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Abstract
A novel approach to integrating biochip and microfluidic devices is reported in which microcontact
printing is a key fabrication technique. The process is performed using an automated microcontact
printer that has been developed as an application-specific tool. As proof-of-concept the instrument
is used to consecutively and selectively graft patterns of antibodies at the bottom of a glass channel
for use in microfluidic immunoassays. Importantly, feature collapse due to over compression of the
PDMS stamp is avoided by fine control of the stamp’s compression during contact. The precise
alignment of biomolecules at the intersection of microfluidic channel and integrated optical
waveguides has been achieved, with antigen detection performed via fluorescence excitation. Thus,
it has been demonstrated that this technology permits sequential microcontact printing of isolated
features consisting of functional biomolecules at any position along a microfluidic channel and also
that it is possible to precisely align these features with existing components.
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1. Introduction
Point-of-care diagnostics is an emerging application area for microarray-based immunoassays.
To realise such devices it will be necessary to integrate biochip with lab-on-a-chip (LOC)
technologies. The former provides functions associated with biomolecular recognition, e.g.
specificity, sensitivity and multi-parametric analysis [1,2], whilst the latter allows
miniaturisation and integration of different components necessary to manipulate biological
fluids: filters, channels, pumps and mixers [3]. Combined, it will be possible to automatically
perform the various complex and time consuming processing steps, e.g. filtering, labelling,
and PCR detection, while at the same time, optimise the use of high value analytes, reduce
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reagent consumption and improve the overall device reliability [4]. The need to elaborate a
fabrication platform that is capable of merging both technologies is therefore evident.

Biochips can be manufactured by grafting biomolecular probes onto well demarcated areas on
glass, silicon, or polymer substrates by means of photochemistry, spotting [5], projection
without contact [6,7], microfluidics [8], dip-pen lithography [9] or microcontact printing
(μCP) [10-15]. Oligonucleotide or oligopeptide probes can also be synthesized in situ on the
substrate via photochemistry [16], spotting [17], projection without contact [6,18],
microfluidics [19] or μCP [20].

Among these techniques, μCP [21] attracts strong interest as a promising, low cost technique,
capable of patterning biomolecular features over a range of areas from several mm down to 50
nm [22]. Conversely, the resolution of spotting, projection and microfluidic methods are
limited to approximately 200 μm, 30 μm and 10 μm features respectively. Dip-pen lithography
and μCP are the highest resolution patterning methods but unlike dip-pen lithography, μCP is
carried out in a collective manner. In comparison with photochemistry, μCP is more flexible
as it does not require specific photoactive components: μCP is compatible with all kinds of
biomolecules, e.g. DNA, antibodies, proteins and enzymes [11-13,15,23] and also chemical
products used for in situ synthesis [20]. Therefore, for manufacturing biochips, it is anticipated
that μCP will be of very high interest.

However, to date the widespread implementation and application-oriented development of
μCP have been impeded by the lack of a fully dedicated, low cost and versatile instrument. We
have recently reported on the development of an automated microcontact printer [24] and as
the first example of application with this instrument, the fabrication of microfluidic structures
on glass substrates has been described [25]. The objective of this present work is to show the
potential of this machine in the field of nanobiotechnology and more precisely, to demonstrate
its ability to print biomolecules inside previously etched microfluidic channel. In contrast to a
recently described method [26], which focused on the same objective but deposited
biomolecules in a fairly non-specific manner (i.e. not only in the recessed areas but also on the
mesa regions of the device), our goal is to graft individual spots of antibodies with biomolecular
recognition capability at very precise locations within the channel. Moreover, in order to use
a stamp inked with only one kind of biomolecule, our intention is to perform the grafting
sequentially, that is to say, in a consecutive manner, one spot after the other with the resulting
advantage that contamination of the stamp with different biomolecules is impossible.

