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Two Modem Developments in Matching Theory
J. J McDowell

Emory University

Matching theory is a mathematical theory of choice behavior, parts of which have been shown to hold
in natural human environments and to have important therapeutic applications. Two modem develop-
ments in matching theory are discussed in this article. The first is the mathematical description ofbehavior
in asymmetrical choice situations, which are situations where different reinforcers and/or different be-
haviors are associated with concurrently available response altematives. Most choice situations in natural
human environments are probably asymmetrical. The second development in matching theory is the
mathematical description of a tendency toward indifferent responding in all choice situations. Behavior
in asymmetrical choice situations and the tendency toward indifferent responding in all choice situations
can be described by modifications of the matching equations, which change the equations from lines into
power functions. These modem forms have been extraordinarily successful in describing behavior in
choice situations, and are the forms most likely to accurately describe human behavior in naturally
occurring environments.
Key words: choice behavior, applied science, mathematical theory, asymmetrical situations, natural

environments

Matching theory is a mathematical
theory of choice behavior. It is based on
laboratory experimentation, most of
which has involved nonhuman organ-
isms exhibiting well-defined behaviors in
controlled environments. Twenty years
after pigeons' keypecking was first found
to conform to the matching equation
(Herrnstein, 1961), it was noted in the
literature that matching theory was rel-
evant to the concerns ofapplied behavior
analysts (McDowell, 1981). Since then,
several authors have commented on the
importance of matching theory for un-
derstanding human behavior, and for de-
veloping effective therapeutic interven-
tions (Epling & Pierce, 1983; McDowell,
1982; Myerson & Hale, 1984). In spite
ofthese efforts, matching theory remains
relatively unknown among applied be-
havior analysts.
The purpose of the present article is to

continue an earlier attempt to explain
matching theory to applied scientists. In
a previous article (McDowell, 1988) the
rudiments of the theory were presented,
its conceptual significance was discussed,
and laboratory research supporting the
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theory was reviewed. Applied research
bearing on matching theory's validity in
natural human environments was also
reviewed, as were therapeutic applica-
tions of the theory. In the earlier article,
the theory was presented in a form that
was current in the early 1 970s. But in the
past 20 or so years a large amount of
research had led to important changes in
matching theory. Two of these changes
are the topic ofthe present article. Before
discussing them, the basics of matching
theory will be reviewed.

REVIEW OF MATCHING
THEORY

When an individual is able to exhibit
a variety ofbehaviors and in fact exhibits
one behavior to the exclusion ofthe oth-
ers, then the individual is said to have
made a choice. As an example, consider
an accountant who may read a newspaper
instead of working on a client's tax re-
turn, or instead of preparing a presenta-
tion for an upcoming meeting, or instead
ofphoning the Internal Revenue Service
to check on the progress of an audit.
Choice is usually continuous, which

means that at any moment an individ-
ual may stop engaging in a particular be-
havior and start engaging in some other
behavior. For example, at any time the
accountant may put down the news-
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paper and start working on the client's
taxes; while working on the taxes, the
accountant may at any moment return to
reading the newspaper, and so on. In
addition, there are often occasional
consequences for engaging in the various
behaviors. For example, one of the ac-
countant's partners may make a critical
remark about reading the paper on com-
pany time. The interesting problem is to
determine how the accountant's distri-
bution of behavior across the available
response alternatives is governed.
Choice behavior is studied in the lab-

oratory by means of concurrent sched-
ules of reinforcement. A concurrent
schedule consists of two or more indi-
vidual, or component, schedules that are
available to the organism at the same
time. This type of schedule can be ar-
ranged in a pigeon chamber that has two
keys to peck. The pigeon's pecking on one
key is analogous to the accountant read-
ing the newspaper, and its pecking on the
other key can be considered analogous to
the accountant doing anything other than
reading the newspaper. Choice is contin-
uous in this laboratory procedure be-
cause at any moment the pigeon may stop
pecking one key and start pecking the
other. Occasional consequences for peck-
ing each key can be arranged by program-
ming intermittent schedules ofreinforce-
ment on each key. Again, the interesting
problem is to determine how the pigeon's
distribution ofbehavior across the avail-
able response alternatives is governed.

Basic research has answered the ques-
tion ofhow choice behavior is governed.
Organisms distribute their behavior
among concurrently available response
alternatives in the same proportion that
reinforcements are distributed among the
alternatives. Take the simplest case of a
pigeon working on a two-key concurrent
schedule. If R, represents the rate of
pecking the first key, R2 represents the
rate ofpecking the second key, and r1 and
r2 represent the rates of reinforcement
obtained from pecking each key, then this
answer can be written algebraically as

R,I- r(1)
RI+R2 r, +r2

Equation 1 is known as the matching
equation, and is so called because the
proportion of responses on a given alter-
native (the left side of the equation)
equals, or matches, the proportion of re-
inforcements obtained from that alter-
native (the right side of the equation).
This relationship also holds iftime spent
responding, rather than response rate, is
measured. If T, represents the time spent
responding on the first alternative and T2
represents the time spent responding on
the second alternative, then the matching
equation can be written as

T1+ r1±. (2)
T, + T2 r, + r2

Equation 2 is sometimes said to represent
time-allocation matching (Baum &
Rachlin, 1969). Time-allocation match-
ing greatly enhances the applicability of
the account because, unlike brief key
pecks and lever presses, many behaviors
extend in time and cannot be partitioned
easily into units for counting (which is
necessary in order to determine their rate
of occurrence). Reading the newspaper
and working on tax returns are examples
of behaviors that extend in time.

