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SUMMARY

We describe a new stochastic search algorithm for linear regression models called the bounded mode
stochastic search (BMSS). We make use of BMSS to perform variable selection and classification as well
as to construct sparse dependency networks. Furthermore, we show how to determine genetic networks
from genomewide data that involve any combination of continuous and discrete variables. We illustrate
our methodology with several real-world data sets.
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1. INTRODUCTION

Nowadays, the identification of biological pathways from genomewide studies is the focus of a consider-
able research effort. The overarching goal is to use gene expression, genotype, and clinical and physiolog-
ical information to create a network of interactions that could potentially be representative for underlying
biological processes. One pertinent example we will focus on in this paper is the determination of genetic
networks associated with lymph node positivity status (LNPos) in human breast cancer. Our data have
been previously analyzed in Pittman and others (2004) and Hans and others (2007). It comprises 100
low-risk (node-negative) samples and 48 high-risk (high node-positive) samples. The data set records the
expression levels of 4512 genes, estimated tumor size (in centimeters) and estrogen receptor status (binary
variable determined by protein assays).

The numerous approaches to learning networks developed so far are quite diverse and, for this reason,
are complementary to each other. Most of these techniques have been successful in unraveling various
parts of the complex biology that induced the patterns of covariation represented in the observed data.
The biggest challenge comes from the large number of biological entities that need to be represented
in a network. The links (edges) between these entities (vertices) are determined from a relatively small
number of available samples. Inducing sparsity in the resulting network is key both for statistical reasons
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(a small sample size can support a reduced number of edges) and for biological reasons (only a small set
of regulatory factors are expected to influence a given entity).

Two coexpressed genes are likely to be involved in the same biological pathways, hence an association
network in which missing edges correspond with genes having low absolute correlation of their expression
levels could reveal groups of genes sharing the same functions (Butte and others, 2000; Steuer and others,
2003). Shortest path analysis in such networks can uncover other genes that do not have the same expres-
sion pattern but are involved in the same biological pathway (Zhou and others, 2002). Another important
type of networks for expression data are represented by Gaussian graphical models (Dobra and others,
2004; Schafer and Strimmer, 2005; Li and Gui, 2006; Castelo and Roverato, 2006; Wille and Bühlmann,
2006). The observed variables are assumed to follow a multivariate normal distribution. The edges in this
network correspond with nonzero elements of the inverse of the covariance matrix. The biological rele-
vance of paths in Gaussian graphical models networks is studied in Jones and West (2005). Other types of
networks are derived from Bayesian networks whose graphical representation is a directed acyclic graph
(Segal and others, 2003; Yu and others, 2004; Friedman, 2004).

A related question that appears in genomewide studies is the identification of a reduced set of molecu-
lar and clinical factors that are related to a certain phenotype of interest. This is known as the variable se-
lection problem and can be solved based on univariate rankings that individually measure the dependency
between each candidate factor and the response – see, for example, Golub and others (1999); Nguyen and
Rocke (2002); Dudoit and others (2002); Tusher and others (2001). Other approaches consider regression
that involve combinations of factors, which lead to a huge increase in the number of candidate models
that need to be examined. The stepwise methods of Furnival and Wilson (1974) can only be used for
very small data sets due to their inability to escape local modes created by complex patterns of collinear
predictors. A significant step forward were Markov chain Monte Carlo (MCMC) algorithms that explore
the models space by sampling from the joint posterior distribution of the candidate models and regression
parameters – see, for example, George and McCulloch (1993, 1997); Green (1995); Raftery and others
(1997); Nott and Green (2004). Excellent review papers about Bayesian variable selection for Gaussian
linear regression models are Carlin and Chib (1995), Chipman and others (2001), and Clyde and George
(2004). Lee and others (2003) make use of MCMC techniques in the context of probit regression to de-
velop cancer classifiers based on expression data. Theoretical considerations related to the choice of priors
for regression parameters are discussed in Fernández and others (2003) and Liang and others (2008).

MCMC methods can have a slow convergence rate due to the high model uncertainty resulting from
the small number of available samples. Yeung and others (2005) recognize this problem and develop a
multiclass classification method by introducing a stochastic search algorithm called the iterative Bayesian
model averaging. While this method performs very well in the context of gene selection in microarray
studies, it is still based on a univariate ordering of the candidate predictors. Hans and others (2007) make
another step forward and propose the shotgun stochastic search (SSS) algorithm that is capable of quickly
moving toward high-probable models while evaluating and recording complete neighborhoods around the
current most promising models.

The aim of this paper was to combine stochastic search methods for linear regressions and the identifi-
cation of biological networks in a coherent and comprehensive methodology. We introduce a new stochas-
tic search algorithm called the bounded mode stochastic search (BMSS). We make use of this algorithm to
learn dependency networks (Heckerman and others, 2000) that further allow us to infer sparse networks
of interactions. We allow for the presence of any combination of continuous and binary variables and, as
such, we are no longer restricted to the multivariate normal assumption required by the Gaussian graphical
models. Moreover, the edges we identify are indicative of complex nonlinear relationships and generalize
correlation-based networks.

The structure of this paper is as follows. In Section 2, we describe the BMSS algorithm. In Section 3
we discuss dependency networks, and in Section 4 we show how to infer genetic networks. In Section 5,



Variable selection and dependency networks 623

we make some concluding remarks. Our proposed methodology is illustrated throughout with the lymph
node status data.

