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Abstract
We have previously reported spectral differences for cells at different stages of the eukaryotic cell
division cycle. These differences are due to the drastic biochemical and morphological changes that
occur as a consequence of cell proliferation. We correlate these changes in FTIR absorption and
Raman spectra of individual cells with their biochemical age (or phase in the cell cycle), determined
by immunohistochemical staining to detect the appearance (and subsequent disappearance) of cell-
cycle-specific cyclins, and/or the occurrence of DNA synthesis. Once spectra were correlated with
their cells’ staining patterns, we used methods of multivariate statistics to analyze the changes in
cellular spectra as a function of cell cycle phase.
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1. Introduction
Over the past few years, we have pioneered the use of methods of vibrational micro-
spectroscopy (MSP), infrared (IR-MSP) and Raman micro-spectroscopy (RA-MSP), to
monitor cell proliferation, both in human tissue, and individual cells. The motivation for this
work is the spectroscopic detection of disease (“optical diagnosis”). In order to differentiate
between normally-occurring cell proliferation and the uncontrolled cell division typically
found in cancer, we have studied the IR spectral differences between resting and dividing cells
[1,2]. Furthermore, we have reported the first IR spectra of live cancer cells in suspension [1,
3], and have explained the heterogeneity of cellular spectra of both normal and cancerous cells
[4,5]. Recently, we have reported spectroscopic images of cells during the sub-phases of
mitosis, using RA-MSP [6].

In this paper, we follow the qualitative interpretation [7] of cellular changes during the phases
of the eukaryotic cell division cycle with a more quantitative analysis of the same spectral
results, using methods of multivariate statistics. Thus, this study consists of acquiring spectra
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of cells at well-known time points of the cell division cycle, and analyzing these spectra by
mathematical methods that minimize the effects of spectral heterogeneity while emphasizing
the significant spectral differences. The spectral heterogeneity observed even for the most
homogeneous samples of cells is one of the major factors that has prevented a more detailed
understanding of cellular spectra, and has resulted in reports that were thought to be related to
disease, but were, in fact, due to the large variance of spectral results of individual cells.

To minimize the effects of spectral heterogeneity of individual cells, this study was designed
as follows: an exponentially-growing population of cultured cells was separated into pure (or
highly enriched) populations for each of the cell-cycle phases by mitotic selection. This
technique, described in detail previously [7], utilizes the fact that adherent cells detach from
the substrate on which they are grown during mitosis, and can be harvested. Thus, this
procedure yields cells of similar “biochemical” age, or phase of the cell cycle. This “age” was
further confirmed using immunohistochemical procedures that are specific for temporal
features intrinsic to the cell’s phase (i.e. G1, S or G2).

IR spectra collected for the nuclear regions of hundreds of cells of well-defined “age” were
subsequently analyzed by methods of multivariate statistics. We have shown before [4,5] that
principal component analysis (PCA) is a powerful, unsupervised method for testing a spectral
data set for the presence of discriminant features that classify the spectra. In particular, we have
shown that PCA can distinguish cells from different organs, species, or different state of health/
disease, even in the presence of uncorrelated spectral variations.

Furthermore, we have used a supervised method of multivariate statistics, Artificial Neural
Nets (ANNs), to classify the spectra as having originated from cells in G1-, S- or G2-phase
cell populations. ANNs have been applied to the classification of spectra with great success
[8]. These computational systems provide a correlation between input data to a set of desired
outputs, and can be trained to classify IR data with great accuracy and speed.

2. Experimental and computational procedures
Methods of cell culture, mitotic selection (or “mitotic shake-off”), post-mitotic incubation, 5-
bromo-2′-deoxyuridine (BrdU) labeling, cell fixation, sample preparation and spectral data
acquisition were reported previously [7]. For the analyses reported in this paper, we collected
spectra at 30 points in a (post-mitotic) time course spanning 30 h. IR spectra were collected
for at least 15 cellular nuclei at each time point. By setting the acquisition aperture of the Perkin
Elmer Spotlight Micro-spectrometer to straddle the cellular nucleus, approximately 10 μm on
edge, spectra dominated by nuclear features could be collected. Following data collection, cells
were subjected to immunohistochemical staining to determine their exact phase (biochemical
age) in the cell cycle. This staining produces a more accurate determination of a cell’s phase
in the cell cycle than the elapsed time since the last mitosis, since the duration of the cell cycle
phases may vary from cell to cell. Utilizing the combination of time since last mitosis along
with staining for phase-specific cellular events, affords the best determination of a cell’s
biochemical age.