Equations 1 and 2 constitute a deter-
ministic, mathematical account ofchoice
behavior. The accuracy offorms ofthese
equations has been confirmed exten-
sively in laboratory experiments with pi-
geons, rats, crows, cows, squirrel mon-
keys, and humans, whose key pecking,
lever pressing, treadle pressing, chain
pulling, standing, talking, and macrosac-
cadic eye movements were reinforced
with food, water, intracranial brain stim-
ulation, shock avoidance, money, op-
portunities to listen to comedy records,
or opportunities to view sexually inter-
esting slides (McDowell, 1988). Forms of
Equations 1 and 2 typically accounted for
about 90% of the data variance in ex-
periments like these (McDowell, 1988).
In other words, the equations have been
found to be valid and precise descriptions
of choice behavior.

In a very influential paper, Hermstein
(1970) extended the applicability of the
matching equations, and in so doing
greatly increased their significance. He
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argued that all behavior could be con-
ceptualized as choice behavior. Obvious-
ly, an organism can exhibit a variety of
behaviors in any environment. Even in
a one-key experimental chamber, a pi-
geon is not limited to key pecking; it may
also preen, flap its wings, roost, and so
on. It will be helpful to consider this one-
key chamber more carefully. The rate of
pecking the key can be represented by R,
and the aggregate rate of exhibiting be-
haviors other than pecking the key can
be represented by Re. In other words, if
we are interested in key pecking as the
target behavior, then Re represents the
aggregate rate of all "extraneous," or
nontarget, behavior. The rate of rein-
forcement obtained for pecking the key
can be represented by r, and the aggregate
rate ofreinforcement obtained for exhib-
iting the extraneous behaviors can be
represented by re. Equation 1, the match-
ing equation, can be written for a one-
key environment conceptualized in this
way as

R r (3)
R + Re r + re

The two alternatives are pecking the key,
and doing anything other than peck the
key. Herrnstein (1970) assumed that the
total rate ofbehavior, which includes the
rate of key pecking and the rate of ex-
hibiting all extraneous behaviors, was
constant. In other words, he assumed that
R + Re = k, where k is a constant. If k
is substituted forR + Re, the above equa-
tion becomes

R r
k r + re'

and solving for R, the rate ofkey pecking,
yields

R kr (3)
r + re

Equation 3 expresses the absolute rate,
R, of the target behavior as a hyperbolic
function of the absolute rate, r, of con-
tingent reinforcement obtained for ex-
hibiting the target behavior. This equa-
tion, which has been referred to as
Herrnstein's hyperbola, is concave

downward in the first quadrant, ap-
proaches k asymptotically, and ap-
proaches k more quickly the smaller the
value of re (McDowell, 1988). Equation
3 has been referred to as a quantitative
statement of the law of effect (e.g., de
Villiers, 1977) because it expresses quan-
titatively the relationship between be-
havior (R) and reinforcement (r).

Just as Equation 3 was developed from
Equation 1, a time-allocation form can
be developed from Equation 2. The steps
in the calculation are the same. The re-
sult is

T kr (4)
r + re'

where T represents the time spent en-
gaging in the target behavior, and k = T
+ Te, where Te represents the aggregate
amount of time spent engaging in all ex-
traneous (i.e., nontarget) behaviors.

Equations 3 and 4 take the straight-
forward mathematical descriptions of
data embodied in Equations 1 and 2 and
turn them into a theory. The theory de-
pends on conceptualizing all behavior as
choice behavior to which the matching
equations (Equations 1 and 2) apply, and
on assuming that the total rate ofbehav-
ior, R + Re is constant.

Equations 3 and 4 are especially im-
portant because they entail a novel un-
derstanding of the effects of reinforce-
ment on behavior. The equations assert
that behavior is determined not only by
contingent reinforcement (r), but also by
all other reinforcement provided by the
environment (re). For example, Equation
3 asserts that the rate ofa target behavior
(R) will change when re changes, even
though the rate of reinforcement contin-
gent on the target behavior (r) has not
changed. More specifically, when re in-
creases (i.e., when extraneous reinforce-
ment is added to the environment),
Equation 3 requires the rate of the target
behavior to decrease, and when re de-
creases (i.e., when extraneous reinforce-
ment is withdrawn from the environ-
ment), Equation 3 requires the rate ofthe
target behavior to increase. According to
matching theory, the effect of contingent
reinforcement can be understood only in
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terms of the overall context of reinforce-
ment in which it occurs.
The hyperbolic form ofEquation 3 has

