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Abstract
In this study, our purpose was to improve the performance of our mass detection system by using a
new dual system approach which combines a computer-added detection (CAD) system optimized
with “average” masses with another CAD system optimized with “subtle” masses. The two single
CAD systems have similar image processing steps, which include prescreening, object segmentation,
morphological and texture feature extraction, and false positive (FP) reduction by rule-based and
linear discriminant analysis (LDA) classifiers. A feed-forward backpropagation artificial neural
network was trained to merge the scores from the LDA classifiers in the two single CAD systems
and differentiate true masses from normal tissue. For an unknown test mammogram, the two single
CAD systems are applied to the image in parallel to detect suspicious objects. A total of three data
sets were used for training and testing the systems. The first data set of 230 current mammograms,
referred to as the average mass set, was collected from 115 patients. We also collected 264
mammograms, referred to as the subtle mass set, which were one to two years prior to the current
exam from these patients. Both the average and the subtle mass sets were partitioned into two
independent data sets in a cross validation training and testing scheme. A third data set containing
65 cases with 260 normal mammograms was used to estimate the FP marker rates during testing.
When the single CAD system trained on the average mass set was applied to the test set with average
masses, the FP marker rates were 2.2, 1.8, and 1.5 per image at the case-based sensitivities of 90%,
85%, and 80%, respectively. With the dual CAD system, the FP marker rates were reduced to 1.2,
0.9, and 0.7 per image, respectively, at the same case-based sensitivities. Statistically significant (p
< 0.05) improvements on the free response receiver operating characteristic curves were observed
when the dual system and the single system were compared using the test sets with either average
masses or subtle masses.
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I. INTRODUCTION
Breast cancer is one of the leading causes of cancer mortality among women.1 It has been
reported that early diagnosis and treatment can significantly improve the chance of survival
for patients with breast cancer.2–4 At present, the most successful method for the early detection
of breast cancer is screening mammography.5 Various methods are being developed to improve
the accuracy of breast cancer detection. Double reading by radiologists can reduce the miss
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rate of radiographic reading. However, double reading will increase the cost of mammographic
screening. An alternative method is to use a trained computer-aided detection (CAD) system
as a second reader.6,7 Recent clinical studies have shown that CAD systems are helpful for
increasing radiologists’ accuracy in detecting breast cancers.8–13

A large volume of literature has been published in the CAD area. CAD systems for
mammography generally consist of two subsystems: one is a mass detection system and the
other is a microcalcification detection system. Detection of masses on mammograms is often
more challenging than detection of microcalcifications. The mass detection systems to-date
have employed a single-system approach using various techniques for prescreening of mass
candidates and classification of true and false positives.14–24 Our laboratory incorporated two-
view mammographic information for improved differentiation of true masses and false
positives and obtained promising preliminary results.22 However, development of new
methods to improve the performance of mass detection systems remains an important area of
CAD research.

The CAD systems developed so far have mostly used masses seen on current mammograms
(i.e., the mammograms on which the masses were detected by radiologists) for training. An
important purpose of a CAD system is that it is used as a second reader to alert radiologists to
subtle cancers that may be overlooked. To study the ability of a CAD system in detecting subtle
cancers that are likely to be missed by radiologists, one way is to evaluate its accuracy in
detecting missed cancers on prior mammograms (i.e., the mammograms in previous
examinations on which the mass or cancer can be seen retrospectively but was considered
negative or benign at the time of the examination). Some researchers have investigated the
performance change of CAD systems when using prior mammograms as input. In our study
of mass detection on prior mammograms,25 we obtained a case-based sensitivity of 74%
(20/27) of the malignant masses with 2.2 false positives (FPs) per image. te Brake et al.26

reported that their CAD system has a case-based sensitivity of 34% (22/65) of the cancers
which have the appearance of masses or stellate lesions in the prior examinations with 1 FP
per image. A commercial system (R2 ImageChecker) also reported detection of 42% (72/172)
of the cancers in the prior years which were considered worthy of call-back in retrospect by
expert mammographers with about 2 FP marks/case.27 Zheng et al.23 reported that their CAD
system trained with current mammograms could not perform optimally in prior mammograms
and vice versa; whereas the same system trained with prior mammograms can perform better
on detecting the masses on prior mammograms. Recently, an assessment study28 was
conducted to compare the performance of two commercial systems and one research CAD
system on current mammograms and prior mammograms. The results showed that the true
positive (TP) fraction for CAD systems on prior mammograms of 39 breasts with malignant
masses ranged from 15% to 26% with 0.28 to 0.41 FP marks/image. Although the detection
performance reported in the different studies vary, probably due to the differences in the data
set used, these studies indicate that the sensitivities of current CAD systems in detecting subtle
masses on prior mammograms are substantially lower than that obtained from detection on
current mammograms. The difficulty in recognizing the subtle and possibly different features
of the masses on priors compared to those of the masses on current mammograms may be one
of the factors that causes oversight for both radiologists and the CAD systems.