In this article, two proof-of-concept experiments are reported. In the first, isolated microcontact
features of antibodies were sequentially grafted by μCP at the bottom of a microfluidic glass
channel. Here, feature collapse due to excess compression of the PDMS stamp was avoided
by fine control of the load on the stamp during contact. A fluorescent antigen was delivered to
the resultant biomolecular spots by pressure driven flow or electroosmotic flow, so as to detect
the biomolecular interaction. In the second experiment, in addition to the printing of antibodies
at the bottom of the microfluidic channel, spatial localisation of the printed features is
demonstrated to an accuracy that in combination with integrated optical components permits
a LOC’s surface to be interrogated at numerous, strictly predefined locations. This makes the
implementation of biorecognition on LOCs feasible.

2. Microcontact printer overview
The microcontact printer is an automated, compact and low cost machine that has been
especially designed to perform complex surface chemistry operations. Since a detailed
explanation of the machine has already been published [24], only those features pertinent to
the current work will be described here.
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Figure 1 provides an overview of the microcontact printer, which is composed of the following
components:

- Computer controlled pneumatic actuator to push or pull the stamp holder.

- Mobile head to carry the stamp holder, which has a 48 × 23 mm working stamp area.

- Substrate holder with a substrate in place (we shall report here only on the use of
microscope slides).

- CCD camera.

- PC running LabView and Vision software packages from National Instruments.

A key feature of the microcontact printer is that the stamp’s movement is actuated by a
computer controlled pneumatic actuator until it makes contact with the substrate. Since the
actuator’s piston is not sufficiently stable to achieve reproducible movement in the micrometric
range, the stamp holder is mounted on a mobile head that is guided by a high accuracy,
miniature linear slide. A flexible coupler is placed between this mobile head and the piston to
transmit the movement and to compensate for any misalignment between the piston and the
axis of the slide. Such automation of the stamping procedure greatly simplifies the process and
improves reproducibility, allowing for the microprinting of adjacent or superimposable
patterns in a reproducible manner. This is the key for successful grafting of different
biomolecular patterns in a consecutive manner along a microfluidic channel, as shown later in
the text.

The substrate holder of the microcontact printer is designed in such a way that two sides of
any given microscope slide can be aligned with respect to a notch in the machine, thus
constituting the common reference for all substrates. Hence, subsequent slides can be loaded
and repeatedly stamped without changing the machine parameters. In this manner, the
exchange of substrates is a quick and simple procedure, and a series of microscope slides can
be microprinted in only a few minutes.

To achieve alignment between the substrate and stamp, the substrate holder has three degrees
of freedom, with two manual translation stages in the directions of the Y and Z-axes, which
possess a 2 μm resolution, and a manual rotation stage θX around the X-axis, with 0.1 mrad
resolution. Alignment is performed with a CCD camera placed behind the microscope slide
substrate that allows the operator to observe the contact between the stamp and substrate, and
also aids quality control during serial μCP of substrates since all contacts can be recorded and
analyzed by image processing.

The stamp holder has also been designed with a guiding fixture to facilitate rapid and
reproducible installation into the microcontact printer, thanks to a precisely machined cavity
into which the stamp holder locates itself. Hence, an exchange of stamps is also a quick and
simple procedure. This makes microprinting with different stamps (and/or products, if the same
stamp is successively inked with different products with intermediate washes) possible.

An important concern with the μCP technology is that the top of stamp can be unparalleled to
the substrate for several reasons (e.g. variation of stamp thickness and orientation) and that it
is necessary to flatten the whole working area of the stamp against the substrate. Also, the
mechanical link between the stamp and the machine may have some inherent flexibility that
is difficult to control during contact. Therefore, to solve all these problems, a head holding the
stamp has been implemented in the machine that can position the stamp in parallel to the
substrate with 0.003° of resolution by means of micrometric screws. In addition, the head has
an internal mobile part, a semifree connection with three degrees of freedom, which allows for
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compensation of the remaining difference in parallelism between stamp and substrate (if
necessary up to 14° yaw and pitch) [24].