2. A STOCHASTIC SEARCH ALGORITHM FOR SMALL SUBSETS REGRESSIONS

We assume that a response variable Y = X1 is associated with the first component of a random vector
X = (X1, . . . , X p), while the remaining components are the candidate explanatory covariates. Let V =
{1, 2, . . . , p}. Denote by D the n × p data matrix, where the rows correspond with samples and the i-th
column corresponds with variable Xi . For A ⊂ V , denote by DA the submatrix of D formed with the
columns with indices in A.

A regression model for Y given a subset X A = (Xi )i∈A, A ⊂ V \ {1} of the remaining variables is
denoted by [1|A]. We follow the prior specification for regression parameters described in Appendix A
for normal linear regression (Y continuous) and logistic regression (Y binary). If the marginal likelihood
p(D|[1|A]) of the regression [1|A] can be calculated exactly or approximated numerically, the posterior
probability of [1|A] is readily available up to a normalizing constant:

p([1|A]|D) ∝ p(D|[1|A])p([1|A]),

where p([1|A]) is the prior probability of model [1|A].
Genomewide data sets are characterized by a very large p/n ratio. As such, we are interested in regres-

sions that contain a number of predictors much smaller than p. There are 2 ways to focus on these small
subset regressions. The first approach involves choosing a prior on the candidate regressions space that
down weights richer regressions (Chipman, 1996; Kohn and others, 2001; Scott and Berger, 2006). While
such priors encourage sparsity and seem to work reasonably well (Hans and others, 2007), we found
that in practice it is not straightforward to calibrate them to completely avoid evaluating the marginal
likelihood of models with many predictors. Such calculations are prone to lead to numerical difficulties
especially when there are no formulas available for the corresponding high-dimensional integrals. This is
the case of logistic regressions whose marginal likelihoods are estimated using the Laplace approximation
– see (A.6) in the Appendix A.

The second approach involves reducing the space of candidate models to Rpmax – the set of regres-
sions with at most pmax predictors. This implies that only |Rpmax | = ∑pmax

j=1

(p−1
j

)
regressions need to be

considered which represents a significant reduction compared to 2p−1 – the total number of regressions
for Y . There is no substantive need to further penalize for model complexity and we assume throughout
that the models inRpmax are apriori equally likely, i.e.,

p([1|A]) = 1/|Rpmax |. (2.1)

Since the size ofRpmax precludes its exhaustive enumeration, we need to make use of stochastic tech-
niques to determine high posterior probability regressions in Rpmax . One such procedure is called the
MCMC model composition algorithm (MC3) and was introduced by Madigan and York (1995). MC3

moves around Rpmax by sampling from {p([1|A]|D) : [1|A] ∈ Rpmax}. As such, the probability of iden-
tifying the highest posterior probability regression in Rpmax could be almost 0 if |Rpmax | is large and n is
small, which means that MC3 could be inefficient in finding models with large posterior probability.

Hans and others (2007) recognized this issue and proposed the SSS algorithm that aggressively moves
toward regions with high posterior probability inRpmax by evaluating the entire neighborhood of the cur-
rent regression instead of only one random neighbor. Hans and others (2007) empirically show that SSS
finds models with high probability faster than MC3. This is largely true if one does not need to make
too many changes to the current model to reach the highest posterior probability regression in Rpmax or
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other models with comparable posterior probability. If a significant number of changes are required, fully
exploring the neighborhoods of all the models at each iteration could be extremely inefficient. In this
case, MC3 might end up reaching higher posterior probability regressions after visiting fewer models than
SSS. Each iteration of SSS is computationally more expensive than an iteration of MC3 since the entire
neighborhood of each regression needs to be visited and recorded. For this reason, SSS does not stay at
the same model for 2 consecutive iterations as MC3 does. While SSS can significantly benefit from cluster
computing that allows a simultaneous examination of subsets of neighbors, it still moves around Rpmax

by selecting the regression whose neighborhood will be studied at the next iteration from the neighbors
of the current regression [1|Ak]. This constitutes a limitation of SSS because it is very likely that other
models from the list L could lead to the highest posterior probability regressions faster than a regression
from nbdRpmax

([1|Ak]).
Berger and Molina (2005) pointed out that the model whose neighbor(s) could be visited at the next

iteration should be selected from the list of models identified so far with probabilities proportional with
the posterior model probabilities. This leads to more aggressive moves in the models space.

We develop a novel stochastic search algorithm which we call the BMSS. Our method combines MC3,
SSS, and some of the ideas of Berger and Molina (2005) in 2 different stages. In the first stage, we at-
tempt to advance in the space of models fast by exploring only one model at each iteration. Once higher
posterior probability models have been reached, we proceed to exhaustively explore their neighborhoods
at the second stage to make sure we do not miss any relevant models that are close to the models already
identified. There is no benefit in exploring the same model twice at the second stage, hence we keep track
of the models explored at the previous iterations.

We record in a list L the highest posterior probability regressions determined by BMSS. This list is
sequentially updated by adding and deleting regressions at each iteration of BMSS. We define

L(c) = {
[1|A] ∈ L : p([1|A]|D) � cp([1|A∗]|D)

}
,

where c ∈ (0, 1) and [1|A∗] = argmax[1|A′]∈L p([1|A′]|D} is the regression in L with the highest pos-
terior probability. According to Kass and Raftery (1995), a choice of c in one of the intervals (0, 0.01],
(0.01, 0.1], (0.1, 1/3.2], (1/3.2, 1] means that the models in L \L(c) have, respectively, decisive, strong,
substantial or “not worth more than a bare mention” evidence against them with respect to [1|A∗].