The goal of pattern recognition is to achieve the best possible classification performance in the
task at hand. Researchers had shown that, for a class of objects with a wide range of
characteristics, the classification performance can be improved by using combination of
classifiers whereby objects of certain characteristics are classified by one classifier using a set
of features and objects of different characteristics by another classification scheme based on
different features.29–35 The advantage of using combination of classifiers is that it may stabilize
the training of classifiers even with a relatively small sample size because each classifier does
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not have to accommodate a wide range of characteristics and features.36,37 These observations
motivated our interest in the design of a dual CAD system for mass detection.

Since the missed cancers on prior mammograms represent the difficult cases that are more
likely to be missed by radiologists if similar cancers occur on screening mammograms, it is
important to improve the sensitivity of the CAD system in detecting these cancers. On the other
hand, when a CAD system is applied to a new mammogram in clinical practice, it has to detect
breast lesions of all degrees of subtlety effectively. However, it is difficult to train a single
CAD system to provide optimal detection for all lesions over the entire spectrum of subtlety
because the classifiers have to make compromises to accommodate cancers of a wide range of
characteristics. Therefore, we have been exploring a new dual CAD system approach that
combines a CAD system trained with retrospectively seen masses on prior mammograms with
a CAD system trained with masses detected on current mammograms.38,39 In this paper, we
will describe the design of the dual CAD system and report our current results.

II. MATERIALS AND METHOD
A. Data sets

All mammograms in this study were collected from patient files in the Department of Radiology
at the University of Michigan with Institutional Review Board (IRB) approval. The
mammograms were digitized with a LUMISYS 85 laser film scanner with a pixel size of 50
μm × 50 μm and 4096 gray levels. The scanner was calibrated to have a linear relationship
between gray levels and optical densities (O.D.) from 0.1 to greater than 3 O.D. units. The
nominal O.D. range of the scanner is 0–4. The full resolution mammograms were first smoothed
with a 2 × 2 box filter and subsampled by a factor of 2, resulting in 100 μm × 100 μm images.
The images at a pixel size of 100 μm × 100 μm were used for the input of our CAD system.

We collected three data sets. The first data set contained 115 cases with confirmed masses.
Each case included the current mammograms that prompted the radiologist to work up the
mass. This is referred to as the “average” mass set. All of the cases in the average mass set had
two mammographic views: the craniocaudal view and the mediolateral oblique view or the
lateral view, thus yielding a total of 230 mammograms. There were 115 masses (67 malignant
masses and 48 benign masses) in this data set, of which 105 were biopsy-proven and 10 were
determined to be benign by long-term follow-up.

The second data set was composed of the prior mammograms dated one to two years earlier
than the mammograms of the same patients in the average mass set. Since the masses on prior
mammograms are on average subtler than those on current mammograms, this data set is
referred to as the “subtle” mass set. On 5 of the 115 patients, no mass or focal density could
be identified on either view of the prior mammograms. Therefore, the subtle mass set was
composed of 110 cases (62 malignant and 48 benign). For the purpose of training the subtle
mass detection system, the subtle masses do not have to be obtained from the same cases as
the average mass set but we used the available prior mammograms for these mass cases in our
database. Nineteen of the 110 cases had two prior mammogram examinations. Of the 129
examinations in the subtle mass set, 123 had two mammographic views and 6 had three views,
with a total of 264 mammograms. Many of the subtle masses on the prior mammograms could
be identified only as a focal density corresponding to the location of the subsequently detected
mass on the current mammograms. On 44 of the two-view prior mammograms, the mass
location was evident only on one view. Table I summarizes the information for the average
and subtle mass subsets.
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The third data set was composed of 260 normal bilateral two-view mammograms obtained
from 65 patients. No masses were evident on these mammograms upon review by the
experienced radiologist.

