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Abstract
Purpose of review—Cancer cachexia is associated with marked alterations in skeletal muscle
protein metabolism that lead to muscle wasting and, in some cases, death. The inflammatory
response elicited by cancer is a likely, if not primary, mediator of these alterations. This review
focuses on the possible relationship between inflammatory signaling and altered amino acid
metabolism in cancer.

Recent findings—Loss of skeletal muscle in cancer patients can potentially be due to anorexia
and early satiety, reduced muscle protein synthesis, and/or increased muscle protein breakdown.
Inflammation has been associated with each of these mechanisms. Effects on appetite appear to be
mediated by the melanocortin system in the hypothalamus. Studies in animal models of cachexia
suggest that modulation of orexigenic and anorexigenic pathways in this system may improve
nutrient consumption. Inflammatory cytokines such as IL-6 and TNFα likely contribute to the
effects of inflammation on muscle protein metabolism through several pathways.

Summary—Limited studies in humans suggest that targeted anti-inflammatory and nutritional
interventions may ameliorate the net catabolic effect on skeletal muscle protein metabolism.
Future studies of the precise mechanism of muscle protein loss, as well as novel or combination
therapies to inhibit inflammation and promote anabolism, are warranted.
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Introduction
Cachexia is a multifaceted syndrome describing the loss of body mass as a result of both
accelerated catabolism of fat and skeletal muscle and anorexia. Cachexia does not simply
refer to a loss of body weight [1•] and can be differentiated from sarcopenia (age-induced
loss of skeletal muscle) and starvation (in which body mass loss is caused by nutrient
deficiency and preferential loss of adipose tissue occurs) [2]. In cancer cachexia, profound
inflammation is both a diagnostic characteristic [3] as well as a possible mechanism for the
accompanying anorexia and wasting. In the present review, we focus on the relationship
between cancer-induced inflammation and muscle wasting.
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Characteristics of cancer cachexia
Although descriptions vary, weight loss, anorexia, and inflammation are the cardinal
characteristics of cancer cachexia and are correlated with adverse outcomes [3]. Although
muscle weakness and fatigue are often present (e.g. 70–100% of cancer patients experience
fatigue [4]) in cancer patients and significantly impact quality of life, they are also common
in noncachectic cancer patients and thus may not be predictive of cancer cachexia [3].
Elevated resting energy expenditure has also been associated with cachexia and is thought to
be at least partially due to the acute-phase inflammatory response (as indicated, for example,
by increased circulating levels of C-reactive protein, fibrinogen, and white blood cells)
present in these patients [5•].

Although weight loss occurs in roughly half of cancer patients [5•], in cachexia, the weight
loss represents a marked loss of skeletal muscle and fat. Strictly speaking, cachexia
describes the manifestations (e.g. excessive loss of body weight, lean body mass, and
adipose tissue) of a process that was initiated at some point in the past. Accordingly, patients
who exhibit characteristics (e.g. systemic inflammation, anorexia) that are associated with
the state of cachexia as well as 5% or greater weight loss may be considered ‘precachectic’
[1•]. When the loss of body weight reaches 15% or greater the patient is in a frank cachectic
state [1•,6]. In cachectic patients, a loss of 25% of body weight represents an approximately
75% reduction in skeletal muscle protein [7]. The excessive weight loss of cachexia is an
ominous sign, with roughly 20% of cancer deaths attributed to cachexia [8]. Thus, early
identification of the factors predisposing an individual to cachexia is important for designing
potential therapies to reverse and/or prevent the catabolic process.

Possible causal relationships between inflammation and cancer cachexia
The idea that cancer and inflammation are linked has been around since the hypothesis of
Virchow in the 19th Century [9]. Apart from a role in cancer development and progression,
cancer-associated inflammation may contribute to the development of cachexia. As
inflammation is implicated in the elevated rates of muscle protein breakdown, reduced rates
of muscle protein synthesis, and reduced intake of amino acids due to cancer-induced
anorexia (Fig. 1 Fig. 1), it has been suggested to play a dominant mechanistic role in the
development of cachexia-induced loss of skeletal muscle [3,9,10••].

Anorexia
Inflammatory cytokines released as part of the cancer-induced inflammatory response act
upon the hypothalamus to limit food intake and thus the supply of amino acids to the muscle
[2,11••]. This effect is thought to occur as a result of increased stimulation of melanocortin
receptors in the hypothalamus [11••]. Reduced release of the orexigenic molecule
neuropeptide Y may also contribute to this response [2]. Interestingly, circulating levels of
the orexigenic hormone ghrelin are paradoxically elevated in cancer patients [12–14],
suggesting possible inflammation-induced resistance to its actions.

