; GAPDH, forward: aactttggcattgtggaagg,
and reverse: acacattgggggtaggaaca.

PCR reactions were carried out using a Smart-Cycler
(Cepheid, Sunnyvale, CA), using the following program:

initial denaturation 4 min at 948C, 35 cycles of denaturation
for 30 sec at 948C, annealing for 30 sec at 538C, elongation for
30 sec at 728C, followed by final elongation for 7 min at 728C,
then hold at 48C.

Statistics

Statistical analyses utilized one-way ANOVA or one- or two-
tailed Student’s t-test. p Values �0.05 were considered signifi-
cant for all testing. Means are expressed as mean� standard
error. Statistical software used was GraphPad Prism (Version
4.03; GraphPad Software, San Diego, CA).

Results

CD28=B7 co-stimulation is critical for early viral control

To evaluate influences of the co-stimulatory molecules B7
and CD28 on early viral control, wild-type, B7�=�, and
CD28�=�C57BL=6 mice (H-2b) were infected with MCMV.
Viral titers were measured 2 and 6 dpi using both IVPA and
quantitative real-time PCR for CMV DNA of tissue homog-
enates from spleen and liver.

In both liver and spleen, there were significantly elevated
MCMV titers (threefold) by day 2 in CD28�=� mice, while
viral titers in B7�=� mice were not significantly different than
wild-type mice (Fig. 1A and B). Previous studies have shown
that 6 d after MCMV infection, MCMV-specific NK subset
expansion peaks, and anti-viral T-cell expansion is beginning
(20,21,58). In the current study viral titers in both B7�=�

and CD28�=� mice were significantly elevated (*2 logs)
compared to wild-type mice in both liver and spleen 6 dpi
(Fig. 1). Interestingly, CD28�=� mice had significantly higher
viral titers (double) than B7�=� mice in both tissues by 6 dpi
(Fig. 1A and B). In addition, hepatic titers were slightly but
significantly higher than splenic titers at both time points
(comparison not shown). Viral DNA loads from all tissues
correlated very well with IVPA titers, further confirming
IVPA results (R2¼ 0.87; data not shown). We therefore con-
clude that both B7 and CD28 molecules play essential roles in
early control of primary MCMV infection.

CD28 and B7 are required for T-cell expansion
in response to MCMV

CD8 T-cells are known to be vitally important to viral
control following MCMV infection (16,53,55,56). Because
CD28=B7 co-stimulation is known to be variably important to
T-cell responses in other models of viral infection (8,18,44,49),
one possible explanation for the observed differences in vi-
ral titers was that T cells in these knockout mice do not re-
spond normally to MCMV without co-stimulation. To test
this hypothesis, we evaluated CD3þNK1.1� T-cell expansion
in liver and splenic tissue following acute MCMV infection
using flow cytometry to measure total numbers and cell di-
vision.

As previously published, wild-type mice showed signifi-
cant expansion of hepatic T-cell counts by 6 dpi, which cor-
responded with increased BrdU incorporation (Fig. 2A and
B). In contrast, B7�=� and CD28�=� mice had significantly
lower hepatic T-cell counts at 6 dpi ( p¼ 0.04, p¼ 0.03; Fig. 2A
and B). Although this corresponded to impaired hepatic T-
cell division, as suggested by impaired BrdU incorporation,
which was significantly lower in B7�=� and CD28�=� mice
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than in wild-type mice ( p¼ 0.01, p¼ 0.002; Fig. 2B), it is also
possible that low hepatic T-cell counts could be consequent
to impaired hepatic T-cell migration or T-cell death.