As reported before, the immunohistochemical procedures consisted of treatment with three
primary antibodies. Rat monoclonal anti-5-Bromo-2′-deoxyuridine (BrdU) conjugated with
fluorescein isothiocyanate (FITC) (Abcam) was used to detect BrdU incorporated into the cell’s
nuclear DNA as a consequence of DNA synthesis during the S-phase of the cell cycle. Mouse
monoclonal anti-cyclin B1 (Abcam) and rabbit polyclonal anti-cyclin E (Abcam) and two
secondary antibodies, goat polyclonal anti-mouse conjugated with Alexa Fluor 360®

(Molecular Probes) and goat polyclonal anti-rabbit IgG conjugated with Texas Red®

(Calbiochem) were used to visualize cyclin B1 and cyclin E, respectively. The fluorophores
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attached to the antibodies were visualized via a Nikon Optiphot-2 microscope, as reported
earlier [7].

Raw IR spectra were truncated to a range of 1800–900 cm−1, baseline-corrected, and vector
normalized before being converted to second derivatives, and/or smoothed using a Savitzsky–
Golay smoothing algorithm. All multivariate analyses were carried out using second derivative
spectra. Once the cells were identified as belonging to a particular population (i.e. G1, S or
G2), as confirmed via immunohistochemical staining, their spectra were grouped according to
their population assignment.

To calculate variations in the populations, the second derivative spectra were first averaged
for each population. Each spectrum in the population was then subtracted from the population
average to create a “subtraction spectrum”. The subtraction spectra were then averaged for
each population to yield the variation plot of that population.

Principal Component Analysis (PCA) is a well-established chemometric method in which the
intensity covariance matrix, C, defined by

(1)

is diagonalized:

(2)

to yield the eigenvector matrix P, from which “principal components (PC)” Z are calculated
according to

(3)

In Eq. (1), Si(νk) represents a spectral intensity vector recorded at k frequencies νk. The off-
diagonal terms Ckl express the covariance between intensity values at wavelengths νk and νl,
summed over all spectra, i. The principal components Z can be viewed as a new (rotated)
spectral basis set constructed such that the first PC contains the largest variance in a data set,
and subsequent PC’s contain decreasing variance. The original spectra S can be expressed in
terms of the “new” spectra Z according to

(4)

“Scores plots”, expressing the composition of all spectra in a data set in terms of the “new”
PC’s according to Eq. (4) may be used to indicate whether or not spectra are related. If grouping
or clustering of spectra in these plots is observed, there exist systematic differences in the
spectra, which may be used for classification. PCA of the spectra was performed using software
written in-house and reported earlier [5].

Artificial neural nets are mathematical constructs, which can be represented schematically by
the graph in Fig. 1, and whose mathematical operation can be summarized by
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(5)

with the symbols defined below.

Input neurons, for example a spectral intensity vector S(j) consisting of nine intensity points
(peaks) and represented at the left in Fig. 1, are connected to a point marked by the open circle
by matrix elements representing a weight factor for each intensity input. These matrix elements
are indicated by the lines wij of different weights in Fig. 1. The resulting quantity ui, known as
the node response, is defined by

(6)

Since the input vectors S(j) may be quite different, ui may vary for each input vector S(j) to be
tested. Therefore, a sigmoidal response function f is applied which determines the boundaries
of response for a single neuron. The response function is of the form

(7)

For each of the possible classifications, yi, there will be a weight vector W with j entries. These
vectors W are established during the training phase of the ANN (see below), and are responsible
for the gross connection between certain spectral features, and the desired “diagnosis. The
summation point and subsequent response function shown in Fig. 1 form one node; the output
of a node can be the input of further nodes (hidden layers) if a multilayered net is constructed.