We further introduce the set L(c, m) that consists of the top m highest posterior probability models in
L(c). This reduced set of models is needed because L(c) might still contain a large number of models for
certain values of c especially if there are many models having almost the same posterior probability.

We define the neighborhood of a regression [1|A] as (Hans and others, 2007):

nbdRpmax
([1|A]) = nbd+

Rpmax
([1|A]) ∪ nbd0

Rpmax
([1|A]) ∪ nbd−

Rpmax
([1|A]).

The 3 subsets of neighbors are obtained by including an additional predictor X j in regression [1|A], by
substituting a predictor X j that is currently in [1|A] with another predictor X j ′ that does not belong to
[1|A] and by deleting a predictor X j from [1|A]:

nbd+
Rpmax

([1|A]) = {[1|A ∪ {j}] : j ∈ (2 : p) \ A} ∩Rpmax ,

nbd0
Rpmax

([1|A]) = {[1|(A \ {j}) ∪ {j ′}] : j ∈ A, j ′ ∈ (2 : p) \ A},
nbd−
Rpmax

([1|A]) = {[1|A \ {j}] : j ∈ A}.

The regression neighborhoods are defined so that any regression inRpmax can be connected with any other
regression in Rpmax through a sequence of regressions in Rpmax such that any 2 consecutive regressions
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in this sequence are neighbors. We remark that the size of the neighborhoods of the regressions in Rpmax

is not constant. If the regression [1|A] contains the maximum number of predictors (i.e., |A| = pmax), no
other variable can be added to the model (i.e., nbd+

Rpmax
([1|A]) = ∅). As such, the neighborhoods would

be too constrained if we would not allow the substitution of a variable currently in the model with some
variable currently outside the model.

We are now ready to give a description of our stochastic search method:

procedure BMSS(pmax,c,m,k1
max,k2

max)

� Start at a random regression [1|A1] ∈ Rpmax . Set L = {[1|A1]}.

� Stage 1. For k = 1, 2, . . . , k1
max do:

• Uniformly draw a regression [1| Ã] from nbdRpmax
([1|Ak]) \ L, where [1|Ak] is the current model.

Calculate the posterior probability p([1| Ã]|D) and include [1| Ã] in L.

• Prune the lowest posterior probability models from L so that L = L(c, m).

• Sample a regression [1|Ak+1] from L with probability proportional with {p([1|A]|D) : [1|A] ∈ L}.
�

�Mark all the models in L as unexplored.

� Stage 2. For k = 1, . . . , k2
max do:

• Let LU ⊂ L the subset of unexplored models. If LU = ∅, STOP.

• Sample a model [1| Ã] from LU with probability proportional with {p([1|A]|D) : [1|A] ∈ LU }.
Mark [1| Ã] as explored.

• For every regression in nbdRpmax
([1| Ã]) \ L, calculate its posterior probability, include it in L and

mark it as unexplored.

• Prune the lowest posterior probability models from L so that L = L(c, m).
�

At the second stage, BMSS might end if no unexplored models are found in L before completing k2
max

iterations. Setting m to a larger value (e.g., m = 500 or m = 1000) leads to very good results as the
highest probability models identified are captured in the output of BMSS. The value of the parameter c
determines the elimination of regressions with a small Bayes factor with respect to the highest posterior
probability regression in L. Particular choices of c are interpreted as we described before according to the
criteria from Kass and Raftery (1995). The first stage of the algorithm should be run for a larger number
of iterations (e.g., k1

max = 100 000) since only one regression has to be evaluated at each iteration. The
second stage of BMSS should be run for a reduced number of iterations (e.g., k2

max = 100) since the entire
neighborhood of a regression has to be evaluated and recorded. It is recommended that BMSS should be
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restarted several times to make sure that it outputs the same regressions. If this does not happen, BMSS
needs to be run for an increased number of iterations k1

max and k2
max.

2.1 Example: lymph node status data

We used BMSS with pmax = 6, c = 0.25, m = 1000, k1
max = 100 000, k2

max = 100 to identify high
posterior probability logistic regressions associated with LNPos involving the 4514 candidate predictors
in the lymph node status data. The choice c = 0.25 means that regressions having decisive evidence
against them with respect to the highest posterior probability regression identified are discarded from the
final list of regressions reported by BMSS. BMSS returns 11 regressions in which 17 genes appear. These
regressions together with their marginal likelihoods are shown in the 2 leftmost columns of Table 1. The
selected genes and their corresponding posterior inclusion probabilities are: SFRS17A (1.0), W26659
(1.0), RGS3 (1.0), ATP6V1F (1.0), GEM (0.385), WSB1 (0.346), PJA2 (0.209), SDHC (0.207), XPO1
(0.134), TOMM40 (0.132), ARF6 (0.116), CD19 (0.102), DPY19L4 (0.089), UBE2A (0.081), HSPE1
(0.075), RAD21 (0.065), KEAP1 (0.060).

We compare the effectiveness of BMSS in identifying high posterior probability regressions in R6
with respect to SSS and MC3. With the settings above, BMSS performs 2 805 400 marginal likelihood
evaluations. We run SSS and MC3 until they completed the same number of evaluations. It turns out that
SSS and MC3 do not find any regression in R6 with a larger posterior probability than the regressions
reported by BMSS. In fact, the 11 regressions found by BMSS are the top 11 regressions identified by all
3 algorithms. However, as shown in Table 1, SSS finds only 8 of these 11 regressions, while MC3 finds
only 4 of these models. This indicates that BMSS exploresR6 more effectively than SSS and MC3.