The two mass data sets were used to estimate the detection sensitivity and the normal data set
was used for estimating the FP marker rate. For the mass data sets, the true locations of the
masses were identified by an experienced MQSA radiologist using all available imaging and
clinical information. The radiologist also provided an estimate of the longest diameter of the
mass, descriptors of its margin and shape, a visibility rating, and an estimate of the breast
density in terms of BI-RADS category. Figure 1 shows the distributions of mass sizes, mass
shapes, mass margins, and their visibility on a 10-point rating scale with 1 representing the
most visible masses and 10 the most difficult case relative to the cases seen in their clinical
practice. The masses had a mean of 13.7 mm and a median of 12 mm in the average data set
and a mean of 9.7 mm and a median of 10 mm in the subtle data set. Figure 2 shows the breast
density for both the normal data set and the mass data sets. As can be seen from the distributions
of the mass characteristics, the average masses on the current mammograms and the subtle
masses on the priors had large overlap. Nevertheless, on average, the subtle masses were
smaller in size and less conspicuous on the mammograms.

B. Methods
In order to improve the sensitivity of detecting breast lesions of all degrees of subtlety, we
developed a new dual system approach which combines a system trained with average masses
with another system trained with subtle masses. When the trained dual system is applied to an
unknown mammogram, the two CAD systems are used in parallel to detect suspicious objects
on a single mammogram. No prior mammogram is needed. The additional FPs from the use
of the two systems are reduced by an information fusion stage. We will refer to the two systems
separately trained with the average masses and the subtle masses as “single” CAD systems in
the following discussions.

We randomly separated the mass data sets by case into two independent subsets. Both the
average and subtle mass subsets followed the same case grouping so that mammograms from
the same case would not be separated into the training subset for one single CAD system and
the test subset for the other single CAD system in a cross-validation cycle. Table I shows the
subsets of cases in the average and subtle mass data sets. Two-fold cross validation was used
for training and testing the algorithms. The training included selecting proper parameters for
each single CAD system and for information fusion. Once the training with one mass subset
was completed, the parameters were fixed for testing with the other mass subset. The training
and test mass subsets were switched and the training and test processes were repeated. The
CAD systems were trained with single mammograms. To maximize the number of training
images with masses, all images with a visible mass were included regardless of whether they
were a part of a two-view or three-view case when the subtle mass subset was used as a training
set. However, when the subtle mass subset was used as a test set, only two views were included
for each case because we used two-view mammograms to derive the case-based test
performance. For cases containing three views, we therefore included only two of the views
in testing. We also included cases with the mass visible on only one of the two views. After
the two-fold cross validation testing, the overall detection performance was evaluated by
combining the performances of the two test subsets. The trained algorithms with the fixed
parameters were also applied to the normal set of mammograms, which was not used during
training, to estimate the FP rate in screening mammograms.

1. Single CAD system overview—The major steps in the two single mass detection
systems are similar but the feature spaces and classifiers for FP reduction in each system were
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designed separately to suit the characteristics of average and subtle masses, respectively. The
two systems are therefore described together in the following but the differences will be pointed
out whenever applicable. Each single CAD system consists of four processing steps: (1)
prescreening of mass candidates, (2) segmentation of suspicious objects, (3) feature extraction
and analysis, and (4) FP reduction by classification of normal tissue structures and masses. The
block diagram for the detection scheme is shown in Fig. 3.

For the prescreening stage, we have developed a two-stage gradient field analysis method
which not only uses the shape information of masses on mammograms but also incorporates
the gray level information of the local object segmented by a region growing technique in the
second stage to refine the gradient field analysis.24,40 Locations of high radial gradient
convergence are labeled as mass candidates. After prescreening, the suspicious objects are
identified by using a two-stage segmentation method.41 First, the background-corrected ROI
is weighted by a two-dimensional Gaussian function with σ=256 pixels to enhance the central
region. Sobel filtering is then applied to the Gaussian-weighted ROI to generate another
enhanced image. Second, a k-means clustering using the pixel values from these two images
as features is used to segment the object. For each suspicious object, eleven morphological
features21 were extracted. Rule-based and linear discriminant classifiers were trained by using
the training data set only to remove the detected structures that were substantially different
from breast masses. For the system trained with average masses, global and local
multiresolution texture analysis42 were performed in each ROI by using the spatial gray level
dependence (SGLD) matrices. A total of 364 features were extracted from global texture
analysis. Local texture features were extracted from the local region containing the detected
object and the peripheral regions within each ROI. A total of 208 features were extracted for
local texture analysis. For the system trained with subtle masses, instead of the SGLD texture
features, gray level features and run length statistics analysis (RLS) texture features43 were
extracted inside and outside of each mass region on the original image and gradient field image.
The gray level features included the contrast of the object relative to the surrounding
background, the minimum and the maximum gray levels, and the characteristics derived from
the gray level histogram in the regions inside and outside of each object including skewness,
kurtosis, energy, and entropy. Five RLS texture features were extracted in both the horizontal
and vertical directions: short runs emphasis, long runs emphasis, gray level nonuniformity, run
length nonuniformity, and run percentage. A total of 66 features were extracted for the system
trained with subtle masses.