In the “winner-takes-all” (WTA) decision stage of the ANN, the largest element yi determines
which output is triggered. For WTA, classification depends on the highest output activation.
A minimum value for the winner typically is set to 0.7, and a minimum distance to the second
highest activation to 0.3. The “40–20–40” function applies a different winner decision-making
algorithm; the activation of one neuron must exceed 0.6 and all other activations of additional
classes must be below 0.4. If not, then the spectrum remains unclassified. A common problem
with different classification methodologies is the potential of misclassification due to undesired
or unexpected extrapolation. This occurs when the training and validation datasets are not
comprised of all classes or the entire range of features needed for a given classification problem.
In this case, any classification method, including ANNs, would not be successful for the given
problem. Neuro-Developer uses a distance value derived from the training and validation
dataset to determine an extrapolation problem. The allowed maximum distance of a pattern to
its corresponding class is calculated and set to 100. If, during classification of a pattern by the
ANN, the distance of the new pattern exceeds this distance, an extrapolation has occurred, and
the pattern is unclassified.

All ANN calculations were performed utilizing the Neuro-Developer® 2.5b (Synthon, GmbH,
Heidelberg, Germany) software. A three layer feed-forward network was constructed,
consisting of the input layer (the intensity vector S(νk)), a hidden layer, and an output layer
consisting of three neurons (G1, S and G2). The best network was found after testing different
layouts with varying numbers of inputs and hidden nodes. The optimum number of input nodes
(30) corresponds to the number of spectral data points with the highest covariance. This number
may appear small, given that the input vector contains 450 intensity data points. However,
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given the inherent bandwidth of IR spectra of cells, and the smoothing/derivative window
utilized (typically 11 to 13 points), the choice of 30 intensity points certainly appears
reasonable.

For network learning, an iterative resilient back propagation (Rprop) procedure was applied.
In the Rprop procedure, the first weight change update value, Δ0, was set to 0.1, and the
maximum range of update, Δmax, to 50. ANNs can be “over-trained” to the level of
incorporating features that are particular to the spectra of the cells in the training sample, rather
than typical characteristics of the spectral classes they represent. For this reason, independent
samples must be used to check that the net is properly classifying the cellular spectra. Thus,
the 457-spectral data pool was split into training, validation and test blocks, each containing
60%, 20% and 20% of the total data pool, respectively. The software’s internal algorithm was
used for testing different layouts, as well as varying the numbers of input and hidden layers.
This was the case for both the top-level and sub-level net optimization (see below). The training
process was stopped when the error of the validation data set reached the minimum. The best
network was chosen on the basis of having the lowest validation and training data set errors.
Subsequently, various single-cell IR spectra were used to test the trained ANN and perform
the classification.

3. Results and discussion
After staining for cyclin E (red fluorescence), cyclin B1 (yellow fluorescence), and
incorporated BrdU (green fluorescence), the fluorescence images of the cell pairs were matched
with the visible images collected during the IR micro-spectroscopy. The reason for analyzing
cell pairs only is the fact that all cells that survived the mitotic shake-off will appear as two
new daughter cells shortly (within 1 h) after reseeding them onto the slides. Fig. 2 shows the
typical staining pattern for each of the three cell populations (G1, S and G2). Positive red
staining for cyclin E indicates that the cells were in the G1 phase [9] at the time of fixation.
Cyclin E reaches its maximum concentration at the end of G1, and is quickly degraded during
the early S phase [10].

Since the thymidine analog BrdU is integrated into nuclear DNA only during DNA synthesis
during the S-phase, the positive green fluorescence staining for BrdU indicates that the cell
was actively synthesizing DNA at the time of BrdU incubation. Cells that exhibit a double-
staining positive for both incorporated BrdU and cyclin E are in the early stage of the S phase
when they were fixed, [9] typically 6–8 h after mitotic shake-off.

Cells that exhibit green fluorescence staining only were actively synthesizing DNA at the time
of fixation, but no longer contained enough cyclin E for detection. These cells were assigned
to the mid-late S-phase population, found typically 11–15 h after mitotic shake-off. As
indicated in Fig. 2, we grouped the cyclin E-positive/BrdU positive (early S phase) and the
cyclin E-negative/BrdU-positive cells (mid-late S phase) together into the S population.

