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Disease-causing mutations in the CLRN1 gene alter normal CLRN1
protein trafficking to the plasma membrane
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Purpose: Mutations of clarin 1 (CLRNI) cause Usher syndrome type 3 (USH3). To determine the effects of USH3
mutations on CLRN1 function, we examined the cellular distribution and stability of both normal and mutant CLRN1 in
vitro. We also searched for novel disease-causing mutations in a cohort of 59 unrelated Canadian and Finnish USH patients.
Methods: Mutation screening was performed by DNA sequencing. For the functional studies, wild-type (WT) and mutant
CLRNI genes were expressed as hemagglutinin (HA) tagged fusion proteins by transient transfection of BHK-21 cells.
Subcellular localization of CLRN1-HA was examined by confocal microscopy. The N-glycosylation status of CLRN1
was studied by using the N-glycosidase F (PNGase F) enzyme and western blotting. Cycloheximide treatment was used
to assess the stability of CLRNI1 protein.

Results: We found three previously reported pathogenic mutations, p.A123D, p.N48K, and p.Y176X, and a novel
sequence variant, p.L54P, from the studied USH patients. The WT HA-tagged CLRN1 was correctly trafficked to the
plasma membrane, whereas mutant CLRN1-HA proteins were mislocalized and retained in the endoplasmic reticulum.
PNGase F treatment of CLRN1-HA resulted in an electrophoretic mobility shift consistent with sugar residue cleavage
in WT and in all CLRN1 mutants except in p.N48K mutated CLRN1, in which the mutation abolishes the glycosylation
site. Inhibition of protein expression with cycloheximide indicated that WT CLRN1-HA remained stable. In contrast, the
CLRN1 mutants showed reduced stability.

Conclusions: WT CLRNI is a glycoprotein localized to the plasma membrane in transfected BHK-21 cells. Mutant
CLRNT1 proteins are mislocalized. We suggest that part of the pathogenesis of USH3 may be associated with defective
intracellular trafficking as well as decreased stability of mutant CLRN1 proteins.

Usher syndrome (USH) describes a group of autosomal
recessive diseases with bilateral sensorineural hearing loss
and visual impairment phenotypically similar to retinitis
pigmentosa (RP) [1-4]. Prevalence of USH in different
populations is estimated to range from 3.5 to 6.2 per 100,000,
thus making it the most frequent cause of combined deaf-
blindness worldwide [5]. The condition has been classified
into three clinical subtypes (USH1, USH2, and USH3), based
on the severity and progression of the hearing impairment,
presence or absence of vestibular dysfunction, and the age of
onset of RP [1]. This classification remains in clinical use,
although recent progress on the molecular genetics and
clinical research of USH has revealed broad genetic and
clinical heterogeneity [3,6]. Atypical forms of USH have been
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identified within all three clinical types, and there is
considerable overlap of symptoms among the subtypes. A
distinguishing feature of USH3 is the wide spectrum of
nonlinear progressive hearing impairment, which ranges from
a near normal to a severe audiometric phenotype [7]. USH3
patients may also have either normal or decreased vestibular
responses [8]. The rate of visual loss in USH3 is similar to
other USH subtypes [9], with the most recent analyses
suggesting that retinal degeneration in USH3 progresses more
rapidly than in USH2A [10,11]. The variable phenotype may
cause USH3 to be under-diagnosed and it may be more
prevalent than previously indicated [6].

To date, nine USH gene products have been identified:
the molecular motor myosin VIla (USHIB) [12]; the cell
adhesion proteins cadherin 23 (USHID) [13] and
protocadherin 15 (USHI1F) [14,15]; the scaffold proteins
harmonin (USHI1C) [16], SANS (USH1G) [17], and whirlin
(USH2D) [18]; the G-protein-coupled 7-transmembrane
receptor VLGR1b (USH2C) [19]; two isoforms of the
extracellular matrix connected protein usherin (USH2A) [20,

1806


http://www.molvis.org/molvis/v15/a192

Molecular Vision 2009; 15:1806-1818 <http://www.molvis.org/molvis/v15/a192>

21]; and the four-pass transmembrane domain protein clarin
1 (USH3) [22,23]. There is growing evidence suggesting that
these proteins form a network, which is critical for the
development and maintenance of the sensorineural cells in the
inner ear and the retina [3,4,24-28].