3. μCP at the bottom of a microfluidic channel
In this work, the PDMS stamp has a special design in order to print at the bottom of a
microfluidic channel. The stamp geometry is defined in Fig. 2a, along with those parameters
important to the process, e.g. the initial stamp thickness L and the feature’s height h. The
stamp’s dimensions are 48 × 23 × 1 mm with a parallelepiped feature located centrally on one
face, possessing dimensions of 30 × 500 μm and a height of 25 μm, i.e. an isolated feature. The
whole stamp is inked with a specific antibody as explained below but only the parallelepiped
feature is put into contact with the bottom of the channel, as shown in Fig. 2b. To do so, it is
necessary to fine-tune the load exerted on the stamp. Indeed, this is a general concern for μCP
in order to avoid collapse of the stamp relief during contact [27,28]. The microcontact printer
addresses this point by utilising the two adjustable micrometric screws shown in Fig. 2b that
are set manually by the operator to a common length D (with reference to the substrate holder),
thereby, limiting the stamp’s compression during contact. The load applied by the piston is
distributed between the two screws and the stamp. In turn, the effective load on the stamp is
fixed by the value of D and is therefore, independent from the pressure in the piston or any
fluctuation of the applied load. The principle of operation is as follows. The stamp is pushed
by the piston until the displacement of the stamp holder is stopped by the two screws. If L is
the initial stamp thickness and e is the substrate thickness, then D must be adjusted so that e ≤
D ≤ e + L; if L’ is the thickness of the compressed stamp during contact then we have L’= D
- e. From an experimental point-of-view, stamp compression D is adjusted by the operator
when putting the stamp into contact with the substrate and checking the contact area with the
camera of Fig. 1. The length D is adjusted so that the compression L-L’ is sufficient to provide
contact between the parallelepiped’s top and channel bottom, but low enough to avoid any
contact between the stamp base and the substrate’s mesa (in practice, this is performed with
an an uninked stamp as explained in section 5).

In this work, the process of μCP is carried out on a glass substrate with microfluidic channels
70 μm wide and 20 μm deep Considering compression of the parallelepiped feature with a
height of 25 μm, then the machine is set up so that L - L’ ∼ 3 ± 1 μm and thus, the transfer of
antibodies is realised solely inside the microfluidic channel corresponding to the region in
contact with the parallelepiped’s outside surface, i.e. only one spot of antibodies is grafted
inside the microfluidic channel and nothing is transferred to the mesa region thanks to the
remaining gap (Fig. 2.b).

4. Experimental
A flow chart of the experimental procedure is presented in Figure 4. Steps “a” and “b” illustrate
fabrication of a microfluidic system with integrated optical waveguides. Separately, the stamp
used for μCP was prepared (steps “c” and “d”). Next, biomolecules were grafted in the
microchannel by μCP (step “e”), and the device sealed with a PDMS cover (step “f”). The
device was now ready for characterisation (step “g”). Below, each of these steps is described
in greater detail.

4.1. LOC fabrication
Chip fabrication starts with the creation of optical waveguides in the soda lime substrate [29]
(Corning #2947) (Fig. 4a). Briefly, a localised change in the refractive index of glass is realised
by the Na+/K+ ion-exchange method and hence, the waveguiding effect is achieved. The
process is carried out at a temperature of 380° C, in an environment of molten KNO3 salt and
its duration depends upon the required size of the resultant waveguide. For this work,
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waveguides with a width and depth of approximately 40 μm and 30 μm respectively, were
used. In those experiments that did not require integrated waveguiding optics, step “a” was
omitted.