In contrast to liver, overall splenic T-cell counts in B7�=� and
CD28�=� mice were comparable to those of wild-type mice
( p¼ 0.88, p¼ 0.36; Fig. 2A and B). Curiously, this was observed
despite significant impairment of T-cell division in B7�=� and
CD28�=� mice as demonstrated by decreased BrdU incorpo-
ration ( p¼ 0.0007, p¼ 0.05; Fig. 2A and B). Despite mainte-
nance of normal numeric T-cell responses, knockout mice have

dramatically elevated splenic viral titers compared to wild-type
mice 6 dpi (Fig. 1B). One possible explanation for these ob-
servations is that small changes in T-cell numbers driven by
antigen-specific T-cell proliferation could be obscured in the
spleen, as this is a primary lymphoid organ. Similar analyses of
CD3þNK1.1þ cells (NKT) showed no significant expansion,
and no significant differences between wild-type and knockout
mice (data not shown). From these studies we conclude that
CD28=B7 co-stimulation is critical to T-cell division and sub-
sequent peripheral expansion after infection with MCMV, and
additionally that both B7 and CD28 influence accumulation of T
cells in the liver.

CD28, but not B7, is required for expansion
of Ly49Hþ NK cells in liver

Robbins et al. have recently shown that early T-cell re-
sponses and viral control of MCMV are dependent upon
preceding NK-cell responses (57). Therefore we considered
the possibility that diminished T-cell proliferative responses,
and elevated viral titers in spleen and liver, could also be
additionally consequent to abnormal NK-cell responses in
mutant mice. NK-cell responses to MCMV infection in nor-
mal mice begin at 2 dpi as non-specific responses, and peak
at 6 dpi, with subset expansion of Ly49Hþ cells (20,21,58).
We therefore hypothesized that the impairment of early vi-
ral control observed in CD28�=� and B7�=� mice could be
consequent to inadequate NK-cell expansion, and compared
expansion between Ly49Hþ and Ly49H� NK cells in livers
after MCMV infection.

MNCs isolated from livers after MCMV infection were
evaluated for Ly49Hþ and Ly49H� NK-cell expansion by
flow cytometry as shown in Fig. 3A, and summarized in Fig.
3B. Confirming previously published findings, Fig. 3B-a
shows significant expansion from baseline of Ly49Hþ NK
cells in wild-type mice at day 2 of MCMV infection ( p¼ 0.01)
that rise more than fivefold by day 6 of infection ( p< 0.01)
(20,21,58). This expansion is due to Ly49Hþ NK-cell division,
as confirmed by significant increases of BrdU incorporation
in this subset at 2 and 6 dpi in wild-type mice (Fig. 3B-b;
p< 0.01 for both time points, compared to baseline). In
contrast, non-specific Ly49H� NK-cell expansion and divi-
sion were modest (Fig. 3B-c and d), which has also been
consistently described by others (20,21,58).

As shown in Fig. 3B, CD28 appears to be important
for MCMV-specific NK subset expansion=accumulation in
liver tissue during MCMV infection. Unlike wild-type mice,
CD28�=� mice do not develop Ly49Hþ NK-cell expansion=
accumulation, showing no significant increase in Ly49Hþ

NK counts above baseline ( p> 0.05 for either time point;

Day 2 Day 6
101

102

103

104

105

Wild-type
B7–/–

–/–CD28

Wild-type
B7–/–

–/–CD28

p=0.3623

p<0.0001

p=0.0001

p<0.0001

p<0.0001

p<0.0001

A. Liver
P

F
U

/g
 ti

ss
ue

 
P

F
U

/g
 ti

ss
ue

 

Days post infection

Day 2 Day 6
101

102

103

104

105

p=0.0697

p<0.0001

p=0.3057

p=0.0022

p<0.0001

p<0.0001

B. Spleen 

Days post infection

FIG. 1. Effect of co-stimulation upon viral titers during acute
MCMV infection. Wild-type C57BL=6, B7�=�, or CD28�=�

knockout mice were infected with Smith MCMV (5�104 PFU)
or receiving vehicle (PBS), and liver (A) and spleen (B) tissues
were acquired 2 or 6 dpi. Tissues were analyzed by plaque
assay to determine viral titers, and results are reported in
plaque-forming units (PFU) per gram of tissue. Each data bar
represents 3 mice. The data shown are representative of three
comparable experiments.