been extensively confirmed in laboratory
experiments with human and nonhuman
subjects (McDowell, 1988). The equation
typically accounts for a large percentage
of the variance in the response rate data.
The interpretation of re as the rate of ex-
traneous reinforcement has also been
confirmed. That is, experiments have
shown that when the rate of reinforce-
ment contingent on a target behavior is
held constant, the rate of the target be-
havior varies with the rate of extraneous
reinforcement in the manner required by
Equation 3 (McDowell, 1988).
As discussed in detail in the earlier ar-

ticle (McDowell, 1988), available evi-
dence indicates that matching theory
holds in natural human environments as
well as in the laboratory, and that it has
useful therapeutic applications.
Having reviewed the basics of match-

ing theory, it is now possible to under-
stand modem developments in the the-
ory. Two such developments will be
discussed here. The first deals with the
mathematical description of behavior in
asymmetrical choice situations, and the
second deals with the mathematical de-
scription of indifferent responding.

ASYMMETRY
The data that originally led to the

matching equation (Equation 1) were ob-
tained from pigeons working on two-key
concurrent schedules in standard exper-
imental chambers (Herrnstein, 1961).
The two response alternatives were iden-
tical. One key was located on the left side
ofthe chamber, the other was located on
the right side. Reinforcements arranged
for responding on the two keys were also
the same. Each reinforcement, whether
for a peck on the left key or for a peck
on the right key, consisted of a brief pre-
sentation of a hopper filled with grain.
This type of concurrent schedule could
be said to arrange a choice situation that
is symmetrical across response alterna-
tives. A symmetrical choice situation is
one where the behaviors required on each

alternative are the same, and the rein-
forcements obtained for responding on
each alternative are the same.
What happens when a choice situation

is asymmetrical? Asymmetrical choice
situations can be arranged by, for ex-
ample, making one key harder to peck
than the other (a quantitative difference
between the two response alternatives),
or requiring key pecking as one of the
response alternatives and treadle press-
ing as the other (a qualitative difference).
Asymmetrical choice situations can also
be arranged by manipulating the param-
eters of reinforcement. For example, the
food hopper could be presented for a
longer period of time on one response
alternative than on the other (a quanti-
tative difference between reinforcers), or
buckwheat could be used as the reinfor-
cer on one response alternative and wheat
could be used as the reinforcer on the
other (a qualitative difference).

It seems likely that asymmetrical choice
situations would be the rule in natural
human environments. In the case of the
accountant, for example, reading a news-
paper and working on a tax return are
qualitatively different behaviors. Another
example is a classroom where correct
arithmetic performance is reinforced with
tokens and disruptive behavior is inad-
vertently reinforced with attention from
the teacher. In this concurrent schedule
the behaviors differ qualitatively and the
reinforcers differ qualitatively.

Distortion ofMatching Produced by
Violations ofSymmetry
Research has shown that violations of

symmetry distort the matching relation-
ship. Fortunately, the distortion can be
described mathematically and, as will be
explained later, when this description is
superimposed on Equations 1 and 2,
highly accurate accounts of the data are
again obtained.
The top panel of Figure 1 shows how

the distortion produced by violations of
symmetry appears in data from concur-
rent schedules. The response proportion,
which is the left side of Equation 1, is
plotted along the y axis, and the rein-
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forcement proportion, which is the right
side of Equation 1, is plotted along the x
axis. The heavy line, which is a plot of
Equation 1, represents perfect matching.
Notice that Equation 1 is a simple math-
ematical form, namely, a straight line with
y intercept equal to zero and slope equal
to unity. In other words, Equation 1 is a
specific instance of the general line, y =
mx + c, where, in this instance, y rep-
resents the response proportion, x rep-
resents the reinforcement proportion, c
= 0, and m = 1. When choice is sym-
metrical, plots ofobserved response pro-
portions against obtained reinforcement
proportions fall along the straight match-
ing line. When symmetry is violated, the
plots bow away from the matching line
(Baum, 1974), as indicated by the curves
in the top panel of Figure 1.

Violations ofsymmetry are said to bias
responding. If the data fall along an up-
ward-bowing curve (using the coordi-
nates of the top panel of Figure 1), then
responding is said to be biased in favor
of the first response alternative. Match-
ing requires the proportion of responses
to equal the proportion of reinforce-
ments: if a pigeon obtains 25% of its re-
inforcements from the first alternative,
then it must allocate 25% of its pecks to
that alternative. But if responding is
biased in favor ofthe first alternative, the
bird will allocate more than 25% of its
pecks to that alternative, as shown by the
upward-bowing curve. The downward-
bowing curve in the top panel of Figure
1 shows where the data would fall ifthere
were a smaller amount of bias and if it
were in favor of the second alternative.
To say that responding is biased in favor
of a particular alternative is to say that
regardless of the reinforcement propor-
tion obtained from that alternative (with
the restriction that it be greater than zero
and less than unity), more behavior is
allocated to it, and less behavior is al-
located to the other alternative, than re-
quired by matching. As the bias in favor
of one alternative increases, the bowing
of the data away from the matching line
becomes more extreme.
The downward-bowing curve in the top