In order to obtain the best texture feature subset and also reduce the dimensionality of the
feature space to design an effective classifier, stepwise feature selection with linear
discriminant analysis (LDA) was applied to the training subset. The detailed procedure has
been described elsewhere.24,44,45 Briefly, at each step one feature was entered or removed
from the feature pool by analyzing its effect on the selection criterion, which was chosen to be
the Wilks’ lambda in this study. Since the appropriate values of thresholds for feature entry,
feature elimination, and tolerance of correlation for feature selection were unknown, we used
an automated simplex optimization method to search for the best combination of thresholds in
the parameter space. The simplex algorithm used a leave-one-case-out resampling method
within the training subset to select features and estimate the weights for the LDA classifier. To
have a figure-of-merit to guide feature selection, the test discriminant scores from the left-out
cases were analyzed using receiver operating characteristic (ROC) methodology.46 The
accuracy for classification of masses and FPs was evaluated as the area under the ROC curve,
Az. In this approach, feature selection was performed without the left-out case so that the test
performance would be less optimistically biased.47 However, the selected feature set in each
leave-one-case-out cycle could be slightly different because every cycle had one training case
different from the other cycles. In order to obtain a single trained classifier to apply to the
independent test subset, a final stepwise feature selection was performed with the best
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combination of thresholds, found in the simplex optimization procedure, on the entire training
subset to obtain the final set of features and estimate the weights of the LDA. Note that the
entire process of feature selection and classifier weight estimation was performed within the
training subset. The LDA classifier with the selected feature set was then fixed and applied to
the independent test subset. The training and testing processes were performed independently
for the two-fold cross-validation sets.

2. Training and test for dual system—The block diagram for the dual system is shown
in Fig. 4. During the training of the dual system, we used the current and prior mammograms
from the same patients. The current mammograms that contained the average masses were only
used to train the first single CAD system. The prior mammograms that contained the subtle
masses were only used to train the second single CAD system. The prescreening and the
segmentation steps in the two systems are identical. Since the morphological appearances of
average and subtle masses are different, the rules in the morphological rule-based FP
classification are trained differently for the two single CAD systems. During testing with an
independent mammogram, the dual system keeps all the suspicious objects that satisfy the FP
classification rules of either single CAD system and applies the LDA classifiers from both
single systems to each object. Each object thus has two LDA scores.

To merge the information from the two CAD systems, a fusion scheme was developed for our
dual system. In this study, a feed-forward backpropagation artificial neural network (BP-ANN)
was trained to classify the masses from normal tissues by combining the output information
from the two single CAD systems. The LDA classifiers from the two single CAD systems were
applied to each detected object. The two LDA discriminant scores for each object were used
as input to the BP-ANN. The BP-ANN had an input layer with two nodes, a hidden layer with
N nodes, and an output layer with one node. The nodes were interconnected by weights and
information propagated from one layer to the next through a log-sigmoidal activation function.
The learning of the ANN was a supervised process in which known training cases were input
to the ANN. The performance function for the network was the mean-squared error between
the network outputs and the target outputs. The weights of the network were adjusted iteratively
by a feedforward back-propagation procedure to minimize the error. Detailed description of
the backpropagation neural network can be found in the literature.48,49

To choose the number of hidden nodes (N) in the BP-ANN, we used a three-fold cross-
validation method within the training subset. We randomly separated the entire training subset
including all detected objects into three independent groups. The objects belonging to the same
case were separated into the same group. For a given N, three training cycles were performed,
in each of which two of the three groups were used to train the BP-ANN and the left-out group
was used to test its performance. The Az value obtained from the ANN output scores for the
test group was used as the performance index for that training cycle. The average of the Az
values from the three test groups represented the performance of the BP-ANN with N hidden
nodes. In our experiment, a BP-ANN with 3 hidden nodes provided the largest average Az value
and was therefore chosen. The weights of the chosen BP-ANN were retrained with the entire
training subset. The BP-ANN with the trained weights was used to merge the information from
the two single CAD systems.