FIG. 2. Co-stimulation in T-cell responses during acute MCMV infection. Wild-type C57BL=6 (WT), B7�=� (B7KO), or
CD28�=� knockout (CD28KO) mice infected with Smith MCMV (5�104 PFU) or vehicle had liver and spleen tissues removed
2 or 6 dpi. Three hours prior to organ removal, each mouse received IP 1.0 mg of BrdU. Single splenocyte preparations or
hepatic MNCs were prepared, stained with mAb to CD3 (PerCP-Cy5.5), NK1.1 (APC), and Ly49H (PE), followed by in-
tracellular staining with mAb to BrdU (FITC) as described in materials and methods, and analyzed by flow cytometry.
CD3þNK1.1� T cells were gated and analyzed for BrdU and Ly49H expression. Note that a small portion of CD3þNK1.1-
BrdU� T cells expressed Ly49H, consistent with our previous observation (unpublished data). (A) Representative flow
cytometric plots of liver and spleen from mice at 2 or 6 dpi. (B) T-cell numbers for each group at various time points post
infection from a representative experiment. Each data point represents mean� standard error for 3 mice. The experiment was
repeated twice with similar results.
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Fig. 3B-a). In fact, CD28�=� mice showed no significant dif-
ference between Ly49Hþ (specific) and Ly49H� (non-specific)
NK-cell counts at 6 dpi ( p> 0.05; compare Fig. 3B-a and c).
Curiously, this deficit in Ly49Hþ NK cells occurred despite
significantly higher division rates in Ly49HþNK cells at 2 dpi
in CD28�=� mice ( p< 0.01; Fig. 3B-b). It is possible that this
enhanced division was in part non-specific, as there was a
concomitant similar, albeit smaller, elevation in Ly49H� NK-
cell division at this same time ( p< 0.05; Fig. 3B-d). Despite
this, by 6 dpi, Ly49Hþ NK counts were significantly lower
than wild-type controls, and Ly49H� NK counts were no
different than wild-type controls in liver tissues. Thus CD28
appears to be required for specific Ly49Hþ NK-cell accumu-
lation in the liver of infected mice, but does not appear to
influence non-specific NK-cell responses to MCMV infection.
It is unclear whether failed NK-cell expansion in CD28�=�

mice livers reflects increased apoptosis in this population,
and=or simply failure of normal recruitment of antigen-
specific NK cells to the liver.

In contrast to CD28, B7 expression plays little or no role
in expansion=accumulation of hepatic NK cells after infec-
tion. Fig. 3B-a shows that Ly49Hþ NK cells in B7�=� mice
significantly expand by 6 dpi compared to baseline. Thus
wild-type and B7�=� mice showed no significant difference
in Ly49Hþ NK-cell counts at 6 dpi ( p¼ 0.32), and BrdU in-
corporation in Ly49Hþ NK cells was also similar between
wild-type and B7�=� mice (Fig. 3B-b).

Neither CD28 nor B7 are required for expansion
of splenic Ly49Hþ NK cells

To explore whether co-stimulation is required for splenic
NK-cell expansion, we evaluated Ly49Hþ and Ly49H� NK
cells after infection by flow cytometry. In contrast to liver, and
similar to our T-cell findings, there was no significant differ-
ence in splenic Ly49Hþ NK-cell numbers between wild-type,
B7�=�, or CD28�=� mice at either 2 or 6 dpi ( p¼ 0.56 and p¼
0.95, respectively; Fig. 4A and B), although splenic expansion

