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Age-related macular degeneration (AMD) is a leading
cause of blindness among elderly in developed nations [1].
AMD is a phenotypically heterogeneous disorder manifested
at an early stage by large drusen and pigmentary abnormalities
in retinal pigment epithelium (RPE). It progresses to an
advanced stage by atrophy of the RPE and photoreceptors of
the macula (geographic atrophy or dry AMD), or by the
development of choroidal neovascularization (CNV)
underneath the retina (neovascular or wet AMD) [2].

Polypoidal choroidal vasculopathy (PCV) is a
hemorrhagic and exudative macular disorder that is
characterized by the development of vascular networks with
terminal polypoidal lesions within the inner choroid [3]. PCV
is proposed to be a specific type of CNV [3,4] and much debate
exists as to whether they represent different entities with
distinct etiology or neovascular subsets within a common
etiologic pathway [5-7]. PCV occurs much more frequently
in Asians than in Caucasians, accounting for 54.7% of patients
with findings suggestive of neovascular AMD in the Japanese

Correspondence to: Naoshi Kondo, Department of Surgery, Division
of Ophthalmology, Kobe University Graduate School of Medicine,
7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Phone:
+81-78-382-6048; FAX: +81-78-382-6059; email:
nskondo@gmail.com

population [8], for 24.5% in the Chinese population [9], but
for only about 10% in Caucasians [3].

Numerous studies have presented evidence of a strong
underlying genetic liability in AMD [10,11]. A total of four
AMD risk loci have been identified with convincing statistical
evidence, including the complement factor H gene (CFH) on
chromosome 1q32 [12-17], the ARMS2/HTRA1 locus on
10q26 [18-23], the complement component 3 gene on 19p13
[24-28], and two neighboring genes on 6p21: complement
factor B, and complement component 2 [29-32]. These four
loci are associated with both types of advanced AMD:
geographic atrophy and neovascular AMD [16,22,25,29].

A large number of additional candidate susceptibility
genes have been studied, but findings from most studies are
inconclusive because of a lack of consistent replication [10,
11]. Kimura et al. [33] reported that a nonsynonymous coding
variant in the manganese superoxide dismutase (SOD2) gene
(V16A, rs4880) was significantly associated with neovascular
AMD in a Japanese population. However, a subsequent study
by Esfandiary et al. [34] on a Northern Irish population
reported no effect of the V16A variant on the risk of
developing neovascular AMD. A recent Japanese study by
Gotoh et al. [35] was also unable to replicate the initially
reported association; on the contrary, this group found a
significant negative association of the same allele with

Molecular Vision 2009; 15:1819-1826 <http://www.molvis.org/molvis/v15/a193>
Received 23 April 2009 | Accepted 2 September 2009 | Published 9 September 2009

© 2009 Molecular Vision

1819

Purpose: A nonsynonymous coding variant in the manganese superoxide dismutase (SOD2) gene (V16A, rs4880) has
been implicated in neovascular age-related macular degeneration (AMD). However, the findings have been inconsistent.
Two studies in Japanese populations reported an opposite direction of association of the same allele at the V16A variant,
whereas one study in a Northern Irish population found no effect of the variant on the risk of developing neovascular
AMD. To address these apparently contradictory reports, we validated the association in a Japanese population.
Methods: In a Japanese population, we genotyped the V16A variant in 116 neovascular AMD patients, 140 polypoidal
choroidal vasculopathy (PCV) patients, and 189 control participants. This association was also tested in a population of
PCV participants to avoid variable findings across studies due to underlying sample heterogeneity and because disease
phenotype was not well described in previous studies. We analyzed a tagging single nucleotide polymorphism (SNP) in
addition to the V16A variant to capture all common SOD2 variations verified by the HapMap project. Genotyping was
conducted using TaqMan technology. Associations were tested using single-SNP and haplotype analyses as well as a
meta-analysis of the published literature. Population stratification was also evaluated in our study population.
Results: We found no detectable association of the V16A variant or any other common SOD2 variation with either
neovascular AMD or PCV, as demonstrated by both single-SNP and haplotype analyses. Population structure analyses
precluded stratification artifacts in our study cohort. A meta-analysis of the association between the V16A variant and
neovascular AMD also failed to detect a significant association.
Conclusions: We found no evidence to support the role of any common SOD2 variations including the V16A variant in
the susceptibility to neovascular AMD or PCV. Our study highlights the importance and difficulty in replicating genetic
association studies of complex human diseases.
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neovascular AMD— I.E., this variant allele was significantly
protective against neovascular AMD.