We assess the convergence of BMSS by running 5 separate instances of the procedure with various
random seeds. Figure 1 shows the largest posterior probability of a regression in the list L kept by BMSS
plotted against the number of marginal likelihood evaluations performed across consecutive iterations.
BMSS always calculates one marginal likelihood at each iteration of its first stage. In this particular
example, BMSS computes the marginal likelihood of 27054 regressions at every iteration of its second
stage. We see that both stages are needed to obtain the highest posterior probability regressions. BMSS
outputs the same 11 regressions in each of the 5 instances, which means we could be fairly confident that
we have found the top models in R6. We remark that BMSS finds the top models after evaluating only
2805400 regressions – a small number compared to 1.173 × 1019, the number of regressions inR6.

Table 1. Comparison of the effectiveness of BMSS, SSS and MC3. The 3 rightmost columns show which
regressions have been identified by each algorithm

Model Log-posterior BMSS SSS MC3

SFRS17A, GEM, RGS3, SDHC, W26659, ATP6V1F −42.33 Yes Yes No
SFRS17A, TOMM40, RGS3, PJA2, W26659, ATP6V1F −42.78 Yes No No
SFRS17A, RGS3, W26659, ATP6V1F, WSB1, CD19 −43.03 Yes No No
SFRS17A, DPY19L4, RGS3, W26659, ATP6V1F, WSB1 −43.17 Yes No Yes
SFRS17A, RGS3, W26659, ATP6V1F, WSB1, UBE2A −43.27 Yes Yes No
SFRS17A, RGS3, PJA2, W26659, ATP6V1F, XPO1 −43.31 Yes Yes Yes
SFRS17A, RGS3, HSPE1, W26659, ATP6V1F, WSB1 −43.34 Yes Yes No
SFRS17A, GEM, RGS3, W26659, ATP6V1F, RAD21 −43.49 Yes Yes Yes
SFRS17A, GEM, ARF6, KEAP1, W26659, ATP6V1F −43.57 Yes Yes No
SFRS17A, GEM, RGS3, ARF6, W26659, ATP6V1F −43.62 Yes Yes No
SFRS17A, GEM, RGS3, W26659, ATP6V1F, XPO1 −43.63 Yes Yes Yes
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Fig. 1. Convergence of BMSS for the lymph node status data. The vertical dotted line indicates the transition of BMSS

from stage 1 to stage 2, that occurs after evaluating k1
max = 100 000 models. Each of the 5 solid lines corresponds

with an instance of BMSS.

What is the relevance of these 11 regressions with respect to LNPos? The model-averaged prediction
probabilities lead to 141 (95.27%) samples correctly predicted with a Brier score of 9.03 having a standard
error of 0.80. Here, we use the generalized version of the Brier score given in Yeung and others (2005).
We perform leave-one-out cross-validation prediction by recomputing the model posterior probabilities as
well as the prediction probabilities after sequentially leaving out each of the 148 observations. We obtain
132 (89.19%) samples correctly predicted with a Brier score of 13.5 having a standard error of 1.47.

By comparison, Hans and others (2007) show their prediction results based on the top 10 logistic
regression models they identify. These models involve 18 genes out of which 4 (RGS3, ATP6V1F, GEM,
and WSB1) are also present in our list of 17 genes. Their fitted prediction probabilities correctly predict
135 samples (91.22%), while their leave-one-out cross-validation predictive performance has a sensitivity
of 79.2% and a specificity of 76%. Our leave-one-out predictive performance has a sensitivity of 85.4%
and a specificity of 93% which indicates that we have discovered combinations of genes with better
predictive power.

2.2 Selecting pmax

The choice of the maximum number of predictors pmax defines the search space for BMSS. Increasing
pmax leads to richer sets of candidate regressions and potentially to more complex combinations of pre-
dictors that are ultimately identified. Selecting a sensible value for pmax is therefore key to our method-
ology. This determination should involve a careful consideration of model fit, model complexity, and
the inclusion of explanatory variables that are expected to be relevant based on expert knowledge about
the data.

Here we show how to choose pmax for the lymph node status data. We run separate instances of BMSS
with pmax ∈ {1, 2, . . . , 15} while keeping the other parameters at their values from Section 2.1. In each
case, we recorded the number of regressions identified in Rpmax , the number of variables that appear
in these regressions as well as 5-fold cross-validation prediction results (Brier score, sensitivity, and
specificity) (see Table 2).
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Table 2. Regressions selected by BMSS for various values of pmax in the lymph node status data . The
standard error associated with the 5-fold cross-validation Brier score is given in parentheses. The number
of variables that appear in the top regressions is given in column Variables, while the number of top
regressions is given in column Regressions. The last column shows whether tumor size was present in the

top regressions

pmax Variables Regressions Brier score Sensitivity (%) Specificity (%) Tumor size

1 1 1 26.13 (0.47) 39.6 90 No
2 6 5 26.24 (1.43) 54.2 86 No
3 15 11 25.8 (1.83) 62.5 87 No
4 12 8 20.4 (1.51) 75 88 No
5 11 7 15 (1.52) 79.2 93 No
6 17 11 13.5 (1.47) 85.4 93 No
7 20 11 10.1 (1) 89.6 96 No
8 53 51 9 (0.74) 85.4 98 No
9 68 69 7.61 (0.85) 91.2 97 No