FIG. 3. Effect of co-stimulation on LY49Hþ NK-cell expansion in liver during acute MCMV infection. Wild-type C57BL=6,
B7�=�, or CD28�=� knockout mice infected with Smith MCMV (5�104 PFU) had liver tissues removed 2 or 6 dpi. Three hours
prior to organ removal, each mouse received BrdU. Hepatic MNCs were prepared and NK cells were enumerated and had
division estimated by four-color flow cytometry. The MNCs were stained with fluorescent dye-conjugated mAbs to CD3
(PerCP-Cy5.5), NK1.1 (PE), and Ly49H (APC) for cell surface markers, and intracellular staining with mAb to BrdU (FITC) as
described in materials and methods. Percentages of each subset (CD3�NK1.1þLy49Hþ, CD3�NK1.1þLy49H�,
CD3�NK1.1þLy49HþBrdUþ, or CD3�NK1.1þLy49H�BrdUþ) were determined and then multiplied by numbers of bulk
MNCs. (A) Representative flow cytometric plots at 2 dpi from CD3�NK1.1þ gated cells. (B) Mean cell numbers of
CD3�NK1.1þ gated Ly49Hþ and Ly49H� NK cells and BrdU incorporation in hepatic MNC over time. Each data point
represents mean� standard error of mean for 3 mice. This experiment was performed twice with comparable results.
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of Ly49Hþ NK cells was much more modest (*twofold) than
that seen in livers (>fivefold). In wild-type mice, MCMV-
specific Ly49HþNK cells showed a non-linear increase by day
6 (Fig. 4B), a result that has been previously published (20,21).
The initial decline in splenic NK counts at 2 dpi has been pre-
viously postulated to be secondary to either redistribution of
splenic NK cells to more peripheral sites of infection, or to
apoptosis or consumption of these cells in the spleen (20).

Fig. 4B-b and c show the effects of B7 and CD28 on
splenic NK-cell division following MCMV infection. Both
B7�=� and CD28�=� mice show small but statistically sig-
nificant increases in BrdU incorporation in Ly49Hþ NK cells
2 dpi when compared to wild-type mice ( p< 0.05). None-
theless, this increased division corresponds to either no
change or slight decreases in splenic Ly49Hþ NK-cell num-
bers on day 2 (Fig. 4B-a). Although the hypothesis that these
cells might be redistributing to other sites of infection is
sensible, there is no evidence that this occurs on day 2 post
infection in the liver, when liver counts of Ly49Hþ NK cells
are not significantly increased in either B7�=� or CD28�=�

mice (Fig. 3B). Six days after infection, wild-type, B7�=�,
and CD28�=� mice show comparable BrdU incorporation

that is significantly elevated from baseline. This cell divi-
sion correlates with modest increases in Ly49Hþ NK-cell
numbers in splenic tissues by 6 dpi (Fig. 4B-a and c). Im-
portantly, when cell division rates for splenic Ly49Hþ and
Ly49H� NK cells are compared, there is identical BrdU in-
corporation in Ly49H� NK cells for wild-type and knockout
mice (compare Fig. 4B-b and d). Thus it seems that non-
specific NK-cell expansion is intact in knockout mice, and
that splenic NK expansion in response to MCMV occurs by
a non-specific mechanism that does not require CD28 or B7
co-stimulation.

Effects of co-stimulatory molecules on early
cytokine production

As an alternative hypothesis, it is possible that B7�=� or
CD28�=� mice have some fundamental defect in early cyto-
kine responses that could explain the observed defects in T-
and NK-cell expansion independent of co-stimulation. To
test this hypothesis, we examined cytokine mRNA in liver
and splenic tissues from wild-type and CD28�=� mice, in-
cluding IFN-a, IFN-g, IL-1, IL-2, IL-12, IL-15, IL-17, and

FIG. 4. Effect of co-stimulation on splenic NK-cell expansion during acute MCMV infection. Wild-type C57BL=6 (WT),
B7�=� (B7KO), or CD28�=� knockout (CD28KO) mice infected with Smith MCMV (5�104 PFU) or vehicle had splenic tissues
removed 2 or 6 dpi. Three hours prior to organ removal, each mouse received IP 1.0 mg BrdU. CD3�NK1.1þ gated sple-
nocytes were enumerated and had division estimated by flow cytometry, as described in Fig. 3. (A) Representative flow
cytometric plots 2 dpi. (B) Ly49Hþ and Ly49H� NK-cell numbers and BrdU incorporation in spleens over time. Each data
point represents mean� standard error for 3 mice. This experiment was performed twice with comparable results.
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TNF-a, at both 2 and 6 dpi. There were no significant dif-
ferences between CD28�=� and wild-type mice for any cy-
tokine transcripts at 6 dpi in either tissue (data not shown).
There were several differences noted at 2 dpi, which are il-
lustrated in Fig. 5 and discussed below.

