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Proteome-wide Prediction of Signal Flow
Direction in Protein Interaction Networks
Based on Interacting Domains*s

Wei Liut, Dong Lit, Jian Wang, Hongwei Xie, Yunping Zhu§, and Fuchu Hef]

Signal flow direction is one of the most important fea-
tures of the protein-protein interactions in signaling net-
works. However, almost all the outcomes of current
high-throughout techniques for protein-protein interac-
tions mapping are usually supposed to be non-direc-
tional. Based on the pairwise interaction domains, here
we defined a novel parameter protein interaction direc-
tional score and then used it to predict the direction of
signal flow between proteins in proteome-wide signal-
ing networks. Using 5-fold cross-validation, our ap-
proach obtained a satisfied performance with the accu-
racy 89.79%, coverage 48.08%, and error ratio 16.91%.
As an application, we established an integrated human
directional protein interaction network, including 2,237
proteins and 5,530 interactions, and inferred a large
amount of novel signaling pathways. Directional protein
interaction network was strongly supported by the
known signaling pathways literature (with the 87.5%
accuracy) and further analyses on the biological anno-
tation, subcellular localization, and network topology
property. Thus, this study provided an effective method
to define the upstream/downstream relations of inter-
acting protein pairs and a powerful tool to unravel the
unknown signaling pathways. Molecular & Cellular
Proteomics 8:2063-2070, 2009.

The development of high-throughput technologies has
produced large scale protein interaction data for multiple
species, and significant efforts have been made to analyze
the data in order to establish the protein networks and to
understand their functions (1-6). In protein interaction net-
works, physical interactions are usually supposed to be
non-directional. In fact, there widely exist regulation rela-
tionship and upstream/downstream relations between inter-
acting proteins when they are involved in various networks
of signal transduction, transcriptional regulation, cell cycle,
or metabolism, etc.
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Several groups have developed methods to infer signaling
pathways based on protein interactions. Steffen et al. (7)
presented an automated approach for modeling signal trans-
duction networks in Saccharomyces cerevisiae by integrating
protein interactions and gene expression data. Hautaniemi
et al. (8) applied a decision tree approach to facilitate eluci-
dation of signal-response cascade relations and generate
experimentally testable predictions. Shlomi et al. (9) estab-
lished a comprehensive framework, QPath, efficiently
searched the network for homologous pathways. These evo-
lutionarily conserved pathways provided clues to infer the
upstream/downstream relations of protein interactions in un-
known signaling pathways. Nguyen et al. (10) proposed a
method of predicting signaling domain-domain interactions
using inductive logic programming and discovering signal
transduction networks in yeast. However, all the methods
mentioned above focused on the automated generation of the
signaling pathways using PPl and gene expression data. They
could obtain a part of signaling pathways with a limited length
and low accuracy only in the simple eukaryote yeast. Mean-
while, there was no efficient method to identify the direction of
signal flows in pairwise interaction proteins.

Domains are elements of proteins in a sense of structure
and function. Most proteins interact with each other through
their domains. Therefore, it is crucial and useful to under-
stand PPIs based on the domains (11, 12). In this paper, we
introduced a novel method to predict the direction of signal
flows through protein pairs in signaling networks according
to their constituent interacting domains. First, we defined a
measure F to evaluate the direction of domain interactions
and computed the F values of domain interactions using the
training set of PPIs in multiple species. Then, we defined a
novel parameter Protein Interaction Directional Score
(PIDS)" to measure their directions. Furthermore, we evalu-
ated the method using 5-fold cross-validation protocol. Fi-
nally, we applied it to infer novel signaling pathways from
human proteome-wide interactions.

MATERIALS AND METHODS

High-confidence Domain Interaction Dataset—Total 6,163 high-
confidence domain interactions were downloaded from DOMINE (13),

" The abbreviations used are: PIDS, protein interaction directional
score; Pr, probability; DPIN, directional protein interaction network;
PPI, protein-protein interaction.
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including 4,349 interactions inferred from PDB entries and 3,143
interactions predicted by eight different computational approaches,
using Pfam domain definitions. In this paper, these domain interac-
tions were examined to discover their directions.

Protein Interaction Dataset in Signaling Networks— All the signaling
networks of human, mouse, rat, fly, and yeast were downloaded from
KEGG (14). There are 2,803 protein interactions involved in activation,
inhibition, phosphorylation, dephosphorylation, and ubiquitination
and 649 protein complexes. Protein domain information is based on
the Pfam-A domains (15).