Impaired muscle protein synthesis
Inflammatory-mediated signaling may limit muscle protein synthesis by several
mechanisms. Inflammatory cytokines such as TNF-α and IL-6 are likely important in this
regard. TNF-α can activate the transcription factor NF-κB, which inhibits the synthesis of
the muscle-specific transcription factor MyoD, thereby inhibiting differentiation [10••]. As
discussed below, TNF-α also influences the anabolic mTOR signaling pathway. The
potential role of IL-6 in human cachexia has not received much attention; however, a recent
study found that skeletal muscle protein synthesis was dramatically reduced by relatively
low-dose IL-6 infusion in humans [15••].
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Myostatin is a negative regulator of muscle mass, inhibiting myogenic proliferation and
differentiation [10••,16••]. Animals and humans that lack myostatin exhibit markedly
increased muscle mass [16••]. The study of the role of myostatin in cancer cachexia is still in
its infancy; however, preliminary reports have described marked elevations in myostatin in
cachectic cancer patients [10••]. Animal models suggest that the inflammatory cytokine
TNF-α is at least partially responsible for this increase [17•].

As touched on above, inflammation initiates central anorexic pathways that limit dietary
consumption of nutrients. As amino acids, and perhaps leucine in particular, are required for
muscle protein synthesis [18•,19•,20••], the reduced availability of amino acids represents a
major contributor to the inflammation-induced loss of skeletal muscle mass in cachectic
patients. In addition to the reduced supply of amino acids, the anorexic response also
reduces the exposure to insulin, a potent stimulator of muscle protein synthesis [21].

The mTOR signaling pathway is a major mediator of anabolic responses in skeletal muscle.
Specifically, mTOR activation by insulin or amino acids activates the downstream targets
eukaryotic initiation factor binding protein 4E and ribosomal S6 kinase 1, which promote
translation initiation, and eukaryotic elongation factor, which stimulates elongation [18•].
Although more research is needed, limited human [22] and animal [20••] studies suggest that
mTOR signaling is inhibited in cancer cachexia. Multiple mechanisms may contribute,
including anorexia-induced reductions in amino acid intake as well as inflammatory
mediators such as TNF-α, which potentially oppose mTOR signaling by several means
[19•].

Recent work has identified dsRNA-dependent protein kinase (PKR), which is activated by
the tumor-secreted proteolysis-inducing factor (PIF), as a potential inhibitor of skeletal
muscle protein synthesis in cachexia [23••]. This effect is apparently because of
phosphorylation of eukaryotic initiation factor (eIF) 2, which in turn interferes with the
activity of eIF2B [23••] to promote translation initiation.

Stimulated muscle protein breakdown
Inflammatory stimulation activates pathways associated with muscle protein breakdown
[10••]. In cancer cachexia, the ubiquitin proteasome pathway is greatly influenced [10••].
Many of these effects are thought to occur through activation of NF-κB by upstream factors
such as TNF-α [10••] and PIF (acting through its stimulatory effect on PKR) [20••,23••].
NF-κB stimulates transcription of the ubiquitin E3 ligase muscle ring finger (MuRF)-1,
which is known to positively regulate activity of the ubiquitin proteasome pathway [10••].
Members of the Foxo family of transcription factors may also stimulate expression of
MuRF-1 and atrogin-1 [10••,24•,25]. Myostatin has recently been shown to stimulate
expression of ubiquitin proteasome pathway elements in an NF-κB-independent manner that
may involve regulation of Foxo [16••].

Although IL-6 has been considered as a procachectic inflammatory cytokine, it may reduce
skeletal muscle protein breakdown [15••]. However, as its effect to reduce protein synthesis
(see above) is greater than its effect on breakdown, the net response to IL-6 appears to be a
loss of muscle protein [15••]. Interestingly, IL-6 infusion increases whole body protein
turnover and reduces circulating amino acid concentrations, suggesting that profound effects
on nonmuscle tissues may influence the response in skeletal muscle [15••].