Several cytokines are known to be critical to T-cell re-
sponses to MCMV, including IFN-a and g, IL-2, and IL-12
(43,57). There were no significant differences in IL-2 tran-
scription in hepatic tissues at 2 or 6 dpi that might explain

abnormal T-cell numbers and division in CD28�=� mice
(Fig. 5). There were, however, elevated hepatic IFN-a tran-
scripts observed in CD28�=� mice at 2 dpi that became
comparable to wild-type by 6 dpi (Fig. 5). It has been pre-
viously shown that a lack of early viral control by NK cells
leads to overexpression of IFN-a after MCMV infection, and
that elevated IFN-a impairs T-cell responses to MCMV (57).
Although there were decreased levels of IL-2 and IFN-g
transcripts observed in spleens of CD28�=� mice at 2 dpi

FIG. 5. Effect of co-stimulation of early cytokine production upon MCMV infection. Wild-type C57BL=6 or CD28�=�

knockout mice infected with Smith MCMV (5�104 PFU) had liver and splenic tissues evaluated at 2 dpi. Total RNA was
prepared and subjected to real-time PCR analysis for IL-1, IL-2, IL-12, IL-15, IL-17, IFN-g, TNF-a, and IFN-a. There were no
significant differences in IL-1, IL-17, or TNF-a transcripts between wild-type and CD28�=� mice in the liver or the spleen (not
shown). Data shown are arbitrary transcript units (relative to GAPDH) for IFN-a, IFN-g, IL-2, IL-12, and IL-15, in liver or
spleen at 2 dpi. Significant differences are noted by p values in this figure. Each data point represents mean� standard error
of mean for 3–4 mice.
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compared to wild-type mice, these returned to normal by
6 dpi (not shown), and these deficits did not appear to in-
fluence overall splenic T-cell numbers after infection (Fig. 2).

Furthermore, there are several cytokines known to be
critical in early NK responses to MCMV, including IFN-a,
IL-2, IL-12, and IL-15 (45,46). Importantly, there were no
significant differences in these cytokine transcripts in liver
between wild-type and CD28�=� mice to explain defective
hepatic Ly49Hþ NK-cell expansion observed in CD28�=�

mice (Fig. 5). IL-2, IL-12, and IL-15 levels were comparable in
wild-type and CD28�=� mice, and as previously mentioned,
day 2 liver IFN-a mRNA levels were actually higher in
CD28�=� mice. Although IL-2 levels were lower in spleens at
2 dpi, this did not appear to influence splenic NK responses
(Fig. 4). Finally, there were no defects in non-specific Ly49H�

NK-cell expansion after infection in knockout mice when
compared to wild-type mice in either liver (Fig. 3) or spleen
(Fig. 4), which functionally confirms that non-specific re-
sponses to MCMV are intact in these knockout mice.

Because IFN-g is a dominant cytokine produced by NK
cells during MCMV infection (21), we examined whether co-
stimulation influences early IFN-g production by NK cells in
response to MCMV infection. As shown in Fig. 6, numbers of
Ly49Hþ IFN-g-producing NK-cells in spleens 2 days after
infection are not impaired in knockout mice. One might
anticipate early NK IFN-g responses to be consequent to
m157-Ly49H interaction, but this does not appear to be the
case at 2 dpi, because Ly49H�NK cells showed the same fold
increase in IFN-g expression at 2 dpi (Fig. 6B). These findings
also suggest that the decreased transcription of IFN-g ob-
served in whole spleen lysates (Fig. 5) is occurring outside the
NK-cell compartment. Although wild-type splenic Ly49Hþ