Integrated Human Protein Interaction Dataset—We obtained
45,238 non-redundant human protein interactions from HPRD (6), DIP
(16), MINT (17), BIND (18) database, and the previous resources (19,
20), which have corresponding Entrez Gene ID index and not reported
in protein complex. These interactions were obtained by experiments
and did not contain the prediction results, which composed the
integrated human protein interaction dataset. The dataset is relatively
credible and comprehensive to cover most of human protein interac-
tions detected (21).

The Function F for the Direction Prediction of Domain Interac-
tions—The enrichment of domain pairs was assessed with the
domain enrichment ratio D (22), which is calculated as the proba-
bility (Pr) of a given pair of domains in a set of known interacting
proteins divided by the product of the probabilities of each given
domain pair independently. Based on D, we proposed a novel
function F to indicate the direction of interacting domain pairs,
which is defined by subtracting the backward domain enrichment
ratio from the forward ratio,

Pr(dm - dn) - Pr(dn - dm)

Flm) =="Pr(d,) x Pr(d,)

(Eq. 1)

where d,,, and d,, are two protein domains, and they can interact with
each other, Pr(d,,) and Pr(d,) is the probability of domain d,,, and d,,
appearing in interacting proteins, Pr(d,, — d,) is the probability of
protein interactions in which one protein has d,,, and the other has d,,,
through which signal transfer from d,,, to d,.. If F(d,,,,) > 0, then signal
transfers from d,,, to d,,, otherwise from d,, to d,,.

The Parameter PIDS for the Direction Prediction of Protein Inter-
actions—Given two interacting proteins P; and P;, if signal transfers
from P; to P; in signaling networks, then P; > 0; otherwise P; < 0. 0On
the basis of the F function in domain interactions, the parameter PIDS
for the interaction from P, to P; is

>, F(d)

dmn€Pj

N, (Eq.2)

PIDS; =

where d,,,, € P; denotes that domains d,,, and d,, belong to proteins P;
and P;, respectively, and domain d,, can interact with domain d,. N;
is the number of domain interactions between P; and P, where F
absolute values are bigger than zero. The threshold of PIDS as t, if
PIDS; >t and P; > 0 or PIDS; < —t and P; < 0, then the direction of
P; to P; is correctly predicted.

RESULTS

Signaling Directions of Protein Interactions and Domain In-
teractions—In the signaling networks, the direction of protein
interactions is defined as the direction of signal flow between
them. The interaction types we investigated include activa-
tion, inhibition, phosphorylation, dephosphorylation, and
ubiquination, which are all direction-related. In human, rat,
mouse, fly, and yeast, 76.40% proteins have one or more

Pfam domains. Interaction between two proteins typically in-
volves binding between specific domains. Thus, the identifi-
cation of interacting domain pairs is an important step toward
understanding protein interactions (23) and the direction of
signal flow between them. Therefore, it is supposed that there
exist upstream/downstream relations in domain interactions
as those in protein interactions. Fig. 1, A and B illustrates the
method of inferring the directions in domain interactions from
the directions in protein interactions.

A Novel Function to Measure Signaling Direction of Domain
Interaction—We defined a function F to evaluate the direction
of domain interactions and applied it to discover the direc-
tions in high-confidence domain interaction dataset. Using
2,803 protein interactions with known directions as the posi-
tive training set, 364 domain interactions are found to be
involved in the protein interactions of signaling networks. As a
result, 286 domain pairs (78.57%) have positive or negative F
values (supplemental Table S1). The distribution of their F
absolute values is shown in Fig. 1C, with mean value 39.84
and standard error (S. E.) 7.39. They could provide clues
about the upstream and downstream relation between a given
protein pair in signaling networks. The domain interaction with
the largest F is ubiquitin activating enzyme and ubiquitin-
conjugating enzyme, the F value of which is high up to
1,658.34.

A Novel Parameter to Predict the Signaling Direction of
Protein Interactions Based on Domain Interactions—Based on
F of domain interactions, we defined a parameter PIDS to
measure the signal flow direction of their corresponding pro-
teins’ interaction. According to the domains of pairwise pro-
teins, we computed their PIDS in protein interaction dataset of
signaling networks (Fig. 1D). In principle, the protein interac-
tions categorized into activation, inhibition, phosphorylation,
dephosphorylation, and ubiquination are directional, while
protein complexes, assumed to be non-directional, are used
as controls.