To address these apparently contradictory reports, the
current study evaluated the association between the V16A
variant and neovascular AMD in a Japanese population. We
analyzed a tagging single nucleotide polymorphism (SNP) in
addition to the V16A variant to capture all common SOD2
variations verified by the HapMap project [36]. Therefore,
there was an increased coverage of this gene in our study as
compared to the two previous studies in Japanese populations,
which only examined the V16A variant [33,35]. We also
tested for their association with PCV because the disease
phenotype was not well described in previous studies [33,
35]. Particularly, the initial study by the Japanese group did
not consider the findings from indocyanine green (ICG)
angiography in their evaluation [33], which is the only way to
obtain a clear image of PCV lesions. This raises the possibility
that their cohort may have included a measurable amount of
PCV given its high prevalence in the Japanese population
[8]. It has been suggested that attention to phenotype
classification is a key aspect of genetic studies of AMD, to
avoid variable findings across studies due to underlying
sample heterogeneity [37]. Additionally, we performed a
meta-analysis to assess the overall effect of the V16A variant
on neovascular AMD across the different independent studies.

METHODS
Study participants: This study was approved by the
Institutional Review Board at Kobe University Graduate
School of Medicine and was conducted in accordance with the
Declaration of Helsinki. Written informed consent was
obtained from all participants. All case and control
participants enrolled in this study were Japanese individuals
recruited from the Department of Ophthalmology at Kobe
University Hospital in Kobe, Japan. The majority of
participants had participated in our previous studies [38,39]
in which phenotyping criteria were fully described. In brief,
all our neovascular AMD and PCV patients underwent
comprehensive ophthalmic examinations including ICG
angiography, and were defined as having angiographically
well defined lesions of CNV or PCV. The control participants,
who were not related to the case participants, were defined as

individuals without macular degeneration and changes such
as drusen or pigment abnormalities, and thus were categorized
as having clinical age-related maculopathy staging system
stage 1 [40]. The demographic details of our study population
are presented in Table 1.

Marker selection: To comprehensively and effectively cover
common variations in the SOD2 locus, we ran the Tagger tool
[41] from the HapMap project database [36] for the Japanese
in Tokyo (JPT) population. The minor allele frequency (MAF)
cutoff was set at 0.05; the r2 cutoff was set at 0.9; and the
Tagger Pairwise mode was used. Two SNPs, the V16A variant
(rs4880) and rs5746136, were selected for genotyping. On the
basis of the HapMap JPT data, these two SNPs captured all
seven HapMap SNPs in SOD2, with a MAF greater than 5%
and a mean r2 value of 1.0. Therefore, this set of two SNPs is
representative of the common genetic variations in SOD2
because it acts as a proxy marker for other untyped SNPs in
this locus.
SNP genotyping: Genomic DNA was extracted from
peripheral blood immediately after it was drawn using
QIAamp DNA Blood Maxi Kit (Qiagen, Valencia, CA)
according to the manufacturer’s instructions. Genotyping was
conducted using TaqMan® SNP Genotyping Assays (Applied
Biosystems, Foster City, CA) on a StepOnePlus™ Real-Time
PCR system (Applied Biosystems), in accordance with the
manufacturer’s instructions.
Statistical analysis: Testing for association was performed
using a software package PLINK v1.00 [42]. Deviations from
Hardy–Weinberg equilibrium were tested using the exact test
[43] implemented in PLINK. The two SNPs reported in the
present study did not show significant deviation from Hardy–
Weinberg equilibrium in neovascular AMD, PCV, or control
participants (all p>0.05). Single-marker association analyses
were performed using the χ2-test or Fisher’s exact test under
allele (1 degree of freedom, df), genotypic (2 df), dominant
(1 df), and recessive (1 df) genetic models. To adjust for
differences in age and sex between case and control subjects,
we performed logistic regression analyses using SNPStats
software [44], assuming an additive genetic model by fitting
age and sex as continuous and categorical covariates,
respectively. A p>0.05 was considered statistically