The final group exhibited only positive yellow fluorescence staining for cyclin B1, indicating
that the cells contained enough cyclin B1 for detection, had completed DNA synthesis before
the BrdU incubation period and had yet to enter G1 phase. These cells were assigned to the G2
phase [9]. Cyclin B1 moves into or near the nucleus toward the end of the G2 phase and reaches
its maximum concentration at the G2/M phase junction, after about 18–20 h. Cyclin B1 is
degraded during the M phase [11]. A representative example of the staining pattern observed
for each of the populations is displayed in Fig. 2. The blue hues result from counterstaining
with 4′,6-diamidino-2-phenyindole dihydrochloride (DAPI) to visualize the location of the
nucleus.
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For the IR spectra of HeLa cells, the differences at the various time points of the cell cycle
manifest themselves mostly in changes of the amide I and II bands, and to a lesser extent, the
DNA bands regions at 1090 and 1235 cm−1. These changes are more evident in the second
derivative spectra, shown in Fig. 3. There is a large (~10 cm−1) shift in the amide I peak position,
accompanied by a shift in an amide I shoulder as the cells progress through the G1, S and G2
phases, indicative of changes in protein structures [12,13] found in the nucleus at different time
points [14,15]. Similar frequency shifts are observed in the amide II vibrations at 1538, 1540
and 1543 cm−1 for the G1, S and G2 phases, respectively. Furthermore, the amide II peak shows
a low frequency shoulder at about 1500 cm−1, that is barely evident in the absorption spectra
but becomes more prominent between G1, S and G2 phase. Finally, the peak at phosphodiester
peak at 1238 cm−1 is observed strongly in the average second derivative spectra of all
populations.

The spectral differences in the DNA peaks (at 1090 and 1235 cm−1) are relatively small for
HeLa cells, and certainly much smaller than the changes originally reported by us for leukemia
cells [2]. The larger spectral changes observed for the leukemia cells may have been due to the
fact that the much larger nucleus-to-cytoplasm ratio in the leukemia cells accounts for a much
stronger contribution to the spectra than in epithelial cells. Furthermore, the spectral
heterogeneity observed for all cultured and harvested cells was not understood at that time,
and may have contributed to the observed changes.

In order to emphasize the heterogeneity of the observed spectra (particularly for the S-phase),
we display in Fig. 4 variability plots, consisting of the average population plot minus the
average difference for the three groups of spectra (G1, S, and G2). Whereas the spectra of the
two gap phases, G1 and G2, show a relatively small variability from the average in the
populations, the S-phase spectra exhibit variations nearly an order of magnitude larger than
that seen in the gap phase (G1 or G2) spectra. This heterogeneity amongst the population occurs
both in the spectral features of protein (amide I and II) and in those of DNA (1090 and 1235
cm−1) among the spectra of cells of similar biochemical age. Such a spectral heterogeneity will
make the visual inspection of individual spectra nearly impossible, and requires the use of
methods of multivariate analysis for a meaningful interpretation.

This is demonstrated in Fig. 5, where scores plots of cellular populations are presented. Panel
A shows a separation between G1 and G2 stages, indicating that there are distinct spectral
differences between these groups. These PCA results were carried out for the amide I region
of the spectra (for the region 1598–1702 cm−1). The amide II region shows similar results, but
the separation becomes less pronounced when the entire spectral range of 800–1800 cm−1 is
used. This result confirms the conclusions drawn from Fig. 3 that there are systematic variations
in the amide I and II vibrations between G1 and G2 stages. This result is not too surprising,
considering that in G1, the proteins for DNA replication are synthesized, whereas in G2,
proteins for mitosis are synthesized.

However, the S-phase spectra do not form a distinct cluster, but span the entire PC3/PC2 space,
with much larger variance than the G1/G2 cells. This is shown in Panel B of Fig. 5. Thus, we
conclude that the heterogeneity of the S-phase spectra is large, and S-phase spectra cannot
easily be separated from G1 and G2 phase spectra based on the amide I/II band profiles.