Evaluation of the Method using 5-fold Cross-Validation—
Using 5-fold cross-validation, we evaluated the performance
of this method, in which protein pairs with known directions
are used as the positive training set and protein complexes as
the negative test set. When some protein pairs in the test set
do not include the directional domain interactions, it is impos-
sible to predict the signaling directions of those protein inter-
actions with this method. Coverage is estimated by the num-
ber of test protein interactions divided by the number of
protein pairs including domain pairs we investigated; and
Accuracy, by the percentage of protein pairs, the directions
of which are correctly predicted. Error ratio is defined as the
percentage of protein pairs in the negative test set, which are
falsely predicted with certain directions.

By selecting different threshold values for PIDS, we com-
pared the accuracy, coverage, and error ratio in both the
positive/negative test sets, as shown in Fig. 2A. When tak-
ing the threshold value as 2, accuracy, coverage, and error
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Fic. 1. Diagram of the method and its workflow. A, a diagram of the direction between interacting domains. E7 and E2 represent two pairs
of interacting domains. B, the work flow of the method. C, distribution of absolute F values in domain interactions. D, distribution of absolute

PIDS values in protein interactions.

ratio are 89.79%, 48.08%, and 16.91%, respectively. While
the threshold value goes up to 10, accuracy increases to
94.19% with the coverage 28.21%, and error ratio de-
scends to 1.82%. With the increasing of the threshold value,
it could provide higher accuracy and lower error ratio at the
cost of smaller predicting capacity. In the practice, users
could choose different threshold values of PIDS to meet
their own requirements.

Performance of Cross-Species Prediction for Directional
Protein-Protein Interactions—Furthermore, we compared the
accuracy and coverage across different species to evaluate
the performance of this method, as shown in Fig. 2 (B and
C). Since the five species share major Pfam domains, it is
feasible to predict the signal flow of PPIs in one species
according to the directional PPIs in other species. 84.06%
domains in human, 89.36% domains in mouse, 89.30%
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Fic. 2. Performance evaluation of the method. A, accuracy, coverage, and error ratio versus different thresholds of PIDS using 5-fold
cross-validation. The upright lines mark the recommendatory thresholds of PIDS with 2 and 10. B, predicting accuracy versus threshold values
across different species. C, predicting coverage versus threshold values across different species.

domains in rat, 82.07% domains in fly, and 64.76% domains
in yeast proteins can be found in other four species. Taking
the protein interactions of one species as the test set and all
the other species as the training set, we identified the set of
directional domain-domain interactions based on the train-
ing sets and used these domain-domain interactions to
predict the directional protein-protein interactions in test
dataset. We compared the predicting accuracy and cover-
age among five species, including human, mouse, rat, fly,
and yeast. In conclusion, the method gained better perform-
ance in more evolutionarily advanced species. By taking
threshold value 2, we achieved accuracy 95.23% and cov-
erage 49.54% in human test set.

Proteome-wide Prediction of Signal Flow Directions in Hu-
man Protein Interaction Network—As an application, we used
this method to comprehensively predict signal flow directions
of proteome-wide protein interactions in the integrated human
protein interaction dataset (see under “Materials and Meth-
0ds”). In the 45,238 integrated human protein interactions,
5,530 protein interactions are predicted with directions (sup-
plemental Table S2), with the threshold value of PIDS 2. Of
them, 424 (7.67%) predicted directional protein interactions
are reported in the known signaling pathway databases. The
predicted directions of 87.5% (371/424) protein interactions
accord with those from KEGG (14), BioCarta, or NCl-Nature_-
curated database, indicating again that the method is of high
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Fic. 3. Proteome-wide prediction of directional protein interactions from the integrated human protein interaction dataset. A, the
proportion of directional protein interactions in all human interactions. PDPPI, predicted directional PPIs; KDPPI, known directional PPIs in
signaling databases; and VDPPI, verified directional PPIs, which are the overlaps of PDPPI and KDPPI. B, the human DPIN predicted by the
method. According to the PIDSs, the inferred directional protein interactions are marked with different colors. The protein interactions with
10 > |PIDS| = 2 are marked with blue and one line widths, and those of [PIDS| = 10 with red and two widths. These figures are drawn by Pajek
software (31). C, comparison of the PIDS distribution in human PPI training set and DPIN.