TABLE 1. CHARACTERISTICS OF THE STUDY POPULATION.

Groups Neovascular AMD PCV Controls
Number of subjects 116 140 189
Gender (male/female) 91/25 108/32 114/75
Mean age±SD (years) 75±7.2 73±6.9 72±5.8
Age range (years) 57–91 57–86 56–95

A total of 116 subjects with neovascular AMD, 140 with PCV, and 189 control participants were enrolled in the present study.
The gender breakdown, mean age, and age range of each population are shown. Abbreviations: age-related macular degeneration
(AMD); polypoidal choroidal vasculopathy (PCV); standard deviation (SD).
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significant. Measures of linkage disequilibrium (LD) and
haplotype association statistics were calculated using
Haploview software [45]. Omnibus tests of haplotype
associations were performed with PLINK.

Power calculations were conducted using QUANTO
version 1.2 [46]. Assuming an additive genetic model, we had
80% power to detect an association of the V16A variant with
an odds ratio (OR) ≥1.79 (or ≤0.47) for the neovascular AMD
sample, and ≥1.70 (or ≤0.51) for the PCV sample.

Hidden population stratification in genetic association
studies can generate a spurious positive or negative
association [47]. To prevent potential stratification in our
study cohort, population stratification was evaluated using
STRUCTURE software [48] as described in previous studies
[38,39,49,50]. The following 38 polymorphic SNPs, which
are not in LD with each other (r2<0.04), were used for this
analysis: rs3818729 (1p13.2), rs696619 (1p21.3), rs9434
(1p36.12), rs1554286 (1q32.1), rs13388696 (2p23.1),
rs1042034 (2p24.1), rs10932613 (2q35), rs7641926 (3p26.2),
rs2305619 (3q25.32), rs4074 (4q13.3), rs6876885 (5p15.1),
rs6459193 (6p11.2), rs3779109 (7p22.1), rs2227667
(7q22.1), rs6468284 (8p12), rs10757278 (9p21.3), rs955220
(9p24.3), rs1927911 (9q33.1), rs4838590 (10q11.22),
rs12806 (10q24.2), rs2019938 (11p15.5), rs609017
(11q24.3), rs3912640 (12p13.2), rs2283299 (12p13.33),
rs715948 (12q13.3), rs7328193 (13q12.11), rs1048990
(14q13.2), rs911669 (14q32.13), rs16948719 (15q22.31),
rs11076720 (16q24.3), rs1051009 (17p13.2), rs1292033
(17q23.1), rs7239116 (18q11.2), rs892115 (19p13.2),
rs3826945 (19p13.3), rs844906 (20p11.21), rs2825761
(21q21.1), and rs3884935 (22q13.1). The log likelihood of
each analysis with a varying number of populations (K) was
computed from three independent runs (20,000 burn-in and
30,000 iterations). The best estimate of K was defined by
calculating posterior probabilities (Pr,K=1, 2, 3, 4, or 5) based
on the log likelihood, as described by Pritchard et al. [51].

