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ABSTRACT

To benchmark progress made in RNA three-dimensional modeling and assess newly developed techniques, reliable and
meaningful comparison metrics and associated tools are necessary. Generally, the average root-mean-square deviations
(RMSDs) are quoted. However, RMSD can be misleading since errors are spread over the whole molecule and do not account
for the specificity of RNA base interactions. Here, we introduce two new metrics that are particularly suitable to RNAs: the
deformation index and deformation profile. The deformation index is calibrated by the interaction network fidelity, which
considers base-base-stacking and base—base-pairing interactions within the target structure. The deformation profile highlights
dissimilarities between structures at the nucleotide scale for both intradomain and interdomain interactions. Our results show
that there is little correlation between RMSD and interaction network fidelity. The deformation profile is a tool that allows for

rapid assessment of the origins of discrepancies.

Keywords: RNA; structure; comparative analysis; three-dimensional modeling; RMSD

INTRODUCTION

Determining RNA three-dimensional (3D) structures is key
in studying RNA function (Gesteland et al. 2006). Physical
methods such as X-ray crystallography and nuclear mag-
netic resonance (NMR) spectroscopy are the most common
ways for determining RNA 3D structures at high resolu-
tion. However, these methods cannot be applied to all
RNAs and RNA systems. Alternative methods include
interactive modeling (Michel and Westhof 1990; Massire
and Westhof 1998; Martinez et al. 2008) and conforma-
tional space searching (Das and Baker 2007; Ding et al.
2008; Parisien and Major 2008; Jonikas et al. 2009).

The development and improvement of alternative meth-
ods are highly dependent on what we learn from experi-
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mentally resolved structures. In particular, close inspection
of rRNA structures revealed the presence of structural
motifs that we can recognize from sequence (Lescoute
et al. 2005). To assist the production of new knowledge,
systematic methods to annotate RNA 3D structures (Gendron
et al. 2001; Lemieux and Major 2002; Yang et al. 2003;
Djelloul and Denise 2008), discover and analyze structural
motifs (Huang et al. 2005; Lemieux and Major 2006; Lisi
and Major 2007; Abraham et al. 2008; Xin et al. 2008), and
formally represent RNA structures (Dowell and Eddy 2004;
St-Onge et al. 2007) have been developed. This systemati-
zation of knowledge generation and integration in ever-
improving predictive methods is typical of the post-
ribosomal X-ray crystallographic era. A problem that has
been largely neglected, however, is how one can measure
quantitatively the improvements brought by new ap-
proaches or methods.

The classical index for comparing predictive methods is
to benchmark with the average root-mean-square devia-
tions (RMSDs) after optimal superimposition between the
modeled RNA 3D structures they produce and their cor-
responding experimental structures. RMSDs are extremely
useful, and obtaining models close to experimental struc-
tures is a noble exercise. RMSDs capture the general 3D
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shape of an RNA, but give little information about its base-
pairing and base-stacking patterns, local deviations of the
structure, intradomain deformation, or interdomain devia-
tions. Most importantly, RMSDs spread errors over the
whole molecule to obtain the best global superimposition
so that it is very difficult to localize the origins of the
modeling defects and thus to improve the modeling process
(Yang and Honig 2000; Gendron et al. 2001; Shatsky et al.
2002). RNA molecules have specific structural features,
such as a modular and hierarchical architecture of struc-
tural elements like helices, hairpins, and single-stranded
loops connected by tertiary interactions. In addition, RNA
bases associate in well-defined patterns of pairings that
usually stack on each other. As modeling and predictive
methods are getting increasingly accurate, it is now desir-
able that their results could be compared based on the
reproducibility of these important and specific RNA struc-
tural features rather than on global average measurements.

Here, we introduce two new RNA 3D structure compar-
ison tools: (1) an RNA 3D structure comparison index, the
deformation index (DI), which evaluates and indicates the
deviations between two RNA 3D structures with both
RMSDs and base interactions; and (2) a deformation pro-
file (DP), which depicts the conformation differences be-
tween two models at local, interdomain, and intradomain
scales. These new tools provide quantitative measures to
compare the accuracy in reproducing the base—base inter-
action networks of different 3D models, as well as the
ability to evaluate the local and global prediction precision
and quality of RNA molecules.

RESULTS

Deformation index

We define the DI as the RMSD between two optimally
aligned 3D structures (general shape) divided by the base
interaction network fidelity (INF). The INF is computed
from the base-stacking and base-pairing annotations of
both structures. For practical reasons, we use two auto-
mated annotation procedures that have been proposed
recently: MC-Annotate (Gendron et al. 2001; Lemieux
and Major 2002) and RNAview (Yang et al. 2003). Note
that the index uses, but is not related to, the annotation
programs, which are obviously prone to the quality of the
reference structures.

Base-stacking and base-pairing interactions

MC-Annotate detects that two bases stack using the Gabb
et al. (1996) method. The base-stacking annotation results
are described using the Major and Thibault (2007) nomen-
clature, which indicates the relative orientation of the two
bases. The relative orientation is determined by comparing
the direction of the normal vectors of each base, i.e., the
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rotational vector obtained by a right-handed axis system
defined by atoms N1 to N6 around the pyrimidine ring
(Fig. 1A).

Two possible relative orientations in each base result in
four base-stacking types: upward (>>), downward (<<),
outward (<>), and inward (><) (see Fig.1B). Two vectors
pointing in the same direction (upward and downward)
corresponds to the base-stacking type in canonical A-RNA
double helices. Upward or downward is chosen depending
on which base is referred to first (i.e., A>>B means B is
stacked upward of A, or A is stacked downward of B). The
two other types are, respectively, inward (A><B; A or B is
stacked inward of, respectively, B or A) and outward
(A<>B; A or B is stacked outward of, respectively, B or A).