Since the original identification of the causative gene for
USH3 [22], the gene’s structure has been refined. The newly
defined CLRNI1 has three exons, encoding a 232 amino acid
protein [23,29]. Northern blot and reverse-transcription PCR
analyses indicate expression of different splice variants of
CLRNI mRNA in several tissues including retina, cochlea,
brain, and thymus [22,23,29]. In situ hybridization analyses
demonstrate Clrnl expression in mouse cochlear hair cells
and spiral ganglion cells as early as embryonic day (E) 16.5
[23,30]. The CLRNI protein is thought to be expressed in
mouse cochlea transiently from E18 to postnatal day (P) 6 in
basal parts of the hair cells, whereas in apical parts
(stereocilia) the CLRNI1 expression is lost already at P1. In
adult mouse retina CLRNI1 localizes to inner segments,
connecting cilia and ribbon synapses. The function of CLRN1
remains unknown; however, the spatiotemporal expression
pattern of CLRNI in hair cells implicates protein involvement
in synaptic maturation [31]. Structural and sequence
homology with the synaptic protein stargazin suggest a role
for CLRNI1 in the plasma membranes surrounding ribbon
synapses of the inner ear and retina [23]. In cell culture studies
CLRNI1 forms microdomains in the plasma membrane, affects
F-actin organization and induces lamellipodia formation,
implicating CLRNI1 involvement in actin cytoskeleton
regulation [28]. This hypothesis is supported by the
observation that Clrnl knockout mouse F-actin-rich hair cell
stereocilia are disorganized [28,30]. In mouse hair cell
cultures, however, CLRNI1 associates with tubulin and not
with actin, and localizes to post-transgolgi vesicles,
suggesting a potential function for CLRNI1 in vesicle transport
[31].

To date, USH3 has been described as the rarest of the
USH types worldwide. The availability of molecular
diagnosis is increasing the number of USH3 cases identified.
Interestingly, in unrelated Ashkenazi Jewish and Finnish
populations, USH3 comprises 40% of all the USH cases,
suggesting multiple founder effects [9,32]. Among Ashkenazi
Jews of European and North American descent, a ¢.144T>G
mutation is causative of the majority of the USH3 cases. This
mutation causes a substitution of asparagine to lysine
(p-N48K), and removes the single N-glycosylation consensus
site on the CLRNI1 protein [29]. The most common mutation
in Finland is ¢.528T>G, which is predicted to generate a
premature termination of the CLRN1 polypeptide (p.Y176X).
Eleven other CLRN1 mutations have been documented in
USH3 patients around the world. These mutations include c.
359T>A (p.M120K) found in four Finnish patients, c.368C>A
(p.-A123D) found in one French Canadian patient, ¢.449T>C
(p.L150P) found in one Ashkenazi Jewish patient, and c.
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459 461del (p.I153 L154delinsM) identified in two Italian
patients. The other seven known CLRN1 mutations have been
found in either single patients or isolated families with
predominantly European ancestry [8,11,18,22,23,29,32-34].

In this study, we sequenced the coding region of CLRN/
in 59 USH patients who had no known disease-causing
mutations. Furthermore, we examined intracellular targeting,
stability, and N-glycosylation of the aforementioned mutants
in addition to WT CLRNI using a transient transfection assay
in BHK-21 cells.

METHODS

Subjects: Patients diagnosed with USH were recruited
through the Ocular Genetics Clinic at The Hospital for Sick
Children in Toronto, Ontario, Canada and from Helsinki
University Eye Hospital, Helsinki, Finland. This study
followed the tenets of the Declaration of Helsinki.