The microfluidic system was fabricated utilising photolithography and wet chemical etching
methods [29]. In brief, a chromium/photoresist layer was used as a masking film and a mixture
of buffered oxide etchant (BOE), hydrochloric acid (37%) and water in the proportion of (1:2:2)
was used as an etching agent. The resultant microfluidic channels were 70 μm wide and 20
μm deep (Fig. 3b), and formed a cross with a 60 mm long sample separation channel, intersected
with a 10 mm long sample injection channel. All channels terminated with a cylindrical
reservoir of diameter 250 μm. Prior to μCP, the microfluidic glass substrate was cleaned in a
Piranha solution (H2O2:H2SO4 1:3) for 10 minutes and then dried with nitrogen. The substrate
was functionalised by immersing it into a mixture containing 95% acetone, 3% H2O and 2%
aminopropyltriethoxysilane (APTES). The substrate was incubated in this solution overnight
at room temperature, then cleaned with acetone and dried under nitrogen.

4.2. Master fabrication and stamp moulding
A 4-inch <100> silicon wafer (Siltronix) with a 2 μm thermal SiO2 layer was cleaned in a
Piranha solution for 2 minutes, rinsed with deionised water for 10 minutes, dried with nitrogen
gas and baked at 100° C. A photoresist layer (AZ5214E) was deposited by spin coating at 5,000
rpm for 30 seconds and then baked at 120° C for 2 minutes 30 seconds. The resin was exposed
to UV and the wafer then dipped into developer AZ726 MIF for 50 seconds, dried under
nitrogen and baked at 120° C for 2 minutes 30 seconds. The SiO2 layer was etched with BOE
7:1. The silicon was etched in RIE plasma (Alcatel Nextral 110 system, Cl2 20 sccm, 250 W,
100 mTorr), with the etch rate of 20 nm/s.

Prior to stamp moulding, the master was immersed in 10-3 M octadecyltrichlorosilane for 10
minutes to facilitate demoulding. The PDMS stamp was then prepared from Rhodia, RTV 3255
kit by mixing 5 g of PDMS prepolymer with 0.5 g of its curing agent and pouring the degassed
mixture onto the master. The stamp was baked for 36 hours at 40° C, rinsed with ethanol and
dried under a stream of nitrogen.

4.3. Preparation of antibodies and antigen
Performance of the LOC device was evaluated with an application concerning the detection of
cystein proteinases from Porphyromonas gingivalis. The Gram-negative anaerobic bacterium,
P. gingivalis, plays an important role in the development and progression of periodontal disease
[30,31]. For example, it is an important etiologic agent for adult periodontitis, a common
inflammatory disease of tissues supporting the teeth that ultimately leads to tooth loss [32,
33]. A monoclonal antibody that recognises specifically one of the gingipains, RgpB, has been
previously produced and employed to detect infections with P. gingivalis [31]. For proof-of-
concept, two patterns of this monoclonal antibody were printed inside the LOC channel: one
with fluorescent Cy3-labelled monoclonal antibody (Ab*) and the second with unlabelled
monoclonal antibody (Ab).

Prior to μCP, Ab*, Ab and the Cy3-labelled antigen (Ag*), must first be activated. This was
achieved using 42.5 μL of the selected protein with 5 μL of N-Hydroxysuccinimide (NHS) at
10 mM, and 2.5 μL of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
(EDAC) at 20 mM. The solutions were left to rest for one hour at room temperature. The LOC
was printed with Ab and Ab* according to the protocol discussed in section 5. The substrate
was then washed with Phosphate Buffered Saline (PBS) (diluted ten times) for 5 minutes and
rinsed with deionised water to remove any unfixed protein. Next, the substrate was dipped in
a blocking solution of bovine serum albumin (BSA) to saturate the NH2 sites on the
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functionalised glass. Without this step, non-specific binding of the fluorescent antigen to the
substrate’s surface would occur resulting in the entire channel fluorescing. The substrate was
then washed to remove surplus BSA. To confirm that the antibodies had been successfully
grafted at the desired locations, the substrate was dried and a fluorescence image was acquired
(Genepix Personal 4100A Axon Scanner) with an excitation at a wavelength of 532 nm.