NK cells expressing IFN-g are numerically somewhat lower
than those previously published at this time point, we did
not stimulate our cells ex vivo to elicit this response. Unfortu-
nately, hepatic NK cells were too few to allow similar analysis
of IFN-g-producing cells by flow cytometry (all were used in
Ly49H enumeration and BrdU experiments), but transcripts

FIG. 6. Co-stimulation and Ly49Hþ NK-cell IFN-g responses during acute MCMV infection. Wild-type C57BL=6 (WT),
B7�=� (B7KO), or CD28�=� (CD28KO) knockout mice infected with Smith MCMV (5�104 PFU) or receiving vehicle (PBS) had
splenic tissues removed at 2 dpi. Single splenocytes were prepared, stained with mAb to CD3 (PerCP-Cy5.5), NK1.1 (PE), and
Ly49H (APC), followed by intracellular staining with FITC-conjugated mAb to IFN-g and analysis by four-color flow
cytometry. CD3�NK1.1þ cells were gated as described in Fig. 3, and further analyzed for Ly49Hþ and IFN-g expression.
Ly49Hþ NK cells expressing IFN-g were enumerated. (A) Representative of flow cytometric plots for Ly49HþIFN-gþ NK cells
from each group. (B) Numbers of IFN-g-producing Ly49Hþ and Ly49H� NK cells in each group. Each data point represents
mean� standard error of mean for 3 mice.
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of IFN-g at 2 and 6 dpi were comparable in liver between wild-
type and CD28�=� mice (Fig. 5).

Interpreting these cytokine results is somewhat compli-
cated by differences in viral titers in knockout mice, as well
as a lack of cellular fraction–specific analyses. Differences in
IFN-g expression in splenocyte lysates that were not ob-
served in NK cells highlight the possibility that splenocyte
and hepatic lysates could mask subtle differences in cytokine
production in individual cell subsets. Nonetheless, there
appear to be no glaring defects in cytokine responses to in-
fection in CD28 knockout mice, and taken together, these
observations suggest that non-specific cytokine responses to
MCMV are intact in CD28�=� mice.

Discussion

This study confirms that the co-stimulatory molecules B7
and CD28 are critical to host viral control during acute
MCMV infection. Our viral titer data clearly demonstrate
that both molecules are required for host immune control of
virus replication following acute MCMV infection in both
hepatic and splenic tissues. This influence in viral titers be-
gan as early as 2 dpi, becoming more dramatic at 6 dpi in
mice lacking B7�=� or CD28�=�. Early responses to MCMV
(days 1–2) are known to be largely a consequence of APC
release of cytokines, resulting in non-specific NK-cell
expansion (3,19,47), while later viral control (day 6) is de-
pendent upon antecedent non-specific and MCMV specific
NK-cell responses, as well as subsequently developing T-cell
responses (14,16,33,48,50,55,57). Because of the known im-
portance of co-stimulation in adaptive immune responses,
we further explored influences of co-stimulation on T- and
NK-cell responses in these knockout mice.

It is not entirely surprising that co-stimulation is critical to
MCMV control, given recent data demonstrating the im-
portance of B7 during herpes simplex virus and Epstein-Barr
virus infection (44,70,71). Further data supporting this hy-
pothesis include MCMV targeting of DC responsiveness and
co-stimulation as part of its immune evasion armamentar-
ium (2,37,41,42). B7 proteins enhance NK-mediated killing,
and conversely, B7-1–deficient APCs display significant re-
ductions in their ability to promote T-cell activation
(23,39,75). Thus circumstantially, it seemed likely that co-
stimulation via B7 and CD28 would be critical to MCMV
control after acute infection. Despite these circumstantial
data, there are other viruses, such as lymphocytic chor-
iomeningitis virus, that actually develop vigorous CD8 re-
sponses without co-stimulation (49). Thus ours are the first
data of which we are aware to definitively prove that co-
stimulation is required for early control of CMV infection.