PCA results indicate that sufficient spectral differences exist between G1 and G2-phase cells
to discriminate them with a supervised discriminant algorithm, such as a trained ANN. Due to
the heterogeneity of the spectra of the S-phase, separating of the three classes (G1, S and G2)
using a single-level ANN was not successful, even after varying the number of input neurons,
hidden layers and output neurons. The G1 and G2 classes were correctly identified, but the S-
phase spectra were misclassified. To remedy this, a hierarchical ANN topology was employed.
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In this topology, S-phase spectra are first separated from the gap-phase spectra (G1/G2). This
was accomplished using a network that utilizes intensity points determined by a covariance-
based feature selection, shown in Fig. 6 (black bars). This figure shows the wavenumber ranges
of greatest importance for the correct separation of these cell populations by their spectra. The
black bars indicate the wave-number range of highest of importance in separating the S-phase
population from the non-S-phase population of cell spectra, with the height of the bar indicating
the relative importance of that wavenumber to the correct separation via that subnet. The gray
bars are placed at the wavenumber of importance in separating the G1-phase cell spectra from
the G2-phase cell spectra (Table 1).

Subsequently, the gap-phase pool of spectra was separated into G1- and G2-phase spectra. The
intensity points used for this classification are given by the gray bars in Fig. 6. This hierarchical
network classified the three populations of the test set, consisting of about 90 spectra, correctly
with a sensitivity of 99%, a specificity of 96% and an accuracy of 97.5%. Rather than utilizing
the narrow frequency range employed for PCA, the network analysis was allowed to select
spectral features from the entire spectral range (800–1800 cm−1). Therefore, the spectral
features used for classification do not necessarily occur in the spectral regions expected from
visual inspection.

Although the concept of using supervised algorithms, such as ANNs, for classification of
spectral data of cells without knowledge of the “biochemical cause” appears perilous, previous
studies using ANN for classification of normal and bovine spongiform encephalopathy-
infected (BSE) bovine plasma samples have proven extremely successful [8]. Furthermore,
ANN-based analysis of IR spectra to elucidate drug action on cultured cells revealed spectral
patterns diagnostic for a given mode of action of a drug [10]. In both cases, the spectral changes
were too small to be detected or interpreted by visual inspection. Yet, the occurrence of minute
spectral differences in hundreds of spectra allow for their diagnostic use.

The main reason why ANN algorithms fail to correctly classify all the spectra is that the Rprop
algorithm is designed to deal with data comprised of Gaussian distributions. Nonetheless, it is
very robust in classification problems. With the advance of more spectroscopically oriented
statistical software, the failures could be overcome by applying ANNs based on the radial basis
function models, and error functions more attuned for these classifications problems, such as
cross-entropy methods.

4. Conclusions
We have shown that there exist small spectral differences between the infrared spectra of
epithelial cells in G1 and G2 stages. These differences are sufficient for a straightforward
classification by spectral methods, although the spectra of these two phases are very similar,
as reported earlier [7]. Spectra of cells in the S-phase, however, are much more different to
classify, since they exhibit large heterogeneity. Although cells exhibit immunohistochemical
markers indicative of DNA synthesis, their spectra may be very different from, or very similar
to the spectra of the gap phase (G1/G2) cells.
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Fig. 1.
Structure of a neural network.

Boydston-White et al. Page 9

Biochim Biophys Acta. Author manuscript; available in PMC 2009 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Identifying cell cycle populations using immunohistochemical staining. Columns from left to
right: Fluorescence image of cell pair, cell-cycle phase assignment, staining for cyclin E, BrdU
and cyclin B1. Top row: G1-phase population. Middle row: S-phase population. Bottom row:
G2-phase population.
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Fig. 3.
Average second derivative spectra collected from each of the identified populations: G1 phase
(top), S phase (center) and G2 phase (bottom). The vertical lines at 1650 and 1538 cm−1 indicate
the amide I and amide II peak shifts, respectively.
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Fig. 4.
Variation in FTIR-MSP over each of the cell populations. The average variation from the
average second derivative spectrum of the population for each of the three populations: G1
phase (red), S phase (green) and G2 phase (blue), plotted vs. a FTIR-MSP absorption spectrum
of a single cell (pink).
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Fig. 5.
PCA results of the amide I region (ca. 1600–1700 cm−1). Panel A: scores plot of G1- and G2-
phase populations. Panel B: scores plot of G1-, S- and G2-phase populations.
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Fig. 6.
Separating the gap-phase pool from the S-phase pool (black) and separating the G1-phase pool
from the G2-phase pool (grey), covariant importance vs. wavenumber for correct class
identification.
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Table 1
Results of ANN separation of G1, S and G2 classes of spectra

Sensitivity 99%

Specificity 96%

Accuracy 97.5%
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