4.4. LOC enclosure
Following substrate functionalisation and deposition of the biomolecules via μCP, the LOCs
channels were enclosed with a thin PDMS sheet [34] (Fig. 4f). Sample reservoirs were made
over each reservoir with a hole-punch of approximately 2 mm outer-diameter. The device was
now complete and ready for use.

4.5. Immunoassay protocol
To perform the proof-of-concept immunoassays, the LOC’s channels were filled with the
fluorescent antigen: either by pressure driven flow with a syringe used to pump the antigen
from one reservoir and through the channel to its opposite reservoir; or via electrokinetic flow
by introducing a drop of antigen into a reservoir and displacing it along the length of the channel
using an electric field of 350 V/cm. Following an incubation time of 30 minutes, the substrate
was washed with PBS for 10 minutes, then with a PBS-Tween (0.1 %) solution for 10 minutes.
The LOC device was then opened by simply pealing off the PDMS cover, the channels washed
and dried. For LOC devices without integrated waveguides, a second fluorescence image was
acquired using the fluorescent scanner at a wavelength of 532 nm. For LOC devices with
integrated optical waveguides, the protocol for printing antibodies Ab* and Ab into the
microfluidic channel was followed as described above, however the method of fluorescence
excitation and detection was different. Here, the LOC was placed in a fluorescent BXFM
Olympus microscope equipped with a 100 mW doubled YAG laser excitation source
(wavelength 532 nm) and the resultant fluorescence image collected with a digital camera. The
laser’s excitation beam was coupled with a monomode optical fibre (core diameter of 3.5 μm)
and then, with the use of the x-y-z positioner, aligned and injected into the waveguide of the
chip. The beam was divided at a Y-junction and guided to the microfluidic channel, where the
fluorescent light was collected at right angles with respect to the excitation beam.

5. Results
In this work, the patterning of Ab and Ab* was performed sequentially, that is to say, in two
printing operations: the first print with Ab* and the second print with Ab. The same stamp was
used for the two prints with an intermediate stamp washing. To separate the patterns the
substrate was translated along the microfluidic channel between the two printing operations
by means of the Y-Z translation stages of the substrate holder (travel range of 5 mm), and its
rotation θx around the X axis [24]. Importantly, before each printing, it was necessary to
laterally align the stamp’s feature with the microfluidic channel of the substrate and to adjust
the stamp compression during contact, thereby ensuring that the stamp feature was only in
contact with the bottom of the channel. This was performed via observation of the contact aided
by the CCD camera, during several back and forth stamping cycles [24]. To do so, the machine
was set up with an uninked dry stamp to avoid contamination of the substrate according to the
following steps (Fig. 1):

i. Alignment in Y, Z and θx of the substrate’s features with the stamp.

ii. Coarse adjustment in θx and θY of the stamp-substrate parallelism.

iii. Adjustment of the contact load on the stamp by means of the screws depicted in Fig.
2 (with the pressure on the piston set at 2 bars in this work).
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Next, the stamp was inked with a droplet of Ab* whilst still positioned in the microcontact
printer, dried with nitrogen, and automatically pushed with the actuator against the substrate,
so as to transfer the first pattern of biomolecules. The contact time was determined by the
operator (30 s). By reversing the air flow in the piston, the stamp was released from the substrate
and sent back to the starting position. The stamp was then removed from the microcontact
printer and cleaned. The machine was set up for the second time with the same uninked stamp,
but the next contact point was translated along the microfluidic channel by means of the
substrate holder’s displacement stages. The stamp was inked with a droplet of Ab and dried
with nitrogen. Printing of the second pattern of biomolecules was performed as described
previously.