Clinical examinations: The diagnosis of USH was based on
comprehensive  ophthalmological and  audiological
examinations including Snellen visual acuity, biomicroscopy
and fundus examinations, Goldmann visual field tests,
electroretinograms, and pure tone audiograms. When
possible, optical coherent tomography (OCT) was performed.
Mutation analysis: DNA samples of 40 unrelated Canadian
USH patients without previously known mutations and 19
USH patients diagnosed in Finland after 2001 were sequenced
for CLRNI mutation identification. Patients’ genomic DNA
was extracted either from fresh or frozen whole blood samples
with Puregene™ Genomic DNA Purification Kit (Gentra
Systems, MN) or from saliva with Oragene™ kits (DNA
Genotek Inc., Ontario, Canada). A total of 90 Centre d’Etude
du Polymorphisme Humain (CEPH) samples were used as
controls for assessing the pathogenicity of the novel change
found in this study from a Canadian USH patient. The three
exons and the exon-intron boundaries of the main splice
variant of CLRNI gene (GenBank accession NM 174878)
were screened for mutations by genomic sequencing. The
primers used for sequencing were: exon 0 sense 5'-CAG AAA
AGG AGA AAA GCC AAG-3'; exon 0 antisense 5'-CTG
GGA AGA GTC TGC CTA AA-3'; exon 2 sense 5-TCA
GAA GGATTT TAG TGA TGT TTG A-3'; exon 2 antisense
5-TCT TTT TGA CAT ATT GAA AAG CAC A-3'; exon 3
sense 5'-CCC TCT TCC CTG TCC CTT AC -3’; exon 3
antisense 5'- CCA CAT CTA AAA GTG ACC AAA GC-3'.
The amplification conditions were 95 °C for 5 min
(denaturation), then 30 cycles of 95 °C for 45 s, 60 °C (exon
2) or 55 °C (exons 0 and 3) for 45 s, 72 °C for 45 s, followed
by a final extension of 10 min at 72 °C. PCR products were
purified with Exo-SAP (USB, Cleveland, OH) and then
sequenced with an ABI2720 Automatic DNA sequencer using
the ABI PRISM BigDye® Terminator v3.1 Cycle Sequencing
Kit (Applied Biosystems, Foster City, CA). The sequences
were compared to the known CLRNI main splice variant
sequence (NM_174878).

1807


http://www.cephb.fr/en/
http://www.ncbi.nlm.nih.gov/nuccore/37622908
http://www.ncbi.nlm.nih.gov/nuccore/37622908
http://www.molvis.org/molvis/v15/a192

Molecular Vision 2009; 15:1806-1818 <http://www.molvis.org/molvis/v15/a192>

© 2009 Molecular Vision

Figure 1. Sequence conservation around
the p.L54P and p.A123D changes.
Amino acids conserved in evolution are
marked in bold, and mutations are
marked with red. Mutations are also
marked with an asterisk. Abbreviations:
Homo sapiens (HS), Pan troglodytes
(Pt), Bos taurus (Bt), Mus musculus
(Mm), Gallus gallus (Gg), Danio rerio
(Dr).

Construction of expression plasmids: Wild-type (WT)
CLRN1 construct was cloned into the phCMV3 Xi cloning
vector (Gene Therapy Systems, Inc., San Diego, CA) with C-
terminal hemagglutinin epitope YPYDVPDYA (HA-tag)
from the influenza virus A as recently described [28]. The
mutant cDNA constructs representing mutations/sequence
alterations p.N48K, p.L54P, p.M120K, p.A123D, p.L150P,
and p.1153_L154delinsM were generated by the QuikChange
site-directed in vitro mutagenesis kit, according to the
manufacturer’s protocols (Stratagene, La Jolla, CA). All
coding regions of the constructs were sequence verified.

Cell culture and transfections: BHK-21 cells (CCL-10,
ATCC) were cultured in Glasgow minimal essential medium
(GMEM, Sigma-Aldrich, St. Louis, MO) supplemented with
10% fetal calf serum (FCS; PromoCell™, Heidelberg,
Germany), Gibco™ GlutaMAX™ supplement (100x, L-
alanyl-L-glutamine, Invitrogen), 5% tryptose phosphate broth
solution (Sigma-Aldrich), and penicillin-streptomycin (100X,
Sigma-Aldrich, Germany). For transfection, cells were seeded
on 13 mm coverslips (Menzel-Gléser, Braunschweig,
Germany) in six well plates (Nunc™, Denmark) at a density
of 2x10° cells per well 20 h before transfection. Transfection
was performed with the FUGENE 6 Transfection Reagent
(Roche Diagnostics, Indianapolis, IN) following the
guidelines supplied by the manufacturer. Experiments were
performed 24 or 48 h post transfection.

Immunofluorescence imaging: WT and mutant CLRN1-HA
transfected cells were fixed with 4% paraformaldehyde (PFA;
pH 7.5) for 15 min before immunofluorescence staining. For
stability analyses, protein synthesis was stopped by adding
50 pg/ml cycloheximide (Sigma-Aldrich) and incubating
BHK-21 cells in it before fixation (as above). After fixation,
BHK-21 cells were permeabilized for 20 min with 0.2%

saponin (Sigma-Aldrich) in phosphate buffered saline (PBS;
137 mM NaCl, 2.7 mM KCI, 10 mM Na;HPQ,, and 1.5 mM
KH:PO, in distilled water, pH 7.4) containing
0.5% bovine serum albumin (BSA; Sigma-Aldrich).