To test the dual system, the two trained single CAD systems, one trained with the average mass
set and the other with the subtle mass set, were applied in parallel to each single “unknown”
mammogram in the independent test subset. No prior mammogram was needed during testing.

3. Evaluation methods—The detected individual objects were compared with the “truth”
ROI marked by the experienced radiologist, as described earlier. A detected object was scored
as TP if the overlap between the bounding box of the detected object and the bounding box of
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the true mass relative to the larger of the two bounding boxes was over 25%. Otherwise, it
would be scored as FP. The 25% threshold was selected as described in our previous study.21

The FP marker rate was estimated in two ways: one from detection on the same test subsets
with masses, the other from detection on the normal data set of negative mammograms. For
the latter, we applied the trained dual CAD system to the normal data set. The number of FP
marks produced by the CAD system was determined by counting the detected objects on the
normal cases. The mass detection sensitivity was determined by counting the detected masses
on the test mass subset. The detection performance of the CAD system was assessed by free
response ROC (FROC) analysis. A FROC curve was obtained by plotting the mass detection
sensitivity as a function of FP marks per image either obtained from the mass data subset or
the normal set at the corresponding decision threshold.

FROC curves were presented on a per-mammogram and a per-case basis. For image-based
FROC analysis, the mass on each mammogram was considered an independent true object.
For case-based FROC analysis, the same mass imaged on the two-view mammograms was
considered to be one true object and detection of either or both masses on the two views was
considered to be a TP detection.

Since we used two-fold cross validation method for training and testing, we obtained two test
FROC curves, one for each test subset, for each of the conditions (e.g., single CAD system
approach or dual system approach). To summarize the results for comparison, an average test
FROC curve was derived by averaging the FP rates at the same sensitivity along the FROC
curves of the two corresponding test subsets.

In order to compare the performance of the single CAD system and the dual CAD system, we
applied the alternative free-response ROC (AFROC) method and the jackknife free-response
ROC (JAFROC) method developed by Chakraborty et al.50,51 to the pairs of FROC curves. In
the AFROC method, the FROC data are first transformed by counting the number of false-
positive images (FPIs) instead of the FPs per image. The confidence rating of a FPI is
determined by the highest confidence FP decision on the image regardless of how many lower
confidence FP decisions are made on the same image. The ROCKIT curve fitting software and
statistical significance tests for ROC analysis developed by Metz et al.46 can then be used to
analyze the AFROC data.

III. RESULTS
Figure 5 shows an example of the two-dimensional feature space that was used as the input to
the BP-ANN being trained to merge the information from the two single CAD subsystems.
The two features are the output scores of the LDA classifiers trained with the average masses
and with the subtle masses. The correlation coefficients of the two features are 0.46 and 0.44
for each of the training subsets, respectively. The low correlation indicated that the two single
CAD systems extracted relatively independent features from the object. The Az values of the
chosen ANN were 0.92±0.01 and 0.87±0.01, respectively, as estimated by validation in the
training process. The ANN classifiers achieved Az values of 0.90±0.02 and 0.89±0.01 on the
two independent test subsets, respectively. Figure 6 shows the ROC curves for the two test
subsets.

In order to evaluate the effectiveness of our dual system approach, we compared its
performance on the test subsets containing average masses with two other single CAD systems:
the CAD system trained only on the average mass set and the CAD system trained on both the
average and the subtle mass sets. When a single CAD system was trained only with the average
masses, the number of selected features was 21 (14 global and 7 local) and 16 (10 global and
6 local) texture features for the two independent training subsets, respectively. When the CAD
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system was trained with both the average and the subtle masses, the number of selected features
was 17 (11 global and 6 local) and 18 (7 global and 11 local) texture features for the two
independent training subsets, respectively.