5.1. μCP of two antibodies inside a microfluidic channel
In this experiment, a plain substrate (i.e. no optical waveguide) was used. Figure 5 depicts the
nominal position of the printed features relatively to one another and to the microfluidic
channel. The distance between the two imprinted areas was 250 μm. As expected, prior to
execution of the immunoassay, only fluorescence from Ab* was detected and the presence of
Ab was not revealed (Fig. 6a). This latter biomolecule was only detected after introduction of
the fluorescent antigen, Ag*, due to the subsequent generation of Ab/Ag* and Ab*/Ag*
complexes (Fig. 6b). Significantly, the absence of fluorescence in the non-printed area of the
channel was indicative that the washing protocol was efficient enough to remove any non-
specific absorbed Ag* and also that the antibodies were sufficiently well grafted to the substrate
to withstand such rinsing. Hence, it has been shown that the microcontact printer allows the
sequential transfer of individual stamp features within microfluidic channels, without collapse
of the stamp.

5.2. μCP of two antibodies inside a LOC channel at the intersection with two optical
waveguides

In the previous experiment, spots of antibodies were printed at arbitrary locations along the
microfluidic channel’s axis. Without using the microcontact printer, the “traditional” approach
would have been to print the biomolecules on a flat substrate (e.g. microscope slide) by manual
μCP and to assemble a microfluidic chamber made of a PDMS cover with microfluidic channel
on top of the device. Here, our objective was to print one feature of Ab* and one feature of Ab
within the existing microchannel, precisely in front of two optical waveguide intersections that
originate from a Y-junction. This is an example of a device which cannot be easily obtained
by a combination of printing and assembling since the optical waveguides are integrated in the
glass substrate and intersect the microfluidic channels. Figure 7 shows a plan view of a LOC’s
microfluidic channel and waveguide intersection area. The distance between waveguide
intersections along the channel was approximately 1400 μm. Figure 8 depicts the nominal
position of the printed features relatively to one another, the microfluidic channel and the Y-
junction waveguide intersections.

As shown in Fig. 9a, only one fluorescent spot corresponding to Ab* was observed immediately
following μCP. Following the application of Ag* via electrokinetic flow and the subsequent
washing steps, two fluorescent spots were visible, the second spot corresponding to the Ab/
Ag* complex (Fig. 9b).

This result confirms the successful printing of two discrete patterns of antibodies inside the
same microfluidic channel and in precisely defined locations, so that an antibody-antigen
immunoreaction can be initiated on-chip and detected by fluorescence excitation. Moreover,
the excitation beam originates from a single light source that has been redistributed across the
LOC via integrated optical waveguides. Interestingly, fluorescence from biomolecules
deposited at the bottom of the microfluidic channel is easily excited by light coming from the
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lateral intersecting waveguides, without the need for sophisticated optical coupling between
the waveguide and microfluidic channel.

6. Concluding remarks
Among the several strategies that are possible to print different biomolecules on the same
substrate [24], the one consisting in sequential μCP was demonstrated in this work. The main
advantage of this solution is that it makes possible printing with the same stamp without cross
contamination between the different biomolecules at the surface of the stamp. To do so, the
machine’s set up is performed with an uninked stamp. The stamp is then inked with only one
kind of biomolecule and the printing operation performed. An identical process is repeated for
each ink, with the setup of the machine being easily and quickly made. This is feasible because
the movement of the microcontact printer’s stamp is higly reproducible (1 μm STD as reported
previously [24], including the degrees of freedom provided by the mobile head holding the
stamp). Importantly, feature collapse due to overload of the PDMS stamp is avoided via fine
control of the stamp’s compression during contact. Moreover, thanks to the stamp’s particular
geometry and its regulated compression, a gap between the stamp and substrate is generated
in regions where no printing is required. This is achieved with the microcontact printer by merit
of the screws’ 2 μm resolution of adjustment in length [24], which simultaneously controls the
load, compression of the stamp and the gap distance.