accuracy. Obviously, the firstly predicted 5,106 directional
protein interactions should be a valuable resource (Fig. 3A).
As aresult, we established the first predicted human direc-
tional protein interaction network (DPIN) including 2,237 pro-
teins and 5,530 interactions, with PIDS 19.97 = 0.57 (S. E.)
(Fig. 3B). We found that the distribution of PIDS in human PPI
training set and DPIN is similar (Fig. 3C). Furthermore, we
characterized DPIN from the views of biological function,
subcellular localization, and topology property as follows.
According to the interaction detection methods, there are
22,278 protein interactions in the integrated human protein
interaction dataset detected only by one method, such as
coimmunoprecipitation, tandem affinity purification, and two

hybrid (Table IA). Compared the PPls detected in vivo with
those in vitro, we found 11.30% PPlIs in vivo and 15.14% PPls
in vitro were directional. Among these methods, the PPIs from
protein array method are of directional with the highest ratio
up to 27.03%; whereas those from coimmunoprecipitation
method are the lowest with 3.41%, implying that the coim-
munoprecipitation method is relatively weak in detecting di-
rectional protein interactions in signaling networks.
Functional Annotation for the Directional Human Protein
Interactions—Using Gene Ontology (24), we functionally an-
notated the proteins in the human DPIN. Among the human
training set, 62.2% proteins (453/728) are categorized into
signal transduction. In comparison with the integrated human
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TABLE |
Interaction detection method, subcellular localization and topology
property of the human DPIN

(A) Comparison of directional PPIs among different detection methods

Total PPIs PPIs
Detection detected by this method detected only by this method
methods

Sum Directional  Directional Sum  Directional Directional

number  percent (%) number  percent (%)
Two hybrid 27,346 1,446 5.29 2,778 204 7.34
ColP 12,499 1,246 9.97 5,726 195 3.41
Pull down 3,671 580 15.80 470 28 5.96
TAP 1,625 232 14.28 184 16 8.70
Protein array 541 154 28.47 74 20 27.03
All 44,875 5,407 12.05 21,915 2,740 12.50

(B) Subcellular localization of directional PPIs

Upstream subcellular localization

Extracellular Plasma Cytoplasm  Golgi  Endoplasmic Nucleus
membrane reticulum
Extracellular 399 5 70 2 6 34
S
E Plasma
S membrane
kel
§ Cytoplasm 375 126 2,682 33 101 243
3
e
7 Golgi 8 1 67 2 0 4
£
3
= Endoplasmic 104 0 32 1 3 1
c reticulum
3
o
o
Nucleus 42 8 707 3 9 263

(C) Significantly enriched topological motifs in the human DPIN

|PIDS|> 2 |PIDS| > 10

Motifs

Motif number Z score Motif number  Z score
g/_\é 1,754 37.01 99 7.46
M 15,178 92.66 2790  136.42
m 2,271 54.70 40 10.33
R 11,268 15.01 267 3.39
m 1,114 27.21 2 -0.74
N 8,939 97.12 507 54.51
m 1,979 55.29 43 14.37
& 2,378 98.29 25 9.32
M 3,100 97.87 126 22.34

protein interaction dataset, of which 20.9% proteins (2,120/
10,146) are annotated as signal transduction, 46.0% proteins
(1,029/2,237) in the DPIN are classified as signal transduction,

demonstrating the significant enrichment of signal transduc-
ers in DPIN (p = 1.67 X 102" and then the powerful
capacity of our predicting method.

Subcellular Localization for Directional Human Protein In-
teractions—Using PA-SUB (25), we marked the subcellular
localization of proteins in the human DPIN. Table IB indicates
in no doubt that the predicted directions of protein interac-
tions are mostly from the exterior to the nucleus of cells, i.e.
the protein interactions with the direction from extracellular to
cytoplasm are significantly more than those from cytoplasm
to extracellular, and these from cytoplasm to nucleus more
than those from nucleus to cytoplasm. Obviously, the global
patterns of signal flow of protein interactions predicted by our
method are perfectly in accord with the general law of signal
pathways from the view of the subcellular localization, i.e.
along the way from outside to inside of cells.