Thereafter, the cells were incubated for 45 min

with a 1:700 dilution of monoclonal anti-HA
antibody (HA.11, MMS-101R; Covance, Berkeley, CA) and
either with a 1:50 dilution of plasma membrane antibody to
sodium potassium ATPase (ab7671; Abcam, Cambridge,
UK), or a 1:200 dilution of an ER antibody to protein disulfide
isomerase (PDI, spa-891; Stressgen, Victoria, Canada). Cy2-
and Cy3-conjugated secondary antibodies (Jackson
ImmunoResearch, West Grove, PA) were used to visualize
the primary antibodies. The cells were mounted with Gel/
Mount (Biomeda, Foster City, CA) and analyzed with a Leica
DMR confocal microscope with TCS NT software, or a Zeiss
Axioplan 2 microscope with AxioVision 3.1 software.

Western blot and deglycosylation analyses: Transfected
BHK-21 cells were harvested from six-well plates for western
blot analysis by scraping in ice-cold PBS supplemented with
protease inhibitors (Complete; Roche Diagnostics). Cells
were collected by centrifugation. These were lysed with
200 pl glycoprotein denaturing buffer (0.5% SDS, 40 mM
DTT; New England Biolabs, Ipswich, MA). Cells were further
homogenized by passage through a 21 gauge needle. Next,
2 pl of 10% NP-40 and 2 pl of 50 mM sodium phosphate
buffer, pH 7.5 (G7 Reaction Buffer) was added to the 15 pl
sample of the cell homogenate. Samples for deglycosylation
studies were treated with 0.5 pl (500 units/pl) of N-
glycosidase F (PNGase F; New England Biolabs) enzyme for
2 h at 37 °C. Samples were separated on a 12% SDS-PAGE
gel and transferred to a Trans-Blot® nitrocellulose membrane
(Bio-Rad, Hercules, CA). The membrane was immunostained
with a 1:1,000 dilution of monoclonal anti-HA antibody

1808


http://www.molvis.org/molvis/v15/a192

Molecular Vision 2009; 15:1806-1818 <http://www.molvis.org/molvis/v15/a192>

© 2009 Molecular Vision

Figure 2. Predicted membrane topology
of CLRNI. Disease-associated
mutations are marked; the frameshift
and nonsense mutations are marked
with red amino acids, missense
mutations are marked with blue amino
acids, and the deleted amino acids
replaced by an insertion are marked with
green. Transmembrane regions (1-4)
were predicted using a TMHMM2.0
program [36]. The mutations studied in
this article are marked with red.

(Covance) and a 1:1,000 dilution of polyclonal rabbit anti-
mouse IgG conjugated to HRP (DakoCytomation, Glostrup,
Denmark). Bands were visualized by SuperSignal® West
Pico Chemiluminescent Substrate (Pierce, Rockford, IL) and
captured on X-ray film (Kodak Biomax MR Film, Sigma-
Aldrich).

Bioinformatics: The theoretical molecular weights of
CLRNI1-HA polypeptides were calculated with the Protein
Molecular Weight Program [35]. The TMHMM2.0 program
was used for prediction of membrane spanning regions [36].

RESULTS

Sequence alterations in CLRNI: The sequencing of the
CLRN1 coding region from the 40 Canadian USH patients
revealed two previously published and one novel CLRNI
sequence alteration. The previously unreported c.161T>C
transition, found in heterozygous form, predicts a p.L54P
change. We did not find another CLRN! sequence alteration
in this patient, but the changed amino acid leucine is conserved
in evolution (Figure 1). Thus, the pathogenic nature of this
alteration was investigated further. A transition mutation c.
368C>A predicting a p.A123D change was identified in
homozygous form in a Canadian patient originating from

Dominica. The mutation changes another highly conserved
amino acid alanine to aspartic acid (Figure 1). This change has
previously been reported in a French Canadian patient [34]
and is very likely a mutation causing USH3. Neither c.
161T>C nor c.368C>A were found from the 90 CEPH control
samples nor the 19 Finnish patients we sequenced. The
Ashkenazi Jewish mutation (p.N48K) was detected in a
Canadian USH patient in homozygous form, and in a Finnish
patient in heterozygous form with the Finnish founder
mutation p.Y176X. The mutations identified in the present
study, as well as CLRN! disease-causing mutations identified
in patients in other studies (Table 1), are summarized on a
schematic presentation of the predicted CLRNI structure in
Figure 2.