10 166 173 6.04 (0.48) 91.2 99 No
11 60 69 5.69 (0.64) 97.9 99 Yes
12 391 1000 4.58 (0.51) 95.8 98 Yes
13 341 1000 4.17 (0.56) 97.9 100 Yes
14 465 1000 3.18 (0.36) 99 100 Yes
15 460 1000 3.55 (0.4) 97.9 100 Yes

We see that the prediction results constantly improve as pmax increases until they reach a plateau start-
ing with pmax = 11. For pmax > 11, the Brier score has a marginal decrease with respect to pmax = 11,
while the sensitivity and specificity remain about the same. The model-averaged fitted prediction proba-
bilities for pmax = 11 lead to 148 (100%) samples correctly predicted with a Brier score of 3.02 having a
standard error of 0.25 (Figure 2). The choice pmax = 11 is also related to the presence of tumor size in the
highest posterior probability regressions identified by BMSS. We would certainly expect that the size of
a tumor should be relevant for lympth node positivity status. Table 2 shows that tumor size is not present
in the top regressions for pmax < 11 and it is always present if pmax � 11. Moreover, the number of vari-
ables in the top regressions seems to increase by an order of magnitude if pmax > 11 which could mean
that the corresponding combinations of predictors are too complex to be relevant. As such, pmax = 11 is
an appropriate choice for the lymph node status data.

3. LEARNING AND INFERENCE FOR DEPENDENCY NETWORKS

We denote by X− j = XV \{j}, for j = 1, . . . , p. A dependency network (Heckerman and others, 2000) is
a collection of conditional distributions or regressions of each variable given the rest:

D = p(X j |X− j = x− j ) : j = 1, . . . , p.

Each of these local probability distributions can be modeled and learned independently of the others. We
can make use of BMSS to determine a set L j = {[ j |A j

l ] : l = 1, . . . , |L j |} of high posterior probability
regressions of X j given X− j . It follows that

p(X j |X− j = x− j ) = p(X j |X A j = xA j ) =
|L j |∑
l=1

p(X j |X A j
l

= x
A j

l
)p∗([ j |A j

l ]|D,L j ), (3.1)
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Fig. 2. Prediction results corresponding with pmax = 11 for the lymph node status data. The solid circles represent
low-risk patients, while the open circles represent high-risk patients. The vertical lines are 80% confidence intervals.

where A j = ∪|L j |
l=1 A j

l are the indices of all the regressors that appear in at least one regression in L j . The
weight of each regression in the mixture (3.1) is given by its posterior probability normalized within L j :

p∗([ j |A j
l ]|D,L j ) = p([ j |A j

l ]|D)/

⎡
⎣|L j |∑

l ′=1

p([ j |A j
l ′ ]|D)

⎤
⎦ . (3.2)

If the number p of observed variables is extremely large and pmax is small, it is likely that the size of each
A j will also be much smaller than p − 1. Equation (3.1) implies that X j is conditionally independent of
XV \({j}∪A j ) given X A j . Hence the dependency networkD is sparse and embeds conditional independence
constraints that creates a parsimonious structure among the observed covariates. This structure reflects the
uncertainty of a particular choice of regressions associated with each variable through Bayesian model
averaging (Kass and Raftery, 1995). The parameters pmax, c and m of BMSS control the size as well as
the number of models in the lists L j .

BMSS can be used to perform an initial variable selection with respect to a response variable of in-
terest. The variables selected appear in the highest posterior probability regressions associated with the
response. We performed variable selection for the lymph node data and determined 60 explanatory vari-
ables that are predictive of LNPos (see Section 4.1). We subsequently constructed dependency networks
on this restricted set of 61 variables. However, the variable selection step is not required in our frame-
work. Our inference approach can be used on data sets involving an arbitrarily large number of variables
provided that enough computational resources are available. From a theoretical perspective, it is possible
to construct dependency networks involving all the 4515 variables in the lymph node status data, but such
an experiment was beyond our computing capabilities. There is always a good chance of missing relevant
associations by performing any kind of prior variable selection, hence the selection step should be avoided
if the required computing effort is not too daunting.

OnceD has been fully determined, we can sample fromD using an ordered Gibbs sampling algorithm
(Geman and Geman, 1984). Assume that the current state of the chain is x (t) = (x (t)

1 , . . . , x (t)
p ). For each
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j = 1, . . . , p, sample

x (t+1)
j ∼ p(X j |X− j = (x (t+1)

1 , . . . , x (t+1)
j−1 , x (t)

j+1, . . . , x (t)
p )), (3.3)

which gives the next state of the chain x (t+1). In (3.3), p(X j |X− j = x− j ) is given in (3.1). Sampling
from p(X j |X− j = x− j ) is performed as follows:

(i) sample a regression [ j |A j
l ] from L j with probabilities proportional with p∗([ j |A j

l ]|D,L j ) given
in (3.2).

(ii) sample a set of regression coefficients β j corresponding with [ j |A j
l ] from their posterior distri-

butions. If X j is continuous, we sample β j from the normal inverse-Gamma posteriors (A.2) and
(A.3). If X j is binary, we sample β j from the joint posterior (A.5) using the Metropolis–Hastings
algorithm described in the Appendix.