Notwithstanding evidence for upregulation of elements of the ubiquitin proteasome pathway
in cancer cachexia, we are not aware of studies in humans in which elevated rates of muscle
protein breakdown have been reported. On the contrary, some studies suggest that muscle
protein breakdown is unaltered by cancer in humans [26••,27]. In the study by Dillon et al.
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[26••], this was demonstrated despite increased skeletal muscle IL-6 and NF-κB and
systemic elevations of hs-CRP. Indirect measures of muscle protein breakdown in animal
models suggest activation of skeletal muscle protein breakdown during cachexia [10••],
although exceptions exist [28]. One possibility is that in animal models, in which the relative
tumor mass is greater than in humans, the tumor represents a large enough ‘sink’ for amino
acids that it effectively competes with skeletal muscle [29] and stimulates breakdown.
Another possibility is that humans with cancer spend longer periods throughout the day in
negative protein balance during the postabsorptive and postprandial periods than their
healthy counterparts. Whether this effect is more pronounced as a result of a diminished
synthetic response to a meal or enhanced protein breakdown due to the upregulation of
elements of the ubiquitin proteasome pathway is not known. Clearly, this is an area in which
further studies are warranted.

Therapeutic approaches
The inflammatory burden of cancer, with potential influences on appetite, muscle protein
synthesis, and muscle protein breakdown, presents a challenge to the development of
anabolic therapies. Cachectic patients often exhibit reduced appetite and early satiety,
hampering their ability to ingest amino acid-dense foods such as meats to stimulate muscle
protein synthesis. Further, cancer-induced inflammation appears to reduce the sensitivity of
skeletal muscle protein synthesis to amino acid supplementation [26••] and may increase
muscle protein breakdown [10••]. This tug-of-war kinetic scenario suggests that normal
intake of food containing amino acids, as well as supplemental amino acids for preventing or
reversing muscle loss could preferentially stimulate tumor growth [29] by stealing key
nutrients away from muscle tissue. Accordingly, there exist several options for therapeutic
intervention, namely anti-inflammatory treatments, appetite stimulation, anabolic agents to
stimulate synthesis, and various approaches to reduce proteolysis. These approaches could in
theory work in a synergistic manner to significantly ameliorate loss of skeletal muscle.

Anti-inflammatory treatments
If inflammatory signaling pathways are responsible for cachexia, then anti-inflammatory
agents should ameliorate the condition. Accordingly, a number of anti-inflammatory agents
have been tested for their potential to reduce the symptoms of cachexia. Eicosapentaenoic
acid (EPA), a naturally occurring fatty acid in fish oils, has been shown to inhibit
inflammatory responses. Animal studies using EPA have been promising, suggesting
significant benefit on maintenance of body weight and lean body mass [10••]. Consistent
with these findings, human studies have found beneficial effects of EPA on body weight,
lean body mass, appetite, and quality of life [30••,31]. However, other studies have found
marginal or no benefit [32]. Although a consensus on the use of EPA still does not exist, the
weight of current evidence suggests marginal benefit [32,33].

Pharmacological inhibition of the inflammatory response has been moderately successful.
Cyclooxygenase inhibition in cancer patients has been associated with improved survival
and preservation of adipose tissue [34,35]; however, loss of lean body mass was not
attenuated. Given the overlapping nature of inflammatory signaling, it seems likely that
combination treatments may be necessary to see positive effects on skeletal muscle mass.

Appetite stimulation
The inflammation-induced anorexia promotes a catabolic state by limiting the supply of
amino acids, limiting insulin exposure, and promoting an energetic state that does not favor
stimulation of mTOR signaling. Although human trials are lacking, promising results have
been obtained in animal models of cachexia through the use of melanocortin receptor
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antagonists [11••]. In these models, melanocortin inhibition has been shown to reduce both
the anorexia and hypermetabolism induced by implanted tumors, while preserving lean body
mass [11••]. Ghrelin, the only known circulating orexigenic factor, stimulates orexigenic
signaling by the melanocortin system [11••]. In an animal model of cancer cachexia, ghrelin
has shown promising effects on lean body mass and appetite, apparently through both
orexigenic and anti-inflammatory effects [36•].

Stimulation of muscle protein synthesis
Essential amino acids and leucine in particular are potent stimulators of muscle protein
synthesis in healthy individuals [36•]. Until recently, however, it was not known whether
this response is also present in cachectic skeletal muscle, in which inflammatory mediators
and impaired energetic status may limit the response to amino acids. Fortunately, recent
studies suggest that this response is also present in cachexia.