Clinical findings in the patients whose mutations were found
in this study: The Canadian patient with a homozygous
p-N48K mutation was diagnosed with RP and hearing loss in
his late teens. At age 54, he had 5 degree visual fields with the
II14e stimulus. His best-corrected visual acuities were 20/30
OU (following cataract surgery). He had a mild to moderate,
downsloping sensorineural hearing loss and poor balance.
OCT showed small cystic macular changes at age 52 (Figure
3D). The Canadian patient with the homozygous p.A123D
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Figure 3. Optical coherence tomographs of anormal control and three USH3 patients. A: 32-year-old healthy control with visual acuity (VA)
of 20/20. B: 8-year-old USH3 patient with heterozygous p.Y 176X and p.N48K mutations and VA of 20/20. The arrow points to the region
of retinal thinning in patient’smacula. C: 35-year-old USH3 patient with homozygous p.A 123D mutation and VA of 20/25. The arrow points
to the schisis-like change in patient’s macula. D: 52-year-old USH3 patient with homozygous p.N48K mutation and VA of 20/30. The arrow
pointsto theintraretinal cysts. Scale bar represents 1 mm. 1811
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Figure 4. Cellular localization of WT
CLRNI1-HA protein in transfected
BHK-21 cells. In panels B and E the
cells were immunostained with HA
antibody (red). In panel A the cells were
immunostained with a  plasma
membrane specific antibody (green) and
in panel D with ER specific antibody
(green). The right-most panels (C and
F) show the overlay of both CLRN1-HA
and the organelle-specific double
staining.  Yellow-orange  staining
indicates an overlap of the CLRN1-HA
protein (red) and subcellular markers
(green). Cells were viewed with a
confocal immunofluorescence
microscope, magnification 63%. Scale
bar represents 10 um.

mutation had progressive sensorineural hearing loss that was
firstnoted atage 7. By age 32, her hearing loss was moderately
severe, sloping to profound hearing loss. She noticed
symptoms of RP atage 25, when her ERG was nonrecordable.
At 36, her visual fields were 12 degrees measured with the
[IT4e stimulus, and the best-corrected visual acuities were
20/25 OU. On OCT, there was a schisis-like change in her
macula (Figure 3C). Fundus changes were otherwise
characteristic of RP. The Finnish p.N48K/p.Y176X
compound heterozygous patient was diagnosed with
sensorineural hearing loss at age 7; testing revealed a U-
shaped audiogram. At age 8, his visual acuity was 20/20 OU.
He had slight mottling of the pigment in his peripheral fundi,
and his visual fields, measured with the V4e standard light,
were normal. His full-field ERGs were nonrecordable. On
OCT examination, the foveal thickness looked fairly normal
but there was thinning of the retina outside the central fovea
(Figure 3B).

Cellular localization of CLRN1-HA: To determine the cellular
localization of the CLRN1 protein, we cloned the transcript of
CLRNI (NM 174878) into a HA-tagged phCMV mammalian
expression vector. We generated mutant cDNA constructs by
the QuikChange site-directed mutagenesis kit. The mutant and
WT proteins were transiently expressed in BHK-21 cells.
Their refined cellular localizations were visualized by anti-
HA, anti-ER (protein disulfide isomerase), and anti-plasma
membrane (sodium potassium ATPase) antibodies, using
confocal immunofluorescence microscopy. WT CLRNI was
observed throughout the plasma membrane of transfected
cells (Figure 4A-C), but it also showed partial colocalization
with the ER marker (Figure 4D-F), indicating its normal
processing through the ER to the plasma membrane. In

contrast, all known mutant proteins analyzed colocalized
almost exclusively within the ER, suggesting that they are
retained therein and prevented from targeting to the plasma
membrane (Figure 5). The novel sequence alteration p.L54P
localized to the plasma membrane (Figure 6A-C) similar to
WT CLRNI1 (Figure 6D-F), and unlike the known mutation
p-N48K (Figure 6G-I). The biologic significance of the
p-L54P alteration found in a patient in heterozygous form
remains thus unclear.