For the dual system, the single system trained with the average masses was the same as that
described earlier. For the single system trained with subtle masses, four (2 gray level and 2
RLS texture) and five (3 gray level and 2 RLS texture) features were selected for the two
independent training subsets, respectively.

The average test FROC curves of the dual CAD system on the test subsets with average masses
were compared to those of the single CAD systems in Fig. 7. The FP rates were estimated from
the mass data set. The dual CAD system achieved a case-based sensitivity of 80%, 85%, and
90% at 0.6, 0.8, and 1.0 FPs/image, respectively, compared with 1.3, 1.5, and 1.8 FPs/image
on the single CAD system trained with average masses alone. The performance of the single
CAD system trained with both the average masses and the subtle masses was comparable to
that trained with average masses alone, with FP rates of 1.4, 1.6, and 1.8 FPs/image at the same
sensitivities, respectively. Figure 8 shows the comparison of the three average test FROC
curves, similar to those shown in Fig. 7, except that the FP rates were estimated from the normal
data set. The FP rates at a few selected sensitivities for the dual and single CAD systems were
summarized in Table II.

In this study, we have 67 malignant cases in the average mass set. Figure 9 compares the average
test FROC curves of the single CAD system and the dual system for detection of malignant
masses. The result for the single CAD system trained with average masses was shown and the
FP rate was estimated from the mammograms without masses. In this case, the dual CAD
system achieved a case-based sensitivity of 80%, 85%, and 90% at 0.6, 0.9, and 1.2 FP marks/
image, respectively, compared with 1.1, 1.6, and 2.0 FP marks/image on the single CAD
system.

An important purpose of a CAD system is to serve as a second reader to alert radiologists to
subtle cancers that may be overlooked. Figures 10 and 11 compare the average FROC curves
of the single CAD system and the dual system for detection in the test subsets with subtle
masses. The TP rate in Fig. 10 was estimated by including both malignant and benign masses
and that in Fig. 11 was estimated from malignant masses only. The single CAD system trained
with average masses alone was used. The FP rates for both systems were estimated from the
mammograms without masses. The dual CAD system achieved a case-based sensitivity of 50%
at 0.7 FP marks/image for all masses and at 0.5 FP marks/image for malignant masses only,
compared with 1.4 FP marks/image for all masses and 1.1 FP marks/image for malignant
masses only using the single CAD system.

Table II summarizes the test results on the average and subtle mass sets for the dual system
and the single CAD system trained with average masses at different sensitivity levels. The FP
marker rates were estimated from the detection on the normal data set.

The comparison of the FROC curves for the dual CAD system and the single CAD system in
terms of the area under the fitted AFROC curve (A1) and the p values for both test subsets with
average masses was summarized in Table III. The differences between the A1 values for the
two systems were statistically significant (p<0.05). The fitted AFROC curves, however, did
not fit very well to the transformed AFROC data, as we discussed previously.24 For the
JAFROC method, Chakraborty et al. provided software to estimate the statistical significance
of the difference between two FROC curves. The comparison of the figure-of-merit (FOM)
and the p values was also summarized in Table III. The differences between the FOM of the
dual CAD system and that of the single CAD system for both test subsets were again statistically
significant (p<0.05).
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The comparison of A1, the FOM, and the p values for the dual system and the single system
trained with average masses in detecting subtle masses was summarized in Table IV. It was
found that the differences between the results of the dual CAD system and those of the single
CAD system on the two test subsets containing subtle masses were statistically significant by
both the JAFROC and the AFROC methods.

IV. DISCUSSION
The masses on prior mammograms are more subtle and more difficult to detect than the masses
on current mammograms. In this study, we developed a dual CAD system, which combines a
system trained with masses on prior mammograms and a system trained with masses detected
on current mammograms. We have demonstrated that this dual system can increase the
accuracy of detecting both average masses and subtle masses. The comparisons of the dual
system with that of the single CAD system trained with average masses alone and that of the
single CAD system trained with both average and subtle masses (Fig. 7) indicate that the gain
in the detection accuracy of the dual system could not be achieved by simply using a larger
training set with both average and subtle masses. In fact, it is interesting to note that the
performance of the single CAD system trained with both the average and the subtle masses
appeared to be degraded slightly, in comparison with the single system trained with average
masses alone, when it was applied to the test set of average masses. The decreased performance
may reflect the compromise made when the single CAD system was trained to accommodate
a wide range of lesion characteristics. Thus, the dual system approach may have improved its
performance through other factors, including the flexibility in using different feature spaces
and training the parameters for each type of masses and the information fusion combining the
two single CAD systems effectively.