panel of Figure 1 might represent data
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Figure 1. Bias, as it appears in three coordinate
systems. In the top panel, response proportions are
plotted against reinforcement proportions; in the
middle panel, response rate ratios are plotted against
reinforcement rate ratios; in the bottom panel, com-
mon logarithms of response rate ratios are plotted
against common logarithms of reinforcement rate
ratios. The heavy diagonal in all three panels rep-
resents perfect matching. In proportion coordinates
(top panel), biased responding appears in the form
of curves that bow away from the matching diag-
onal. In ratio coordinates (middle panel), biased
responding appears in the form oflines with varying
slopes and constant intercepts equal to zero. In log-
arithmic coordinates (bottom panel), biased re-
sponding appears in the form of lines with varying
intercepts and constant slopes equal to unity.
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from a choice situation where the first
key is harder to peck than the second.
This would produce biased responding in
favor of the second key across the entire
range of reinforcement proportions. The
response portion on the first key would
still vary with the reinforcement propor-
tion obtained from that key, but it would
vary more sluggishly, as the sagging curve
indicates. The upward-bowing curve in
the top panel of Figure 1 might represent
data from a choice situation where the
duration of the hopper presentation is
longer on the first response alternative
than on the second. This would produce
biased responding in favor of the first
alternative across the entire range of re-
inforcement proportions.

Mathematical Description of
Biased Responding
The mathematical description of the

distortion produced by violations of
symmetry is problematic. Exactly what
kind of curve is this? Rather than at-
tempting to select some arbitrary func-
tion form, matching researchers have
solved the problem ofdescribing the dis-
tortion by reexamining the matching
equations themselves (Baum, 1974;
Staddon, 1968). It turns out that Equa-
tion 1, which is reproduced here for con-
venience,

RI r, (1)
RI + R2 rI+ r2

can be expressed in a form that permits
a straightforward description of the dis-
tortion produced by violations of sym-
metry.

It is well known that if a legitimate
operation is performed on one side of an
equation, the same operation must be
performed on the other side of the equa-
tion in order to preserve the equality.
Hence, we may take the reciprocal ofone
side ofEquation 1, provided that we also
take the reciprocal of the other side:

RI + R2 r_ + r2
RI r,

Separating the terms on each side of this
expression yields

RI R2 r, + r2
R1 R, r, r,

Notice that the first term on the left side
of this equation and the first term on the
right side are both equal to unity:

1+ 2= 1+ r2
RI r,

Subtracting unity from both sides of the
equation leaves

R2 r2
RI r,'

and taking the reciprocal of both sides
gives

RI r,
R2 r2

Equation 5 expresses the matching rela-
tionship in terms of ratios of response
and reinforcement rates, whereas Equa-
tion 1 expresses it in terms ofproportions
of responses and reinforcements. These
two methods of expressing the matching
relationship are equivalent, as the above
calculation demonstrates. That is, if
Equation 1 is true, then Equation 5 must
also be true. Notice that, like Equation
1, Equation 5 is a straight line, y = mx
+ c, with y intercept (c) equal to zero and
slope (m) equal to unity. The difference
is that for Equation 1, y and x represent
proportions of responses and reinforce-
ments, whereas for Equation 5 they rep-
resent ratios of response and reinforce-
ment rates.
The middle panel of Figure 1 shows

the matching relationship plotted in terms
of response and reinforcement rate ra-
tios. The heavy straight line is Equation
5, which can be referred to as the ratio
form of the matching equation. The ad-
vantage of using this form is that distor-
tions of the ratio form that are produced
by violations of symmetry tend to fall
along straight lines, rather than curved
lines, and this simplifies their mathe-
matical description. As illustrated in the
figure, when the matching relationship is
expressed in ratio form, the distorted re-
lationship remains a straight line with y
intercept equal to zero, but with slope not
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equal to unity. When bias is in favor of
the first alternative, the slope is greater
than unity, and when bias is in favor of
the second alternative, the slope is less
than unity (in the coordinates ofthe mid-
dle panel ofFigure 1). Hence, responding
in symmetrical choice situations, and in
all possible asymmetrical choice situa-
tions, can be described by the line

RI= b r, (6)
R2 r2

where b, which is the slope of the line,
can be referred to as the bias parameter.
If the choice situation is symmetrical, b
= 1, and perfect matching (Equation 5)
holds. If the choice situation is asym-
metrical, then the bias parameter takes
on some value other than unity.