(iii) sample from p(X j |X− j = x− j , [ j |A j
l ], β j ) = p(X j |X A j

l
= x

A j
l
, β j ). If X j is continuous, we

sample from (A.1). If X j is binary, we sample from (A.4).

We remark that, given enough samples, we should have j1 ∈ A j2 if and only if j2 ∈ A j1 for any j1 �= j2.
This means that X j1 appears in the conditional of X j2 and vice versa. Bayesian model averaging is key in
this context because it eliminates the need to make an explicit decision relative to the choice of covariates
that appear in each conditional distribution. As such, the order in which we sample from the local proba-
bility distributions D should be irrelevant. We emphasize that the symmetry of the sets A j does not have
to be explicitly enforced.

The most important question relates to the existence of a joint probability distribution p(XV )
associated with the local probability distributionsD. Given a positivity condition usually satisfied in prac-
tice, a dependency network D uniquely identifies a joint distribution p(XV ) up to a normalizing constant
(Besag, 1974). If p(XV ) exists, it is unique andD is called consistent. If p(XV ) does not exist,D is called
inconsistent (Heckerman and others, 2000). Hobert and Casella (1998) study the more general case when
D is inconsistent but still determines an improper joint distribution. Arnold and others (2001) provide a
comprehensive discussion related to conditionally specified distributions. Related results are presented in
Gelman and Speed (1993) and Besag and Kooperberg (1995), among others.

The ordered Gibbs sampling algorithm can be used to sample from p(XV ) if D is consistent
(Heckerman and others, 2000). Unfortunately the output from the Gibbs sampler does not offer any indi-
cation whether D is indeed consistent (Hobert and Casella, 1998). We make use of the samples generated
from D only to estimate relevant quantities of interest, such as bivariate dependency measures. These
samples reflect the structure of D and do not necessarily come from a proper joint distribution p (XV ).

4. GENETIC NETWORKS

We show how construct a network associated with a vector of continuous and discrete random variables
XV . After learning a dependency network D as described in Section 3, we use the ordered Gibbs sampler
to generate a random sample D̃ from D. This random sample embeds the structural constraints implied
by D. We identify 2 different types of networks as follows:

(a) Association networks. Estimate the pairwise associations d(X j1 , X j2), j1, j2 ∈ V based
on D̃. Here d(, ) denotes Kendall’s tau, Spearman’s rho, or the correlation coefficient. We prefer us-
ing Kendall’s tau or Spearman’s rho because they measure the concordance between 2 random variables
(Nelsen, 1999). On the other hand, the correlation coefficient reflects only linear dependence. The edges
in the resulting association network connect pairs of variables whose pairwise associations are different
from 0.



Variable selection and dependency networks 631

(b) Liquid association networks. Li (2002) introduced the concept of liquid association to quantify the
dynamics of the association between to random variables X j1 and X j2 given a third random variable Y .
We denote this measure with d(X j1 , X j2 |Y ). The liquid association is especially relevant for pairs of ran-
dom variables with a low absolute value of their pairwise association d(X j1 , X j2). Such pairs will not
be captured in an association network. However, the association between X j1 and X j2 could vary signifi-
cantly as a function of Y . If Y is continuous, the liquid association between X j1 and X j2 given Y is defined
as the expected value of the derivative of dY=y(X j1 , X j2) with respect to Y , i.e.,

d(X j1 , X j2 |Y ) = E
[
d ′

Y=y(X j1 , X j2 |Y = y)
]
, (4.1)

where dY=y(X j1 , X j2) is the measure of association d(, ) between X j1 and X j2 evaluated for the samples
Y = y. Li (2002) proved that d(X j1 , X j2 |Y ) = E[X j1 X j2 Y ] if X j1 , X j2 and Y are normal random
variables with zero mean and unit variance, while d(, ) is the correlation coefficient, that is, d(X j1 , X j2) =
E[X j1 X j2 ]. If Y ∈ {0, 1} is a binary random variable, we define the liquid association between X j1 and
X j2 given Y as the absolute value of the change between the association of X j1 and X j2 for the samples
with Y = 1 versus the samples with Y = 0:

d(X j1 , X j2 |Y ) = |dY=1(X j1 , X j2) − dY=0(X j1 , X j2)|. (4.2)

As suggested in Li (2002), a permutation test can be used to assess statistical significance in (4.1) and (4.2).
We generate random permutations Y ∗ of the observed values of Y and compute the corresponding liquid
association score. The p-value is given by the number of permutations that lead to a score higher than the
observed score divided by the total number of permutations. The liquid association can be constructed
with respect to Kendall’s tau, Spearman’s rho, or the correlation coefficient.

Estimating the strength of pairwise interactions based on D̃ instead of the observed samples D leads
to a significant decrease in the number of edges of the resulting networks. Inducing sparsity in the network
structure is the key to identify the most relevant associations by shrinking most pairwise dependencies to
0. The inherent correlation that exists between the corresponding test statistics is significantly decreased,
thus the use of false discovery rate techniques to decide which edges are present in the network becomes
less problematic and avoids the serious multiple testing issues discussed in Efron (2007) and Shi and
others (2008).

The genetic networks (a) and (b) complement each other with respect to their biological significance.
For example, 2 genes that are directly connected in an association network are likely to be functionally
related since their expression levels are either positively or negatively associated (Butte and others, 2000;
Steuer and others, 2003). On the other hand, an edge between the same 2 genes in a liquid association
network means that the relationship between them is likely to be influenced by the gene or phenotype
with respect to which the network was constructed. These genes might be strongly coexpressed in one
experimental condition, while their expression levels could be unrelated in some other condition. The
identification of functionally related genes based on liquid association is discussed in Lee (2004) and Li
and others (2007).