For the comparison of the different systems, we analyzed the false negatives (FNs) of the single
CAD systems and the dual CAD system when the test subsets with average masses were used.
It was found that the FN rates of the single CAD system trained with average masses, the single
CAD system trained with subtle masses, and the dual system were 23.9% (55/230), 28.3%
(65/230), and 16.5% (38/230), respectively, after FP reduction by the morphological LDA
classifier in each system. Twenty-nine masses were missed by both of the single systems. By
using the dual system, 53 masses that were FNs for either single system could be detected.
However, the masses that were missed by both of the single CAD systems could not be
recovered by the dual CAD system.

Our motivation of this study is to improve the performance of a CAD system for mass detection.
A CAD detection system is generally intended for use in screening mammography. At the
screening stage, all lesions of concern should be pointed out to radiologists so that the
radiologists can judge if a recall is warranted. If a detection system is trained to mark only the
malignant lesions, it may be attempting to play the role of a triage system (alerting radiologists
to work up only “malignant” cases) rather than that of a second reader. Furthermore, since
computerized lesion detection or characterization on mammograms is not 100% sensitive, it
will be confusing to the radiologists whether an unmarked suspicious lesion is missed or it is
considered benign by the computer. We believe that computer-aided diagnosis (CADx) may
be used in different ways in conjunction with a CAD detection system, for example, the
likelihood of malignancy may be estimated by the CADx system and displayed for every
detected lesion, and/or a CADx system may be used during diagnostic workup. Either way the
CAD system will first alert radiologists to all masses, leaving the assessment of malignancy
or benignity to a second stage and with the radiologist being the primary decision maker. The
training set thus included both malignant and benign masses.
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For a CAD system, its performance for detecting malignant masses is more important than its
performance for detecting all masses. The FROC curves for detection of malignant masses on
the average data set and the subtle data set, shown in Figs. 9 and 11, respectively, indicated
that the dual system could also achieve an improvement in the detection performance over that
of the single system. The differences in the A1 and the FOM for the detection of malignant
cases in the average and subtle mass test subsets were statistically significant, as shown in
Tables III and IV, respectively.

In screening mammography, the cancer rate is 3–5 per 1000. Most of the mammograms are
normal. Therefore, some CAD researchers and users estimate the FP rate using normal
mammograms52–54 because it reflects how the CAD system performs in terms of specificity
and whether the CAD system may cause extra efforts for radiologists to double check the
marked locations or unnecessary recalls in a screening setting. Furthermore, for CAD systems
that set a maximum number of detected objects at the output, estimating the number of FPs
using images with lesions can potentially lead to an optimistic bias for the FROC curve because
one of the detected objects will likely be the true lesion. The FP rate can thus be underestimated
by as much as 1 per image. In addition, the JAFROC analysis requires that the FP rates be
estimated on normal images. We therefore reported the FP rates of our CAD systems on both
mammograms with masses and without masses to facilitate comparison with other CAD
systems in case investigators may evaluate their FP rates in either way.

In this study, we evaluated the performance of the trained CAD systems with an independent
test set using the two-fold cross validation method. Although the selection of parameters and
features was performed using the training set, we had full knowledge of the performance for
the test set so that the selections could be optimistically biased. True independent testing will
have to be performed with unknown cases that have never been used for testing the CAD system
before, such as those in a prospective clinical trial. However, this test step is beyond the scope
of our current developmental process. Since we used the same cross-validation method for
evaluation of the dual system and the single CAD systems, the comparison of their relative
performances is expected to be less biased than their individual performances.