Just as Equation 6 was obtained from
Equation 1, it is possible to obtain a time-
allocation form from Equation 2. The
steps in the calculation are the same. The
result is

T1 bl (7)
T2 r2

To understand Equations 6 and 7 fully,
it may be helpful to consider an example.
Suppose that a student's disruptive and
on-task behavior in a classroom are both
reinforced by attention from the teacher.
This is a concurrent schedule where one
alternative is disruptive behavior, the
other is on-task behavior, and respond-
ing on both alternatives is reinforced in-
termittently by attention from the teach-
er. Choice is asymmetrical in this case
because the two behaviors are different.
If strict matching held, the proportion of
time spent engaging in disruptive behav-
ior would equal the proportion of rein-
forcements obtained from disruptive be-
havior, and the proportion oftime spent
engaging in on-task behavior would equal
the proportion of reinforcements ob-
tained from on-task behavior (Equation
2). But suppose the ratio of the times
spent engaging in the two behaviors
(where the first alternative is disruptive
behavior) is plotted against the ratio of
reinforcement rates obtained for engag-
ing in the two behaviors, and the data
points are found to fall along a line with

y intercept equal to zero and slope greater
than one (similar to the steepest line in
the middle panel ofFigure 1). This would
mean that the student's responding was
governed by matching but was biased in
favor of the disruptive behavior. Fitting
a straight line to the data and obtaining
its slope would give an estimate of the
bias (i.e., the value of b). Bias in favor of
the disruptive behavior means, among
other things, that the student would spend
more time engaging in disruptive behav-
ior than in on-task behavior, all else being
equal.

Logarithmic Forms
Equations 6 and 7 represent a straight-

forward solution to the problem of de-
scribing the matching relationship dis-
torted by violations of symmetry. These
equations can also be expressed in loga-
rithmic forms, which are especially use-
ful. Before discussing these forms, some
of the properties of common logarithms
will be reviewed.
A common logarithm is an alternative

method of expressing a number. Every
number has a common logarithm. For
example, the common logarithms, or
common logs, of 1, 10, 100, and 1,000
are 0, 1, 2, and 3 respectively. The com-
mon logs ofevery number between 1 and
10 lie between 0 and 1; the common logs
of every number between 10 and 100 lie
between 1 and 2, and so on. The advan-
tage ofusing logarithms is that they sim-
plify arithmetic operations. Specifically,
logarithms change multiplication and di-
vision into addition and subtraction.
Consider the product, 10 x 100 =1 ,000.
This product can be expressed in loga-
rithms as the sum 1 + 2 = 3. That is, the
common log of 10 (1), plus the common
log of 100 (2), equals the common log of
1,000 (3). As this example illustrates,
numbers can be multiplied by adding
their logarithms and finding the number
that corresponds to the sum. Stated
another way, the logarithm of a product
is the sum of the logarithms of its sepa-
rate factors.
The exact relationship between a num-

ber, N, and its common logarithm, log
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N, is N = 1 01oN. This is the definition of
a logarithm and can be stated in words
as follows: the common logarithm ofany
number, N, is the power to which 10 must
be raised in order to obtain that number.
For example, 2 is the common log of 100
because 10 must be raised to the second
power to obtain 100. Similarly, 3 is the
common log of 1,000 because 10 must
be raised to the third power to obtain
1,000. The definition of common loga-
rithms is built into most hand-held cal-
culators. The "log" button applies the def-
inition to find the log of the number that
appears in the display, and the "l Ox" but-
ton applies the definition in the other di-
rection to find the number that corre-
sponds to the log that appears in the
display.
Taking the common logs ofboth sides

of Equation 6 gives

log(R±) = log (b!).

Notice that the right side of this expres-
sion is the logarithm of a product. We
have just seen that the logarithm of a
product is equal to the sum ot the loga-
rithms of its individual factors. Hence,
we can write this expression as

log() log + log(b). (8)

Equation 8 is the logarithmic form of
Equation 6. Like Equation 6 it is an in-
stance ofthe general straight line, y = mx
+ c. There are three differences between
the lines represented by Equations 8 and
6. First, in Equation 8, y and x represent
the logarithms of the response and re-
inforcement rate ratios, whereas in Equa-
tion 6, y and x represent the response and
reinforcement rate ratios themselves.
Second, the slope of Equation 8 is unity,
whereas the slope of Equation 6 is the
bias parameter, b. And third, the y in-
tercept of Equation 8 is the logarithm of
the bias parameter, whereas the y inter-
cept of Equation 6 is zero. To summarize,
Equation 8 has a constant slope equal to
unity, and describes bias by changes in
its y intercept, whereas Equation 6 has a
constant y intercept equal to zero, and
describes bias by changes in its slope.

Just as Equation 8 was obtained by tak-
ing the logarithms ofboth sides ofEqua-
tion 6, Equation 6 can be reobtained from
Equation 8 by reversing this process. Re-
versing the process means finding the
numbers to which the common loga-
rithms correspond. As already noted, a
common log and the number, N, to which
it corresponds are related by N = 10100;
hence, we must "exponentiate" in order
to obtain the number. That is, we must
raise 10 to a power equal to the common
log. If both sides of Equation 8 are ex-
ponentiated, we have

1 Olg(R1/R2) = 1 o1og(r1/r2)+1og(b)

The left side of this equation is equal to
R,/R2, but the exponent on the right is
the sum of two terms. The right side can
be simplified by recalling one ofthe rules
ofexponents, namely, that lOc+d= lOclOd.
This rule can be expressed in words as
follows: when multiplying numbers with
the same base (in this case, 10), add the
exponents. For example, 101+2 = 101102,
that is, 1,000(101+2) equals 10(10') times
100(102). Applying this rule to the above
expression produces