4.1 Example: lymph node status data

We learn a dependency network involving LNPos and the 60 regressors (59 genes and tumor size) present
in the top 69 highest posterior probability models in R11. We employed BMSS with pmax = 11, c =
0.001, m = 1000, k1

max = 10 000, k2
max = 100 and 5 search replicates to learn the highest posterior prob-

ability regressions with at most 11 regressors for each of the 61 variables. We simulate 25 000 samples
from this dependency network with a burn-in of 2500 samples and a gap of 100 between 2 consecutive
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Fig. 3. Revelance of the 60 variables that appear in the association network for LNPos.

saved samples. We use the resulting 250 samples to estimate Kendall’s tau for any pair of the 61 covari-
ates. There are 326 pairs of variables having a value of Kendall’s tau different than 0 at a false discovery
rate of 1%.

Since it is generally believed that highly connected genes (hubs) play a central role in the underlying
biological processes, we express the topology of the resulting association network by the degree of each
vertex, that is, the number of direct neighbors. We sort the regressors in decreasing order with respect
to their degrees in this association network. We also sort them in decreasing order with respect to their
posterior inclusion probabilities with respect to LNPos. The 2 sets of ranks define the axes of Figure 3.
Therefore, this plot gives a 2-dimensional representation of the relevance of each explanatory variable
with respect to LNPos. We see that tumor size ranks high with respect to its predictive relevance but has
a smaller number of association with the 59 genes. The most interesting regressors have high ranks on
both scales. Three of them seem to stand out: CLDN5, LAT, and WSB1. Another relevant gene is RGS3:
it still has a high connectivity in the association network and it is the only gene with a posterior inclusion
probability of 1 for each pmax ∈ {1, 2, . . . , 15} (Table 2).

We use the simulated data from the dependency network to identify the pairwise interactions between
regressors that are dependent on LNpos. Figure 4 shows the 84 pairs whose p-value was below 0.05. We
see that LAT and WSB1 are connected in this liquid association network. Moreover, WSB1 is a neighbor
of tumor size. The other 2 neighbors of tumor size are ANKHD1-EIF4EBP3 and DMBT1. Our principled
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Fig. 4. Liquid association network for LNPos. Each edge corresponds with a pair of genes whose association differs
for low-risk and high-risk samples. This graph was produced with Cytoscape (http://www.cytoscape.org/).

Table 3. Relevant genes for LNPos as determined from predictive regression models, the association net-
work and the liquid association network

Gene Description Expression

RGS3 Regulator of G-protein signalling 3 Up
LAT Linker for activation of T cells Up
WSB1 WD Repeat and SOCS box-containing 1 Up
CLDN5 Transmembrane protein deleted in velocardiofacial syndrome Up
DMBT1 Deleted in malignant brain tumors 1 Up
ANKHD1-EIF4EBP3 Readthrough transcript Down

examination of the 2 genetic networks leads us to the 6 genes from Table 3. Five of them are upregulated
and one is downregulated.

This set of genes seems to be involved in various processes related to cancer. For example, RGS3
is upregulated in p53-mutated breast cancer tumors (Ooe and others, 2007). LAT plays key roles in cel-
lular defense response, the immune response and the inflammatory response processes. Archange and
others (2008) showed that overexpression of WSB1 controls apoptosis and cell proliferation in pancre-
atic cancer cells xenografts. CLDN5 is associated with schizophrenia (Ishiguro and others, 2008) and
human cardiomyopathy (Mays and others, 2008). It is also differentially expressed in human lung squa-
mous cell carcinomas and adenocarcinomas (Paschoud and others, 2007). DMBT1 could play a role in
the prevention of inflammation and if it is impaired could lead to Crohn’s disease (Renner and others,
2007). Moreover, DMBT1 might be involved in the suppression of mammary tumors in both mice and
women (Blackburn and others, 2007). The ANKHD1-EIF4EBP3 mRNA is a co-transcribed product of
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the neighboring ANKHD1 and EIF4EBP3 genes. ANKHD1 is overexpressed in acute leukemias (Traina
and others, 2006), while EIF4EBP3 is involved in the negative regulation of translational initiation.

5. DISCUSSION

The methodology we developed is relevant in 2 different albeit related areas. First of all, we proposed
a stochastic search algorithm called BMSS for linear regression models that explores the space of can-
didate models more efficiently than other related model determination methods. We showed how BMSS
performs for normal linear regressions and logistic regressions for several high-dimensional data sets. The
classifiers constructed through Bayesian model averaging from the set of regressions identified by BMSS
hold their performance for out-of-sample prediction. We do not discuss our choice of priors for regression
parameters because we believe that this is only one choice among many other choices available in the lit-
erature. Our priors work well for the applications described in this paper, but we would not be surprised to
see that other priors perform even better. We stress that our main contribution is the BMSS algorithm. Our
procedure can be employed with any other choice of prior parameters as long as the marginal likelihood
of each regression model can be explicitly computed or at least accurately approximated in a reasonable
amount of time. For example, regression models for discrete variables with more than 2 categories can
also be determined using BMSS.