Antigen presentation and co-stimulation are known to be
critical in development of normal T-cell responses in many
antigen systems. Interestingly, MCMV has been shown to
cause ‘‘immune paralysis’’ in DCs, which manifests as re-
duced release of IL-2 and IL-12, and impairment of T-cell
activation (2,28). This impairment has recently been attrib-
uted to viral genes m138 and m147.5, which cause down-
regulation of the co-stimulatory molecules B7-1 (CD80) and
B7-2 (CD86) (37,42) on DCs. Our studies confirm the im-
portance of CD28=B7 co-stimulation in the development of
T-cell responses to MCMV in vivo, as knockout mice showed
impaired hepatic T-cell expansion and accumulation. This

may be a direct consequence of diminished T-cell division, as
there was significantly lower T-cell BrdU incorporation fol-
lowing MCMV infection in both B7�=� and CD28�=� mice
compared to wild-type mice. It is possible that poor expan-
sion of T cells in both B7�=� and CD28�=� mice is a conse-
quence of early abnormalities in splenic IL-2 or IFN-g
transcription, but this will require further study. Overall, it is
likely that this impaired T-cell response at least contributes to
the elevated viral titers seen at 6 dpi.

Much like APC=T-cell interactions, APC=NK interactions
have also been shown to be critical in development of NK-
cell responses to MCMV. Early during MCMV infection,
APCs produce IFN-a=b and IL-12, causing IFN-g-dependent
non-specific NK expansion in vivo (3,19,47). In addition to
these non-specific NK responses, MCMV-specific Ly49Hþ

NK subset expansion occurs 4–8 days after infection, conse-
quent to stimulatory receptor Ly49Hþ activation (20), pre-
sumably activated by binding ligand m157 (12,64,73). This
subset expansion has been reported to peak at 6 dpi in both
liver and spleen tissue (3,20,21,58), and we reproduced
these results in wild-type mice. Recent work has shown that
interaction between CD8aþ DC and NK cells is important for
expansion of this MCMV-specific Ly49Hþ NK subset in re-
sponse to acute infection (3). Altogether these observations
by others are quite novel, demonstrating for the first time
that NK cells, long considered to be central to ‘‘innate’’ im-
munity, actually have ‘‘adaptive’’ characteristics.

Because of these adaptive characteristics, and the obvious
importance of APC=NK interactions, we postulated that
similar to T cells, co-stimulation might be important to ex-
pansion of MCMV-specific NK-cell subsets. Indeed, CD28�=�

mice had significantly reduced hepatic Ly49Hþ NK subset
expansion, which correlated with significant impairment in
Ly49Hþ NK-cell division at 6 dpi. In contrast, B7 appeared
dispensable to MCMV-specific NK-subset expansion, as B7�=�

mice developed normal hepatic Ly9Hþ NK counts and BrdU
incorporation. Nonetheless it was conceivable that deficits in
Ly49Hþ NK-subset expansion in CD28�=� mice could be ex-
plained by some fundamental defect in innate responses in
these mice. Importantly, there were no significant differences
in IFN-a, IFN-g, IL-12, or IL-15 transcripts after infection that
might explain impaired NK-subset expansion in CD28�=�

mice. Thus, although not definitively proven, our data suggest
that CD28 co-stimulation enhances subset expansion of pe-
ripheral NK cells. This provocative observation will require
further study.

The mechanism by which CD28 might participate in hepatic
NK-cell expansion is currently not known. MCMV-specific NK
expansion is somewhat unique in that it does not depend upon
MHC-I antigen presentation, but instead relies upon direct
recognition of m157 (an MHC-I homologue) expressed on the
surface of infected cells by activating receptor Ly49Hþ (72).
We speculate that just as MHC=TCR signaling and antigen-
specific T-cell expansion is enhanced by CD28=B7 co-stimu-
lation, m157=Ly49H signaling may be similarly enhanced, and
therefore lack of CD28 stimulation leads to the depressed NK
responses seen in CD28�=� mice. Unfortunately, this hypoth-
esis doesn’t fit neatly with our results, as B7�=� mice do
not show the same effect. This is in contrast to the utter depen-
dence of peripheral T-cell responses upon both co-stimulatory
molecules. At best, we can consider that peripheral NK-cell
subset expansion is influenced by co-stimulatory molecule
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CD28, but appears independent of co-stimulatory ligand B7. If
true, this also suggests that CD28 might recognize a different
B7 family ligand in B7�=�mice that facilitates MCMV-specific
NK-subset expansion.