1 Ilog(RI/R2) = 1 log(rl/r2) 1 Olog(b)

The definition ofcommon logarithms al-
lows us to rewrite this as

R, r,--=b-,R2 r2

which is Equation 6. Hence, Equation 8
can be obtained by taking the logarithms
ofboth sides ofEquation 6, and Equation
6 can be obtained by exponentiating both
sides of Equation 8.
The bottom panel of Figure 1 illus-

trates the important features ofEquation
8. The logarithms of the response and
reinforcement rate ratios are plotted along
the y and x axes. The heavy straight line
represents perfect matching, that is, it is
a plot of Equation 8 with b = 1. If b =
1, then log(b) = 0; hence, when choice is
symmetrical, the y intercept of Equation
8 is zero. The upper line in the bottom
panel has a slope of 1 but a y intercept
greater than 0 (i.e., b > 1, and so bias
favors the first alternative), and the lower
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line has a slope of 1 but an intercept less
than 0 (i.e., b < 1, and so bias favors the
second alternative).
Equations 6 and 8 are different, but

equivalent, ways of describing behavior
in symmetrical and asymmetrical choice
situations. Just as a logarithmic form of
biased response-rate matching was ob-
tained from Equation 6, a logarithmic
form of biased time-allocation matching
can be obtained from Equation 7. The
utility of the logarithmic forms will be-
come clearer in our discussion ofanother
modern development in matching the-
ory, namely, the mathematical descrip-
tion of indifference.

INDIFFERENCE
Distortions of the matching relation-

ship that are produced by violations of
symmetry are, in a general sense, pre-
dictable. That is, ifthe reinforcers on the
two alternatives differ, or ifthe behaviors
required on the two alternatives differ,
then the expected distortion of the
matching relationship is very likely to ap-
pear. In addition, Equations 6 and 7 and
their logarithmic forms are very likely to
describe the distorted matching relation-
ship well. There is another kind of dis-
tortion of the matching relationship,
however, that is more problematic be-
cause it has no obvious explanation. It is
produced by the tendency of responding
to deviate from perfect matching in the
direction of indifference. This tendency
seems to occur to at least some degree in
most choice situations (Baum, 1979;
Myers & Myers, 1977; Wearden & Bur-
gess, 1982).

Deviationfrom Matching Produced by
Tendency Toward Indifference
The deviation of responding in the di-

rection ofindifference is illustrated in the
top panel of Figure 2. Response propor-
tions are plotted against reinforcement
proportions, and the heavy straight line
represents perfect matching, that is, it is
a plot ofEquation 1. Ifa pigeon allocated
half its pecks to the first alternative and
half its pecks to the second alternative
regardless ofthe proportion of reinforce-

ments obtained from each alternative,
then its response proportions would fall
along the broken horizontal line in the
top panel ofFigure 2, and it could be said
to be indifferent between the two re-
sponse alternatives. Indifference between
two alternatives means that the same
amount of behavior is allocated to each
alternative regardless of the conse-
quences.
The typical outcome of a concurrent-

schedule experiment is a slight deviation
from matching in the direction of indif-
ference. This is shown by the curve clos-
est to the matching diagonal in the top
panel of Figure 2. The other curve in the
panel shows a larger deviation from
matching in the direction of indifference.
Deviations like these are often said to
represent undermatching. Undermatch-
ing is responding that is not as extreme
as that required by matching. For ex-
ample, if 25% of the reinforcers are ob-
tained from the first alternative, then
matching requires 25% of the responses
to be allocated to that alternative. But if
there is a deviation in the direction of
indifference, more than 25% of the re-
sponses will be allocated to the first al-
ternative. Similarly, if 75% of the rein-
forcers are obtained on the first
alternative, then matching requires 75%
of the responses to be allocated to that
alternative. But if there is a deviation in
the direction ofindifference, less than 75%
of the responses will be allocated to the
first alternative. Undermatching refers to
behavior that tends toward indifference,
and so is not as extreme as that required
by matching.

Mathematical Description of
Undermatching
Unlike bias, the causes ofundermatch-

ing are unclear. Nevertheless, it is pos-
sible to describe this deviation mathe-
matically, and to incorporate it into the
matching equation. As in the case ofbias,
when data are plotted as response and
reinforcement proportions (top panel of
Figure 2), undermatching appears as a
curve of unknown form. When the data
are plotted as ratios of response and re-
inforcement rates (Equation 5), as in the
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Figure 2. Undermatching, as it appears in three
coordinate systems. In the top panel, response pro-
portions are plotted against reinforcement propor-
tions; in the middle panel, response rate ratios are
plotted against reinforcement rate ratios; in the bot-
tom panel, common logarithms of response rate
ratios are plotted against common logarithms of
reinforcement rate ratios. The heavy diagonal in all
three panels represents perfect matching. In pro-
portion coordinates (top panel), undermatching ap-
pears in the form of sigmoidal curves that deviate
from the matching diagonal in the direction of in-
difference. Indifferent responding is represented by
the dashed horizontal line. In ratio coordinates
(middle panel), undermatching appears in the form
of negatively accelerated curves that pass through
the origin. In logarithmic coordinates (bottom

middle panel of Figure 2, the deviation
is still a curve. The curves in this panel
are simpler than those in the top panel,
but their exact forms are still unknown.
The bottom panel ofFigure 2 shows how
the deviation appears when the data are
plotted as logarithms of response and re-
inforcement rate ratios. In these coordi-
nates, data that show undermatching tend
to fall along straight lines. The slopes of
these lines are less than unity, and the
slopes decrease as undermatching be-
comes more severe.