Stability of WT and mutant CLRNI-HA polypeptides: We
studied the stability of the WT and mutant CLRNI1-HA
proteins by interrupting protein synthesis in transfected
BHK-21 cells by cycloheximide treatment and examining
how much protein remained after 4 h. WT CLRNI, the
p- 1153 L154delinsM and p.M120K mutants could still be
detected, while the p.N48K, p.A123D and p.L150P mutants
were almost completely absent (Figure 7). ER marker served
as a control. Stability of the marker was unaltered by
cycloheximide treatment (data not shown).

CLRNI-HA forms multimers: Based on computational
predictions, the molecular weight of WT CLRN1-HA with no
modifications is 26.81 kDa [35]. WT CLRN1-HA has a single
putative N-glycosylation site at amino acid position 48 [23,
28]. To study CLRNI1 glycosylation in vitro, we treated HA-
tagged WT CLRN1 and p.N48K mutated CLRNI
polypeptides produced in transiently transfected BHK-21
cells with PNGase F, an enzyme that removes all N-linked
oligosaccharide side chains from glycoproteins. Western blot
analysis of WT CLRN1-HA showed several bands ranging
from 23 up to 98 kDa (Figure 8, lane 1). After PNGase F
treatment, two major bands at 27 kDa and 48 kDa were
observed (Figure 8, lane 2). In contrast, PNGase F treatment
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Figure 5. Cellular localization of the disease-causing mutant CLRN1-HA polypeptides. The transfected BHK-21 cells were double
immunostained with HA antibody (red) in panelsB, E, H, K, and N showing thelocalization of mutant CLRN1-HA. In panelsA, D, G, J, and
M the cells were stained with the ER marker (green). The right-most panels C, F, I, L, and O show the overlay of the mutant CLRN1- HA
staining (red) and ER-specific staining (green). Y ellow-orange staining indicates colocalization of these stainings. Cells were viewed with a
confocal immunofluorescence microscope. Scale bar represents 10 pum.
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Figure 6. Cellular localization of the
p.L54P, p.N48K and WT CLRNI1-HA
polypeptides. The transfected BHK-21
cells were immunostained with HA
antibody (red) showing the localization
of WT CLRNI-HA (E), the novel
sequence alteration p.L54P mutated
CLRNI1-HA (B) and the known disease-
causing p.N48K mutated CLRN1-HA
(H). The same cells were
immunostained with plasma membrane
—specific antibody (green) in panels A,
D, and G. Double-staining shows that
WT CLRNI1-HA (F) and the p.L54P
mutated CLRNI1-HA (C) colocalize
(yellow) with the plasma membrane
marker whereas the known mutation
p-N48K (I) does not colocalize with the
plasma membrane marker. Cells were
viewed with a confocal
immunofluorescence microscope. Scale
bar represents 10 pm.

had no effect on p.N48K samples: the same 23,27, and 48 kDa
bands were observed in both PNGase F treated and untreated
samples (Figure 8, lanes 3 and 4). These results confirm that
CLRN1 is a glycoprotein like previously reported and that the
p-N48K mutation disrupts the protein’s single glycosylation
site [28]. The presence of a 48 kDa band suggests that CLRN1
has a tendency to form dimers. The other studied mutations,
p-M120K, p.A123D, p.L150P, and p.[1153 L154delinsM,
were glycosylated (Figure 8, lanes 7-16), and clearly showed
decreased molecular weights following PNGase F treatment.
Their glycoform patterns were, however, different from that
of the WT, probably reflecting their retention in the ER.

DISCUSSION

A total of 13 CLRN! mutations in more than 100 USH3
patients have been reported worldwide. The two most
common single mutations are the founder mutations p.Y 176X
in the Finnish population, and the p.N48K mutation among
Ashkenazi Jews [22,23,32]. The remaining 11 reported
CLRNI mutations occur in single, often consanguineous
families, and are not known to be widely distributed.
Therefore, it is not surprising that we found one p.N48K

homozygote among 40 Canadian USH patients, and one
compound p.Y176X/p.N48K heterozygote in Finland. The
p-A123D mutation was found in a Canadian patient
originating from Dominica. Interestingly, the same mutation
has previously been reported in a French Canadian USH1
patient [34].