A meta-analysis was performed using R and StatsDirect
software (StatsDirect, Cheshire, UK). Data from our own
study and two earlier case-control studies performed by
Kimura et al. [33] and Gotoh et al. [35] were used for the meta-
analysis. The study by Esfandiary et al. [34] was not included
in the meta-analysis, because the allele and genotype data
were unavailable. A summary OR was calculated using the
random-effects model of DerSimonian and Laird [52].
Heterogeneity between studies was tested using Cochran’s Q
statistic [53,54] and the I2 statistic for inconsistency [53,54].
I2 is a measure of the proportion of total variation across
studies due to heterogeneity beyond chance. I2 is provided by
the formula I2=100% × Q − (k − 1)/Q, where Q is the
Cochran’s heterogeneity statistic and k is the number of
studies. The Q-test is known to have poor power if there are
few studies and is typically considered statistically significant
at p<0.1 [53,54]. On the other hand, I2 is unaffected by the

number of studies, and it is regarded as large for values >50%
[55].

RESULTS
We genotyped V16A (rs4880) to validate the previously
reported association and this SNP was supplemented by an
additional SNP rs5474613 to increase coverage of the
variations in SOD2. These two SNPs captured all common
SOD2 SNPs (MAF > 0.05) observed in the HapMap JPT
subjects with a mean r2 of 1.0. The allele and genotype counts
and results of single-SNP association analysis are given in
Table 2. Neither of the two SNPs showed a significant
association with either neovascular AMD or PCV in any of
the genetic models (all p>0.05; Table 2). Adjustment for age
and sex by logistic regression analyses under an additive
model did not affect this conclusion (neovascular AMD,
p=0.18 and 0.76 for rs4880 and rs5474613, respectively;
PCV, p=0.25 and 0.83 for rs4880 and rs5474613,
respectively).

The two SNPs genotyped were in moderate LD with each
other (D´=0.75) and haplotype association analyses were
conducted using these two SNPs. No significant haplotype
associations were found for either neovascular AMD
(omnibus p=0.51, 3 df; Table 3) or PCV (omnibus p=0.80,
3 df; Table 3).

Next, population stratification was evaluated by
STRUCTURE [48] using 38 unlinked genome-wide SNPs.
No evidence of stratification was found in our study cohort [Pr
(K=1>0.99)] indicating that population stratification did not
account for the results observed in the present study.

Finally, a meta-analysis was performed to assess the
association of the V16A variant with neovascular AMD
across the different independent studies. Association results
from our study (only neovascular AMD) and the two previous
Japanese studies [33,35] were combined using the random-
effects model of DerSimonian and Laird [52], and a summary
OR for the model was calculated based on the allele frequency
data. As shown in Figure 1, the heterogeneity test across
studies (Cochran’s Q statistic) was significant for this variant
(p=0.0014), and inconsistency of the genetic effects across the
three studies was high (I2=84.8%). No significant association
was detected for the V16A variant, with a random-effects
summary OR of 0.89 (95% CI, 0.47–1.67). Allele and
genotype frequencies of the V16A variant observed in the two
previous Japanese studies [33,35] are shown in Table 4.

DISCUSSION
To validate the previously described associations of the SOD2
V16A variant with neovascular AMD in Japanese populations
[33,35], we examined this variant together with an additional
SNP to increase coverage of the gene in an independent
Japanese population with neovascular AMD. These two SNPs
are perfect surrogates of all SOD2 SNPs identified by the
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HapMap project [36], and are representative of the common
SOD2 variations. We also tested for an association with PCV,
given the possibility that the study cohort in previous Japanese
studies might have had a measurable amount of PCV [33,
35]. We found no detectable association of the V16A variant
or any other common SOD2 variation with either neovascular
AMD or PCV by single-SNP or haplotype analysis.
Population structure analyses precluded stratification artifact
in our study cohort. A meta-analysis of the association
between the V16A variant and neovascular AMD also failed
to detect a significant association.