Although co-stimulation appears to be important to splenic
T-cell division in response to MCMV infection, the decreased
T-cell division observed in knockout mice did not negatively
impact overall splenic T-cell counts. This could simply be
because splenocytes responsive to MCMV comprise a small
percentage of the splenocyte population, or that day 6 is too
early to detect significant differences in T-cell counts. Alter-
natively, splenic expansion of T cells after MCMV infection
might not be solely reliant on increased cell division co-
stimulated by B7 or CD28 molecules, but may occur by some
other mechanism, such as resistance to activation-induced T-
cell death. In contrast, splenic NK-cell expansion appears to be
altogether independent of co-stimulatory influence, occurring
primarily by non-specific expansion, as shown by equal ex-
pansion and division of both Ly49Hþ and Ly49H�NK cells in
wild-type and knockout mice. This is consistent with previ-
ously published hypotheses that splenic NK-cell expansion
occurs by a mechanism different than that seen in the liver
(68,69). Although this issue of splenic NK expansion has be-
come somewhat controversial (38,68,69), it would appear that
whatever the mechanism, splenic NK- and T-cell expansion
occurs independent of co-stimulation by B7 or CD28. It is
interesting to note that development of relatively ‘‘normal’’
MCMV-specific NK-cell and T-cell numbers in splenic tissues
was associated with better viral control in spleen tissues
compared to liver (comparison not shown). Nonetheless,
splenic viral titers were still much higher in both B7�=� and
CD28�=� than wild-type mice, suggesting that there is some
important immune interaction missing in these knockout
mice.

Interestingly, at almost every time point, CD28�=�mice had
significantly higher viral titers than B7�=� mice. While this
could be explained simply by CD28 being relatively more im-
portant to viral control, it is also possible that a lack of CD28
molecules could have additional consequences. CD28�=�mice
still express B7 molecules, which can also bind CTLA-4 and
PD-L1, known inhibitory receptors (15,23,31,40). It is therefore
possible that absence of CD28 could cause unopposed
B7=CTLA-4 or PD-L1 binding and signaling, downregulating
adaptive responses to MCMV. This could explain the differ-
ences in viral titers between CD28�=� and B7�=� mice ob-
served in livers as early as 2 dpi, and in both liver and spleen
by 6 dpi. Alternatively, because T-cell responses are in part
dependent upon preceding NK-cell responses (57), it is also
possible that B7�=� mice, which develop normal NK but ab-
normal T-cell responses, have slightly better viral control than
CD28�=�mice, which have sequential impairment of both NK-
and T-cell responses. Robbins et al. have shown that poor viral
control by NK cells leads to higher IFN-a levels after infection
(57), which we observed in CD28�=� mice at 2 dpi. These hy-
potheses are not mutually exclusive, are both consistent with
previously published data, and likely explain the differences in
viral titers observed in our knockout mice.

Conclusion

In conclusion, the co-stimulatory molecules B7 and CD28
are critical to viral control in mice during acute CMV infec-

tion, as absence of either molecule leads to significant ele-
vations in viral titers. We feel that the differences in viral
titers observed in knockout mice are likely a direct conse-
quence of impaired T-cell expansion, with more subtle con-
tributions from impaired MCMV-specific NK-cell expansion
in CD28�=�mice. Whether CD28=B7 co-stimulation is critical
for NK-subset expansion remains unproven, but this pro-
vocative observation certainly deserves further study. These
data thus support the hypothesis that downregulation of
co-stimulatory molecules by MCMV is an important immune
evasion strategy during acute infection.
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