Clinical studies of USH3 patients have failed to
determine any clear-cut genotype-phenotype correlations
while broad intrafamilial and mutational variety in the onset,
progression, and severity of symptoms are reported among the
largest patient groups, Ashkenazi Jews [11,32], and Finns [7,
9,10]. The homozygous p.A123D patient, the homozygous
p-N48K patient, and the combined heterozygous p.Y176X/
p-N48K patient reported in this study had what can be
considered typical USH3 phenotypes.

The CLRNI gene is predicted to encode a four-pass
transmembrane domain protein [23]. Our results are in line
with the previous observations that full-length WT CLRNI1 is
sorted to specific membrane compartments or to the cell
surface [28,31]. Interestingly, molecular masses of the
CLRNI1-HA polypeptides observed on our western blots
suggest that CLRN1 may form dimers and even higher order
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Figure 7. Stability of WT and mutant CLRN1-HA polypeptides in transfected BHK-21 cells. Cells were transiently transfected either with
WT or mutant CLRN1-HA cDNAs. At 48 h posttransfection protein synthesis was stopped by incubating the cells for 4 h in the presence of
50 pg/ml of cycloheximide. Cells were viewed with a Zeiss Axioplan 2 fluorescence microscope. The scale bar represents 50 pum.
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Figure 8. Western blot analysis of the
wild-type and mutant CLRNI-HA
polypeptides. BHK-21 cells were
transfected with the indicated HA-
tagged CLRN1 plasmids.
Nontransfected cells (0-BHK) were
used as controls. Polypeptides were
resolved on 12% SDS—PAGE, and anti-
HA antibodies were used to probe the
blots. Samples were untreated (-) or
treated (+) with deglycosylating enzyme
(PNGase F). The molecular weights of
the protein bands are indicated on the
left and right sides of the figure.

complexes. The function of the protein still remains unclear.
The eight other known USH gene products are hypothesized
to form an USH interactome with a role in the molecular
transport in the photoreceptor connecting cilium, and in the
development and function of cochlear hair cells [3,26-28].
The possible role of CLRNI1 in the USH interactome,
however, remains unclear.

Half of the known CLRNI mutations result in a premature
termination codon and are likely to lead to nonfunctional
proteins. Alternatively, the mutant mRNAs may be degraded
by the nonsense-mediated decay pathway [37]. To assess
pathogenic mechanisms of nontruncating mutations, we
studied consequences of four missense mutations (p.N48K,
p-M120K, p.A123D, and p.L150P), and that of the
p.I1153 L154delinsM mutation by expressing HA-tagged
mutant cDNAs in BHK-21 cells. We showed that all the
mutant CLRNI proteins studied are retained in the ER and not
trafficked to the plasma membrane. This is in line with the fact
that missorting and mistrafficking of membrane proteins is a
well-described mechanism of cell degeneration [38,39].

We also studied the stability of WT and mutant proteins
and found that all studied mutants were less stable than WT
CLRNI1-HA. The p.N48K, p.A123D and p.L150P mutants
degraded  more  rapidly than p.M120K  and
p.I1153 L154delinsM. A recent study with HEK-293 cells
shows that disruption of glycosylation site by p.N48K
mutation as well as removal of the N-linked sugar residue
from the WT-CLRNI1 both cause protein degradation,
suggesting that the incorrect glycosylation is the cause for
p-N48K mutated CLRN1 degradation [28]. Our study showed
that mutations other than p.N48K are glycosylated, yet
unstable. Therefore, it seems that glycosylation is not the sole
determining factor for destabilization of mutated CLRNI
proteins in general. The accumulation of mutated proteins that
cells inefficiently degrade may cause ER stress [40,41].
Retained as well as improperly processed mutant CLRNI
polypeptides are likely to cause ER stress, which in turn may
trigger apoptosis in retinal and cochlear sensory epithelia. In
a previous study, we showed that apoptosis is a probable

pathogenic mechanism in USH3, as apoptotic cochlear cell
destruction resulted from adeno-associated viral vectored
ribozyme-initiated knockdown of Cl/rn/ in the mouse cochlea
[42].

In summary, our results showed that CLRNI is a
glycoprotein that forms multimers in plasma membranes of
cultured cells. Further, we showed that instability and
defective routing of mutant polypeptides are critical aspects
of the etiology of USH3.
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