Proof-of-concept experiments have demonstrated grafting of adjacent patterns of biomolecules
into a microfluidic channel as well as printing at the intersections of this channel with integrated
optical waveguides. Antibody-antigen recognition was also reported with the developed device
(quantitative data on the microfabricated devices will be provided in a forthcoming paper).
This is an encouraging result for the integration of biochips, microfluidics and integrated optics.
In contrast to a recently described method [35] that allows the detection of a single type of a
biomolecule, the μCP approach described herein will permit the detection of multiple types of
biomolecules by grafting different probes inside a channel.

Optical integration is a general strategy intended to simplify instrumentation requirements to
operate LOCs [29,36] and redistribution of a single excitation beam to multiple locations on
the LOC, via a network of integrated waveguides, satisfies this criterion. This approach is
complicated by the necessity of depositing specific biomolecules in front of pre-existing
components. Therefore, we predict that the solution presented here will greatly facilitate future
development of such devices. In addition, it is anticipated that this approach to μCP will also
be relevant for patterning biomolecules in microsystems with other pre-exisiting elements than
waveguides such as electrodes, microcantilevers and microlenses.
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Figure 1.
View of the microcontact printer. The LOC substrate (microscope slide) is placed in the
substrate holder, which has three degrees of freedom (two translations along the Y and Z axis
and one rotation θX around the X axis) for alignment. The PDMS stamp is positioned in the
stamp holder, which has two degrees of freedom (two rotations θY and θZ, respectively around
the Y and Z axis) to make the stamp parallel to the substrate. The stamp is guided towards the
substrate by a linear slide, actuated with a pneumatic jack. The stamp is released from the
substrate by reversing the direction of air flow in the piston.
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Figure 2.
Principle of printing at the bottom of a microfluidic channel with a parallelepiped PMDS feature
raised on the stamp. (a) Inking of the stamp with one kind of antibody. (b) Transfer of the
antibody onto the bottom side of the functionalised microfluidic channel. The geometrical
parameters are as follows: h = 25 μm; s = 30 μm; L = 1 mm; e = 1 mm; d = 20 μm; d’ = 70
μm. The length D of the screws out of the stamp holder is adjusted so that L - L’ ∼ 3 of +/- 1
μm.
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Figure 3.
View of the LOC etched in a microscope slide. (a) Typical dimensions of the microfluidic
channels. (b) SEM image of a microfluidic channel and reservoir. The channel is 70 μm wide
and 20 μm deep. The reservoir diameter is 250 μm.
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Figure 4.
Flow chart of the fabrication technology.
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Figure 5.
Nominal position of antibodies Ab and Ab* relatively to one another and to the microfluidic
channel.
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Figure 6.
(a) Fluorescence image of the microfluidic channel containing Ab* and Ab sites grafted inside
the channel by μCP, following rinsing but The grafted Ab* stamped control pattern is visible.
Channel walls are indicated as a dotted line. (b) Fluorescence image of the same microfluidic
channel following introduction of the fluorescent antigen and rinsing. The Ab/Ag* complex
is now visible (Genepix Personal 4100A Axon Scanner).
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Figure 7.
Plan view of two optical waveguides originating from a Y-junction and intersecting the
microfluidic channel (optical microscope).
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Figure 8.
Nominal position of antibodies Ab and Ab* relatively to one another, the microfluidic channel
and the optical waveguides. A 100 mW doubled YAG laser laser is injected at the input of the
Y junction.
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Figure 9.
(a) Fluorescence image of the microfluidic channel with intersecting optical waveguides and
containing Ab* and Ab sites grafted inside the channel by μCP, following rinsing but prior to
the introduction of the fluorescent antigen (Ab invisible). Channel walls are indicated as a
dotted line. The grafted Ab* control pattern is visible in front of the Y-junction’s upper
waveguide. (b) Fluorescence image of the same microfluidic channel following introduction
of the fluorescent antigen and rinsing. The Ab/Ag* complex positioned in fromt of the Y-
junction’s lower waveguide is now visible (fluorescent BXFM Olympus microscope with a
100 mW doubled YAG laser excitation source).
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