In addition, we paid attention to the protein interactions
through which signal flows reversely from inside to outside of
cells, including those from plasma membrane to extracellular,
cytoplasm to plasma membrane, cytoplasm to extracellular,
and nucleus to cytoplasm. Totally, we found 390 such protein
interactions, with PIDS mean 16.35 = 1.43 (S. E.) (supplemen-
tal Table S3). These protein interactions might play roles in
feedback regulation of signal transduction.

Topology Property of the Human DPIN—Using MFinder 1.2
(26), we computed the topological motifs of the human DPIN
and found that a large amount of 3-node and 4-node motifs
are significantly enriched in this network (Table IC). Intrigu-
ingly, most of the significantly abundant motifs are feed-
forward loops rather than feedback ones. These feed-forward
loops have been reported to be widely present in the signaling
networks, but absent in transcription networks (27), and could
combine to form multi-layer perceptron motifs that are com-
posed of three or more layers of signaling proteins (28). Also,
such patterns can potentially carry out elaborate functions on
multiple input signals and show graceful degradation of per-
formance upon loss of components (29, 30).

Novel Signaling Pathways Inferred from the Human DPIN —
From the human DPIN, we inferred a large amount of novel
signaling pathways. By defining the extracellular proteins as
the input, which could only deliver to but not accept signal
from other proteins and those nuclear proteins as the output,
which could only accept from but not deliver to any other
protein, we found 292 input proteins and 219 output proteins.
Then we searched all the possible pathways from the input
layer to the output and generated 973,628 pathways with
PIDS mean 14.66 = 0.01 (S. E.) and average path length 8.61,
which highlighted by the pathway from TNFRSF21 to UBB
with the highest PIDS mean 122.63. The number of pathways
is very large in that signaling networks have the character of
multi-pathways, and only a part of pathways are verified from
the biological point. We paid special attention to the shortest
pathways between the input and output. As a result, we found
1,457 novel signaling pathways (supplemental Table S4) and
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Fic. 4. Top 10 pathways inferred
from the human DPIN. The proteins lo-
cated in extracellular are marked with
diamond, those in cytoplasm ellipse, and
those in nucleus triangle. The protein in-
teractions of 10 > |PIDS| = 2 are marked
with blue and one line widths, those of
|PIDS| = 10 with red and two widths, and
known PPIs in signaling databases with
black and two widths.

RAD23A  HNRNPAT

presented top 10 predicted pathways (Fig. 4). Meanwhile, we
compared the average PIDS and path length of shortest path-
ways and found the significant negative correlation between
them with Spearman correlation coefficient —0.315 (p =
107°), suggesting that the shorter pathways tend to have
stronger signal flow directions.

DISCUSSION

The direction of protein interactions is the prerequisite of
forming various signaling networks. We proposed a method to
infer the signaling directions between protein interactions
based on their constitutive domains. Compared with the pre-
vious researches (7-10), our method focused on the predic-
tion of the direction between pairwise interacting proteins,
which is easier to be evaluated. Especially, this method could
be applied to predict signal flow direction in proteome-wide
protein interactions and provide a global directional annota-
tion of the protein interaction network. The method we pro-
posed is powerful not only in defining unknown direction of
protein interactions, but also in providing comprehensive in-
sight into the signaling networks.

The method was successfully applied to establish a novel
human DPIN, which was strongly supported by the highly
accurate prediction of known signaling pathways and further
analysis on the biological annotation, subcellular localization,
and topology property. The predicted directional proteins are
significantly enriched in signal transduction, and the global
directions of protein interactions accord with the general laws
in the signaling networks. Based on the evident DPIN, we
uncovered several very interesting features of directional pro-
tein interaction networks as follows: the direction of signal
flow based on protein interactions goes frequently along the

AN
LNV

TNFSF10 b ’NOG Extracellular
TNFRSF10A "BMP7 TLRS .
Cytoplasm
ACVR1
MYD88
BIRC2 IKBKB meme

MNucleus

!

uBB SMAD1

IKBKG SMAD7 SMADE SPOP

way from the outside to inside of the cells; feed-forward loops
more widely exist than the feedback loops; the shorter path-
ways tend to have stronger signal flow directions. Of course,
these conclusions are drawn based on the incomplete human
dataset. Although these conclusions may be biased, so far
there is still no complete protein interaction network. Our
conclusions based on the current dataset can imply the to-
pology property of human protein-protein interaction net-
works. With more protein interactions and domain interac-
tions are discovered; our method can be applied to find more
signaling pathways and further validate the features of signal-
ing networks reported above.
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