Because data that show undermatching
fall along straight lines in logarithmic co-
ordinates, it is relatively simple to de-
scribe undermatching mathematically. It
is only necessary to allow the slope of
Equation 8 to take on values less than
unity. Ifa represents the slope ofthe line,
then Equation 8 can be written

log(')- =a log + log(b). (9)

For the lines plotted in the bottom panel
ofFigure 2 there is no bias, which means
that b equals unity and log(b), the y in-
tercept of Equation 9, equals zero. For
the matching line (the heavy diagonal), a
= 1; for the other two lines, which rep-
resent data showing two different degrees
ofundermatching, a < 1. Thus, Equation
9 describes undermatching by letting a
vary below unity.

Equation 9 is the logarithmic form of
an equation that can describe perfect
matching (a = b = 1), biased matching
(b not equal to one), undermatching (a <
1), and any combination of biased
matching and undermatching. Estimates
of a and b for real data sets are typically
obtained by fitting a straight line to the
logarithms ofthe response and reinforce-
ment rate ratios using simple linear
regression techniques. The slope, a, ofthe
regression line gives the degree of un-
dermatching, and its intercept, log(b),
when converted into an ordinary num-

panel), undermatching appears in the form of lines
with varying slopes less than unity, and constant
intercepts equal to zero.
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ber, gives the extent and direction of the
bias.

Equation 9 was obtained from Equa-
tion 8, which was in turn obtained from
Equation 6. A time-allocation form can
be obtained from Equation 7 in the same
way. The result is

log()= a logQr) + log(b). ( 0)

Like Equation 9, Equation 10 describes
bias by changes in its intercept, and un-
dermatching by changes in its slope.

Power Function Forms

What are the equations ofwhich Equa-
tions 9 and 10 are the logarithmic forms?
We know that Equation 8 is the logarith-
mic form of Equation 6, and that a sim-
ilar logarithmic form can be obtained
from Equation 7. It was also shown that
Equation 6 could be obtained by expo-
nentiating both sides of Equation 8. In
the same way, Equation 7 can be ob-
tained by exponentiating both sides of its
logarithmic form. It follows that we can
find the equations of which Equations 9
and 10 are the logarithmic forms by ex-
ponentiating both sides of these equa-
tions. Beginning with Equation 9, expo-
nentiation produces

1 1og(RI/R2) = 1 a1og(r1/r2)+1og(b)

Applying the rule of exponents reviewed
earlier gives

l olog(R/R2) = Ialog(rl/r2) I Olog(b)

Evidently, the left side of this equation
is R,/R2, and the second factor on the
right is b. But the first factor on the right
is complicated by the appearance of the
additional factor, a, in the exponent. The
right side of this equation can be sim-
plified by recalling a second rule of ex-
ponents, namely,

(I0c)d = IOcd.

For example,
( 1 03)2 = 1 0(3)(2) = 1 06.

That is, 1,000 squared equals 106, or

1,000,000. Applying this rule to the above
expression allows us to write

I 0lg(RI/R2) = [ 1Olog(rl/r2)]a I Olog(b)

And, applying the definition ofcommon
logarithms, this expression becomes

R2 (r2) (11)

Equation 11 is the equation of which
Equation 9 is the logarithmic form. Of
course, the bias parameter, b, appears as
a factor on the right, just as it does in
Equation 6. The slope, a, of the logarith-
mic form appears in Equation 11 as an
exponent on the reinforcement rate ratio.
Evidently, Equation 11 describes bias by
allowing the factor, b, to vary above and
below unity, and describes undermatch-
ing by allowing the exponent, a, to vary
below unity.
Equation 11 is a specific instance of a

general form known as a power function.
The general power function is written y
= cx", where y and x are the dependent
and independent variables, d is an ex-
ponent on the independent variable, and
c is a factor multiplying the exponen-
tiated independent variable. Just as
Equation 1 1 was obtained from Equation
9, a time-allocation form can be obtained
in the same way from Equation 10. The
result is the power function,

T2 (r2) (12)
Equations 11 and 12 are the modem

versions of the original matching equa-
tions (Equations 1 and 2). They can de-
scribe perfect matching, and any degree
and combination of bias and under-
matching. Their logarithmic forms
(Equations 9 and 10) are used to obtain
estimates of the factor, b, and the expo-
nent, a, from real data sets. As already
noted, the logarithmic forms are used for
this purpose because they are straight
lines, and so can be fitted to the loga-
rithms ofthe response rate and reinforce-
ment rate ratios using simple linear
regression techniques.
Modem discussions of matching in
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multialternative environments usually
refer to Equations 11 and 12, rather than
to their logarithmic equivalents, because
the former equations are free of non-
arithmetic transformations of the data.
Nevertheless, the logarithmic forms are
essential when it becomes necessary to
estimate a and b from real data sets.