SOD2 plays a crucial role in the detoxification of
superoxide free radicals, which protects cells from reactive
oxygen species–induced oxidative damage [56]. Oxidative
stress is a hypothesized pathway for the pathophysiology of
AMD [56], and SOD2 is a reasonable candidate gene for the
disease. Kimura et al. [33] and Gotoh et al. [35] reported that
opposite alleles at the same variant V16A in the SOD2 gene
are positively associated with neovascular AMD in Japanese
populations. This phenomenon, referred to as “flip-flop”
associations, may serve as additional evidence of a true
genetic association in populations of different ancestry (i.e.,
when noncausal variants are tested, observed effects of the

Figure 1. Meta-analysis of the V16A variant for its association with neovascular AMD. Odds ratios (ORs, black squares) and 95% confidence
intervals (CIs, bars) are presented for each study. Also shown is the shaded diamond of the summary OR using the random-effects model of
DerSimonian and Laird [52]. The genotype data included in the meta-analysis refer to the description of Kimura et al. [33] and Gotoh et al.
[35]. Heterogeneity between studies was tested using Cochran’s Q statistic [53,54] and the I2 statistic for inconsistency [53,54]. Abbreviations:
AMD represents age-related macular degeneration.

TABLE 4. ALLELIC DISTRIBUTIONS OF THE V16A VARIANT REPORTED BY EARLIER STUDIES

Study group Kimura et al. Gotoh et al.
Subjects Case Control Case Control
Number of subjects 99 197 215 363

Genotype (%)
TT 59.6 67.5 81.9 73.8
TC 31.3 31.5 18.1 23.4
CC 9.1 1.0 0 2.8
Minor allele frequency (%) 24.7 16.8 9.1 14.5
Allelic P-value 0.020 - 0.0073 -

The genotype data in Table 3 refer to descriptions made by Kimura et al. [37] and Gotoh et al. [35]. Minor allele frequency of
the V16A variant in case subjects were widely divergent; much higher frequency of the variant allele was observed in the Kimura
et al.’s study.
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variants can vary between studies because of differences in
their correlation with other causative variants) [57].
Theoretically, flip-flop associations for a genuine causative
variant would not occur in samples of the same ethnic origin
and are often regarded as spurious findings [57].

Minor allele frequencies of the V16A variant in control
subjects were similar among the two earlier Japanese studies
and our own study: 16.8% in the studies by Kimura et al.
[33], 14.5% in Gotoh et al. [35], and 15.9% in the present
study. However, minor allele frequencies of the V16A variant
in case subjects were widely divergent; 24.7% in the studies
by Kimura et al. [33], 9.1% in Gotoh et al. [35], and 12.1% in
the present study. This inconsistency could possibly be due to
differences in case selection criteria. Given the possibility that
the original study might include a measurable number of PCV
subjects, the potential role of the V16A variant in PCV was
also explored in the present study. We found that the allele
and genotype distributions of this variant were very similar
between subjects with PCV and neovascular AMD, and the
association results were consistent across these two
phenotypes. Another possible reason for the much higher
frequency of the V16A variant allele observed in the initial
study is genotyping error. There are between-study
differences in genotyping methods. The initial study used
polymerase chain reaction restriction fragment length
polymorphism analysis to genotype this variant [33], whereas
we and Gotoh et al. [35] employed the TaqMan technology,
which is now a well established technology for genotyping the
V16A variant [58,59]. As shown in previous studies [60,61],
different genotyping technologies can yield inconsistent
genotyping results.

SOD2 maps to chromosome 6q25.3, a region that has not
been implicated in AMD by any genome-wide scans [10]. To
further validate its association, we accessed the NEI/NCBI
dbGAP database, which provides results of genome-wide
association study on 395 individuals with AMD and 198
controls from the National Eye Institute Age-Related Eye
Disease Study (AREDS). This study looked at three SOD2
SNPs, including the V16A variant and two other SNPs
(rs8031 and rs2855116), and found no significant association
(all nominal p>0.1), confirming our findings and those of
Esfandiary et al. [34].

In conclusion, we found no evidence to support the role
of any common SOD2 variation including the V16A variant
in the susceptibility to neovascular AMD or PCV. Our study
highlights the importance and difficulty in replicating genetic
association studies of complex human diseases. The only way
to have complete confidence in genetic association is by
conducting independent replications. Further replications will
allow a definitive conclusion regarding the etiological
relevance of this variant in AMD.
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