Dillon et al. [26••] tested the effectiveness of a 40 g balanced amino acid supplement in
patients with ovarian cancer. Notably, these patients exhibited evidence of marked
inflammation, with significantly increased levels of circulating C-reactive protein as well as
elevations in skeletal muscle TNF-α and IL-6. Despite this state of inflammation, as well as
ongoing treatment, the amino acid supplement improved skeletal muscle protein net balance.
This effect was achieved through stimulation of muscle protein synthesis, with no effect on
muscle protein breakdown. Notably, however, the anabolic response in these patients was
tempered relative to an age-matched control group.

These findings are complemented by a recent study in cachectic mice that also demonstrated
improved preservation of skeletal muscle mass in response to supplementation with
branched chain amino acids [20••]. This effect was apparently due to improved muscle
protein synthesis and a possible reduction in muscle protein breakdown [20••]. mTOR
signaling was enhanced, which should favor increased translation initiation. In addition,
phosphorylation of eukaryotic elongation factor 2 was reduced, consistent with a stimulation
of translation elongation. This study also suggests that PKR activity is modulated by
branched chain amino acids though induction of increased expression of protein phosphatase
1.

Biolo et al. [37] investigated the acute effects of BCAA on muscle protein metabolism in the
setting of the combined stresses of cancer and recovery from surgery and radiation therapy.
In this study, provision of a balanced mixture of amino acids had no effect on muscle protein
synthesis and breakdown. However, when an isonitrogenous supplement that was enriched
in essential amino acids was given, muscle protein synthesis was stimulated [37].

As insulin is anabolic to skeletal muscle and inhibits lipolysis, it is an attractive candidate
for treatment of cachexia. Accordingly, Lundholm et al. [38••] studied the response to
chronic insulin treatment (0.11 U/kg per day) in a large group of patients with assorted
malignancies. Notably, both the control group and the insulin-treated group of patients in
this study received anti-inflammatory treatment with indomethacin [38••]. Despite the
concomitant indomethacin treatment, insulin did not affect lean body mass, although it did
significantly increase body fat stores and survival [38••].

Biolo et al. [39••] also investigated the response to insulin. This study differed from the
Lundholm et al. study in that it examined the acute response to insulin given to maintain
euglycemia on the day after abdominal surgery in female cancer patients. In addition, the
circulating insulin concentrations of both the control (hyperglycemic) and insulin
(euglycemic) groups were higher than in the cancer patients studied by Lundholm et al.
[38••]. Insulin significantly stimulated muscle protein synthesis and did not affect muscle
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protein breakdown; thus, the net balance between synthesis and breakdown was improved
by insulin under these conditions.

Finally, testosterone is anabolic to muscle protein through stimulation of the IGF-1 pathway
[40]. Recent evidence suggests that testosterone also has anti-inflammatory properties,
making this hormone a therapeutic candidate for use in cachectic patients [41–43].

Inhibition of muscle protein breakdown
As noted above, there may be a discrepancy between indicators of ubiquitin proteasome
pathway activation and actual rates of muscle protein breakdown. Nevertheless, whether
muscle protein breakdown is actually stimulated by cancer-induced inflammation or not,
inhibition of breakdown represents a viable strategy for improving the net balance between
muscle protein synthesis and breakdown.

One agent that may reduce muscle protein breakdown is insulin [44••]. However, in the
study by Biolo et al. [39••] cited above, skeletal muscle protein breakdown was not reduced
by insulin treatment. In the Lundholm et al. study [38••], muscle protein breakdown in
response to insulin therapy was not measured; however, the lack of effect on lean body mass
suggests that insulin did not affect muscle protein breakdown [38••].

Testosterone is a hormone with well known anabolic effects. It apparently increases muscle
mass by reducing the loss of skeletal muscle amino acids, either by stimulating the
reutilization of amino acids released from proteolysis for protein synthesis or by reducing
the rate of muscle protein breakdown [45]. Thus, testosterone is an attractive candidate for
reducing loss of muscle mass in cachectic patients. However, to date, testosterone treatment
of cancer patients has not been reported.

Conclusion
Although the inflammatory burden of cancer exerts profound effects on skeletal muscle
protein metabolism, recent studies suggest that appropriate interventions may ameliorate
these responses.
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Figure 1.
Key signaling pathways between amino acids, inflammatory cytokines, and tumor-specific
factors gr1
Amino acids stimulate muscle protein synthesis through the mTOR pathway. Inflammatory
cytokines and tumor specific factors inhibit muscle protein synthesis and promote muscle
protein degradation.
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