APPLIED RELEVANCE OF
BIAS AND UNDERMATCHING
Like many other aspects of matching

theory (McDowell, 1988), bias and un-
dermatching are important for applied
work. Because these phenomena are reg-
ularly observed in laboratory environ-
ments, it is reasonable to suppose that
they will also be observed in natural hu-
man environments. Obviously, knowl-
edge of bias and undermatching, and of
their mathematical description, will en-
able applied scientists to understand and
deal effectively with the distortions ofthe
matching relationship that are likely to
be found in naturalistic settings.
The phenomenon of bias has special

relevance to applied work. As suggested
earlier, bias results from differences in
reinforcer and response values. That is,
some reinforcers are more highly valued
than others, some behaviors are more
highly valued than others, and these dif-
ferences give rise to biased responding.
Matching theory's mathematical treat-
ment ofbias permits differences in value
to be studied quantitatively because the
bias parameter in Equations 11 and 12
can be considered to be the ratio of the
values ofdifferent reinforcers or different
behaviors (McDowell, 1987). This ap-
plication of matching theory has been
discussed in a variety of theoretical con-
texts (e.g., McDowell, 1987) and has been
carried out in the basic laboratory (Cliffe
& Parry, 1980; Miller, 1976). For ex-
ample, Cliffe and Parry (1980) studied
the lever pressing of a male sex offender.
The subject worked on concurrent sched-
ules of reinforcement, where reinforce-
ment consisted of opportunities to ob-
serve sexually arousing slides of adult
females, adult males, or young girls.
Equation 11 was found to govern the sub-

ject's behavior, and different pairs of
reinforcers produced different degrees of
bias. Cliffe and Parry used the empiri-
cally obtained bias parameters to calcu-
late relative measures ofthe values ofthe
three reinforcing stimuli. In the same way,
relative measures of different reinforcers
and different behaviors can be obtained
in natural environments, assuming that
Equations 11 and 12 hold in these en-
vironments. Such measures would an-
swer important questions such as wheth-
er one type of reinforcer for a particular
individual (e.g., tokens) is more powerful
than another (e.g., praise), and by how
much.

CONCLUSION
Equations 11 and 12 are the equations

that have been so successful in describing
data from concurrent schedules (Mc-
Dowell, 1988). The parameter-free sim-
plicity ofthe original matching equations
is lost in these modem forms, but their
advantage is an extraordinarily wide
range of applicability (Baum, 1979;
McDowell, 1988; Wearden & Burgess,
1982). The equations constitute a deter-
ministic, mathematical account ofchoice
behavior that is highly accurate. There is
no doubt that this is a remarkable
achievement for basic behavior analysis.
As mentioned earlier, biased respond-

ing is not generally considered a threat
to matching because many of the con-
ditions that produce it are known (Baum,
1974). Undermatching, on the other
hand, is more problematic, because its
cause is unknown. A small degree of un-
dermatching is frequently observed in re-
sponse rate data from concurrent sched-
ules. Undermatching may also be
common when time allocation is mea-
sured, although this is a matter ofdispute
(Baum, 1979, 1983; Mullins, Agunwam-
ba, & Donohoe, 1982; Wearden & Bur-
gess, 1982).
Although Equations 11 and 12 are

known to describe the choice behavior of
many species, including humans, in the
laboratory (McDowell, 1988), it is not
known whether these equations describe
human behavior in natural environ-
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ments. Available data indicate that the
single alternative form, Equation 3, holds
in natural human environments (Mc-
Dowell, 1988), and it seems reasonable
to suppose that Equations 11 and 12 also
hold. Nevertheless, research is needed in
this area. Besides testing the validity of
Equations 11 and 12, the objectives of
such work include determining the extent
of undermatching in natural environ-
ments and, as noted earlier, studying how
different behaviors and different reinfor-
cers affect bias. Martens & Houk (1989)
have developed experimental procedures
that may be generally useful in this type
of naturalistic research.
The developments discussed in this ar-

ticle bring the multialternative forms of
matching theory up to date. But there
have also been modern developments in
the single alternative forms (Equations 3
and 4), including serious challenges to the
general validity of matching theory (e.g.,
McDowell & Wood, 1984, 1985). So far,
the theory has withstood these challenges
(McDowell, 1986), but empirical and
mathematical work on competing theo-
ries continues (e.g., Killeen, 1982;
McDowell & Wixted, 1988). The next
few years should be an interesting time
for matching theory, and for mathemat-
ical accounts ofbehavior in general. Ap-
plied workers may benefit from keeping
abreast of developments in this area of
basic research.
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