Skip to main content
. 2009 Jul 15;10(4):680–693. doi: 10.1093/biostatistics/kxp023

Table 2.

Simulations based on empirical data: a comparison of type I errors and power for various methods under 2 disease model in 500 simulations. Standard errors are given in parentheses. For the first model, we generate data for 800 cases and 800 controls with ORs 1.5, 1.75, and 2; for the second model, we generate data for 400 cases and 400 controls with ORs 1.25, 1.5, and 1.75

Method Type I error Power
OR = 1.5 OR = 1.75 OR = 2
Model 1 Single-locus scan 0.048 (0.010) 0.318 (0.015) 0.648 (0.015) 0.914 (0.013)
    Phase known Full haplotype 0.052 (0.010) 0.284 (0.020) 0.590 (0.022) 0.870 (0.015)
CLADHC 0.056 (0.010) 0.256 (0.020) 0.546 (0.022) 0.854 (0.016)
SHARE 0.050 (0.010) 0.336 (0.021) 0.654 (0.021) 0.928 (0.012)
    Phase unknown Haplotype score 0.035 (0.008) 0.288 (0.020) 0.544 (0.022) 0.863 (0.015)
SHARE 0.054 (0.010) 0.326 (0.021) 0.650 (0.021) 0.900 (0.013)
OR = 1.25 OR = 1.5 OR = 1.75
Model 2 Single-locus scan 0.046 (0.007) 0.176 (0.017) 0.608 (0.015) 0.916 (0.012)
    Phase known Full haplotype 0.046 (0.009) 0.184 (0.017) 0.616 (0.022) 0.920 (0.012)
CLADHC 0.062 (0.011) 0.138 (0.015) 0.548 (0.022) 0.882 (0.014)
SHARE 0.046 (0.009) 0.182 (0.017) 0.678 (0.021) 0.952 (0.010)
    Phase unknown Haplotype score 0.050 (0.010) 0.158 (0.016) 0.586 (0.022) 0.900 (0.013)
SHARE 0.044 (0.009) 0.190 (0.018) 0.666 (0.021) 0.942 (0.010)

The unscored disease-causing locus is best captured by haplotypes based on 2 tagSNPs.

Two tagSNPs separated apart carry disease risk additively.