Second, we proposed using BMSS to learn dependency networks that further determine sparse ge-
netic networks. The advantages of our approach are as follows: (i) the edges of the network are no longer
restricted to linear associations; (ii) any combination of continuous and discrete variables can be accom-
modated in a coherent manner; (iii) there is no need to assume a multivariate normal model for expression
data sets as required by the Gaussian graphical models; (iv) the approach scales to high-dimensional data
sets since the regression models associated with each variable can be learned independently – possibly
on many computing nodes if a cluster of computers is available; (v) sparsity constraints can be speci-
fied in a straightforward manner. Model uncertainty is explicitly taken into account when sampling from
the dependency network since we model the conditional distribution of each variable as a mixture of
regressions.
Complete source code, data, and sample input files are available for download from
http://www.stat.washington.edu/adobra/software/bmss/.
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APPENDIX A

A.1 Bayesian inference for normal regression

Let Y = X1 be a continuous response variable and X−1 = (X2, . . . , X p) be the vector of explanatory
variables. Denote by D1 the first column of the n × p data matrix D, by D(2:p) the columns 2, . . . , p of D.
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To keep the notation simple, we assume that all the explanatory variables are present in the regression
[1|(2 : p)] with coefficients β = (β2, . . . , βp). We center and scale the observed covariates such that their
sample means are 0 and their sample standard deviations are 1. We assume

p(Y |X−1 = x, β) = N (xT β, σ 2). (A.1)

The prior for σ 2 is p(σ 2) = IG((p+2)/2, 1/2) and, conditional on σ 2, the regression coefficients have in-
dependent priors p(β j ) = N (0, σ 2), j = 2, . . . , p. Dobra and others (2004) show that the corresponding
posterior distributions are

p(σ 2|D) = IG((n + p + 2)/2, (1 + DT
1 D1 − DT

1 D(2:p)M−1 DT
(2:p)D1)), (A.2)

p(β|σ 2, D) = Np−1(M−1 DT
(2:p)D1, σ

2 M−1), (A.3)

where M = Ip−1 + DT
(2:p)D(2:p). The marginal likelihood of [1|(2 : p)] therefore given by

p(D|[1|(2 : p)]) = �((n + p + 2)/2)

�((p + 2)/2)
(det M)−1/2(1 + DT

1 D1 − DT
1 D(2:p)M−1 DT

(2:p)D1)
−(n+p+2)/2.

Bayesian inference for logistic regression

Let Y = X1 be a binary response variable. We denote by Di the i-th row of the data matrix D and define
Di,p+1 = 1, for i = 1, . . . , n. The coefficients of the regression [1|(2 : p)] are β = (β2, . . . , βp) and
βp+1 – the intercept term. We center and scale the explanatory variables X−1 such that their sample means
are 0 and their sample standard deviations are 1. We assume that

p(Y |X−1 = x, β, βp+1) = B(1, g(β, βp+1, x)), (A.4)

with g(β, βp+1, x) = (1 + exp(−xT β − βp+1))
−1 and that the regression coefficients have independent

priors p(β j ) = N (0, 1), j = 2, . . . , p + 1. The posterior distribution of β is therefore given by

p(β, βp+1|D) = 1

p(D|[1|(2 : p)])
exp(l D(β, βp+1)), (A.5)

where

l D(β, βp+1) = − p

2
log(2π) − 1

2
(βT β + β2

p+1) +
n∑

i=1

[Di1 log(g(β, βp+1, Di )).

+(1 − Di1) log(1 − g(β, βp+1, Di ))],

and p(D|[1|(2 : p)]) = ∫
�p+1

exp(l D(β, βp+1))
∏p+1

j=2 dβj is the marginal likelihood. The Laplace approx-

imation (Tierney and Kadane, 1986) to p(D|[1|(2 : p)]) is

̂p(D|[1|(2 : p)]) = (2π)
p
2 l D(β̂, β̂p+1)[H D(β̂, β̂p+1)]

−1/2, (A.6)

where (β̂, β̂p+1) = argmax(β,βp+1)∈�p+1l D(β, βp+1) is the posterior mode and H D is the p × p Hessian

matrix associated with l D . The gradient of l D(β, βp+1) is hD(β, βp+1) = (hD
j (β, βp+1))1� j�p where
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hD
j (β, βp+1) = −β j+1 + ∑n

i=1(Di1 − g(β, βp+1, Di ))Di, j+1, j = 1, . . . , p. It follows that the entries

of H D(β, βp+1) are

H D
j,k(β, βp+1) =

n∑
i=1

(1 − g(β, βp+1, Di ))g(β, βp+1, Di )Di, j+1 Di,k+1 + δ jk,

where δ jk = 1 if j = k and δ jk = 0 if j �= k.
The posterior mode (β̂, β̂p+1) is determined using the Newton–Raphson algorithm that produces a

sequence (β0, βp+1) = 0, (β1, β1
p+1), . . . , (β

k, βk
p+1), . . . such that

(βk+1, βk+1)T = (βk, βk
p+1)

T + [H D(βk, βk
p+1)]

−1h D(βk, βk
p+1), k � 0.

Sampling from the posterior distribution p(β, βp+1|D) is done with the Metropolis–Hastings algorithm.
At iteration k, generate (β̃, β̃p+1)

T ∼ Np+1((β
k, βk

p+1)
T , H D(β̂, β̂p+1)). Set (βk+1, βk+1

p+1) = (β̃, β̃p+1)
with probability

min(1, exp(l D(β̃, β̃p+1) − l D(βk, βk
p+1))).

Otherwise set (βk+1, βk+1
p+1) = (βk, βk

p+1).
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