V. CONCLUSION
We have proposed a new dual system approach which combines a system trained with subtle
masses on prior mammograms and a system trained with average masses on current
mammograms. The dual system achieved higher sensitivities at the corresponding FP rates
than a single CAD system trained with average masses alone or trained with both average
masses and subtle masses. Alternatively, the dual system had lower FP rates than the single
CAD system at corresponding sensitivities. The improvement in the FROC curves by the dual
system approach was found to be statistically significant (p<0.05) for both average masses and
subtle masses using either the AFROC or the JAFROC method. Our results indicate that the
dual system approach is promising for improving the performance of CAD systems for mass
detection on mammograms.
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Fig. 1.
The characteristics of the masses in our mass data set: (a) distribution of mass sizes, (b)
distribution of mass visibility on a 10-point rating scale with 1 representing the most visible
masses and 10 the most subtle masses relative to the cases seen in clinical practice, (c)
distribution of mass shapes, (d) distribution of mass margins, C: circumscribed, Ind: indistinct,
M: microlobulated, Ob: obscured, Sp: spiculated.
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Fig. 2.
The distribution of breast density in terms of BI-RADS categories estimated by an MQSA
radiologist.
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Fig. 3.
Schematic diagram of our single CAD system for mass detection. The FP classification stage
includes rule-based classification, a morphological LDA classifier, and a texture feature LDA
classifier for differentiating masses from normal breast tissues.

Wei et al. Page 16

Med Phys. Author manuscript; available in PMC 2009 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Schematic diagram of proposed dual CAD system for mass detection. BP-ANN is used for
information fusion.
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Fig. 5.
An example of a scatter plot of the LDA scores from the two single CAD systems which are
used as input to the BP-ANN. The correlation coefficient between the scores of two LDA
classifiers is 0.46, indicating that the two LDA scores are essentially independent features.
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Fig. 6.
The test ROC curves for the BP-ANN classifiers from the two independent mass subsets. The
ANN classifiers achieved an Az value of 0.90±0.02 for test subset 1 and 0.89±0.01 for test
subset 2 in the classification of mass and normal breast tissues.
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Fig. 7.
Comparison of the average test FROC curves obtained from averaging the FROC curves of
the two independent average-mass subsets. Three CAD systems were compared: a single CAD
system trained with average masses alone, a single CAD system trained with both the average
and the subtle masses, and the dual CAD system. The FP rate was estimated from the
mammograms with masses. (a) Image-based FROC curves, (b) case-based FROC curves.
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Fig. 8.
Comparison of the average test FROC curves obtained from averaging the FROC curves of
the two independent average-mass subsets. Three CAD systems were compared: a single CAD
system trained with average masses only, a single CAD system trained with the average and
the subtle masses, and the dual CAD system. The FP rate was estimated from the mammograms
without masses. (a) Image-based FROC curves, (b) case-based FROC curves.
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Fig. 9.
Comparison of the average test FROC curves of the single CAD system and the dual CAD
system for detection of malignant masses in the average data set. The single system trained
with average masses alone was used and the FP rate was estimated from the mammograms
without masses. (a) Image-based FROC curves, (b) case-based FROC curves.
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Fig. 10.
Comparison of the average test FROC curves for the single CAD system and the dual CAD
system for detection of the subtle masses on the prior mammograms. The single CAD system
trained with average masses alone was used and the FP rate was estimated from the
mammograms without masses. (a) Image-based FROC curves, (b) case-based FROC curves.
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Fig. 11.
Comparison of the average test FROC curves for the single CAD system and the dual CAD
system for detection of subtle malignant masses on the prior mammograms. The single CAD
system trained with average masses alone was used and the FP rate was estimated from the
mammograms without masses. (a) Image-based FROC curves, (b) case-based FROC curves.
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Table I
Description of cases in the average and subtle mass data sets and the subsets for training and testing in the cross-
validation scheme.

Mass subset 1 Mass subset 2

Average mass subset Subtle mass subset Average mass subset Subtle mass subset

Total No. of cases 57 54 58 56

Cases with two
prior examinations

NA 10 NA 9

Exams with two
views

57 58 58 65

Exams with three
views

0 6 0 0

Total No. of
images

114 134 116 130

No. of negative
images

0 25 0 19

No. of mass
images for training

114 109 116 111

No. of two-view
pairs for testing

57 64 58 65

No. of images for
testing

114 128 116 130

No. of malignant
masses

36 33 31 29

No. of benign
masses

21 21 27 27
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Table II
Comparison of case-based detection performance between the dual system and the single CAD system trained with
average masses alone. The FP marker rates were estimated from detection on the normal data set. The FROC curves
were obtained by averaging the FROC curves of the two test subsets.

Average mass test set (FP marks/image) Subtle mass test set (FP marks/image)

TP Single system Dual system Single system Dual system

90% 2.2 1.2

80% 1.5 0.7 2.8

70% 1.0 0.3 2.4 2.3

60% 0.5 0.2 1.8 1.5

50% 0.3 0.1 1.4 0.7
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