MC-Annotate uses an unsupervised machine-learning
approach to detect H-bonds and H-bonding patterns
(Lemieux and Major 2002), and RNAview uses geometrical
constraints (Yang et al. 2003). Both programs describe their
base-pairing annotations using the Leontis and Westhof
nomenclature. Each type describes the interacting edge of
the two bases. Three interacting edges are defined: the Watson—
Crick edge: @ (cis), O (trans); the Hoogsteen edge: B (cis),
[0 (trans); and the sugar edge: <« (cis), < (trans) (Fig. 1C;
Leontis and Westhof 2001). The cis/trans notation reflects
the relative orientation of the backbone according to the
median of the plane formed by the two bases. In Figure 1C,
the base pair is cis since the riboses are positioned on the
same side of the base-pair plane. When two bases interact by
the same edge, only one symbol is used. For instance, a trans
X-Y Hoogsteen base pair is either written “H/H trans” or
XOY. Figure 1D lists all possible base-pairing types that are
described by this nomenclature.

The DI considers the full set of interactions, i.e., base-
stacking and base-pairing interactions defined by the
classical two-dimensional (2D) structure (A-U and G-C
Watson—Crick and G-U Wobble base pairs that form in the
stems); extended 2D structures (the noncanonical base
pairs, but that can be represented in the dot-bracket
notation); and tertiary structure interactions, such as non-
helical stacking and long-range base pairs. Note that ~40%
of the interactions in crystallized ribosomal RNAs enter the
latter category (Stombaugh et al. 2009).

Interaction network fidelity

A stacking or pairing interaction, I, involves two distinct
nucleotides, N; and Nj, i <j, to form an interaction (N;, Nj,
I), where I is one of the above base-pairing or base-stacking
types. The annotation of a 3D structure produces a set, S, of
such interactions. Given the two sets of interactions in two
distinct RNA structures, we can then compare them using
simple set theory operations.

Let S, be the set of interactions in a reference structure
(usually an experimentally resolved structure) and S,, the
set of interactions of a modeled structure. The interactions
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FIGURE 1. Base-stacking and base-pairing nomenclature. (A) Normal vectors in pyrimidines and purines. Using a right-handed axis system, the
normal vector in the pyrimidine (left) comes out of the paper plane (atom numbers counterclockwise), whereas it is reversed in the pyrimidine
ring of the purine (atom numbers clockwise). (B) The four base-stacking types. Using the normal vectors (represented by arrows), we can
distinguish three types of base stacking. If base A is below base B, the normal vector of A points to B, and both normal vectors point in the same
direction (left), then base B is stacked upward of A (or symmetrically base A is stacked downward of B). If the normal vectors of A and B point
toward each other (middle), then bases A and B stack inward. If the normal vectors flee each other (right), then bases A and B stack outward. (C)
Base edges. Each base is divided into three edges: the Watson—Crick (W) edge is at the tip of the base and where the chemical groups involved in
Watson—Crick base pairs interact; the Hoogsteen (H) edge is on the opposite side of the ribose; and the sugar (S) edge is on the side of the ribose.
Here is a cis AU Watson—Crick base pair, and we write W/W cis and represent it using the black dot. The fact that any edge in any base can
interact with any other edge in a partner results in six different base—base interactions: W/W, W/H, W/S, H/H, H/S, and S/S. Since there are two
possible relative orientations of the ribose according to the place formed by the two bases of a base pair, then this nomenclature describes 12
different base-pairing patterns. (D) The 12 base-pairing patterns, or types, and their associated symbols.

found in the intersection of both sets are true positives,
TP =S, N S,,.. The interactions in S,, that are not present in
S, are false positives, FP = S,,\S,. The interactions absent in
S, but present in S, are false negatives, FN = S\S,,..

The Matthews correlation coefficient (MCC) is estimated
by:

MCC = vPPV X STY,

TP
where PPV (specificity) = m,
TP
and STY (sensitivity) = m7

(Gorodkin et al. 2001). When the model reproduces ex-
actly the base interactions of the reference, then | FP | =
| EN | =0, | TP | > 0, and thus MCC = 1. When the model
does not reproduce any of the interactions of the reference
structure, then MCC = 0, since | TP | = 0.

We define the interaction network fidelity (INF) between
structures A and B as the MCC, INF(A,B) = MCC(A,B).
We propose a new measure of the resemblance between two
structures A and B (for example, a model and its corre-
sponding experimental structure), which is quantified by a
deviation index,

DI(A,B) = RMSD(A,B)/INF(A,B).

Not having an INF, the DI would simply be the RMSD.
However, given an INF from 0 to 1, then the RMSD
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between A and B could either have a large (and even
infinite) DI if the two structures share no common
interactions (INF = 0), or meaningful RMSD as INF
approaches 1 (i.e., the majority of the interactions in A
are reproduced in B).

Example: Modeling the rat 28S rRNA loop E 3D
structure

Consider the crystal structure of the rat 28S rRNA loop E
(PDB code 1Q9A; resolution 1.04 A; Correll et al. 2003)
shown in Figure 2A. MC-Annotate (Fig. 2B) and RNAview
(Fig. 2C) were used to compute the base-pairing network of
this structure. Since RNA structure annotation is subject to
interpretation and small geometrical variations—for in-
stance, MC-Annotate is stricter than RNAview—we there-
fore take the intersection of both programs. MC-Annotate
also computes the base-stacking network (see Fig. 2D).
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FIGURE 2. The rat 28S rRNA loop E structure. (A) Stereoview of the
crystal structure (PDB code 1Q9A). (Green) Adenosines, (yellow)
cytosines, (violet) guanosines, (red) uracils. The thread through the
phosphate atoms is shown using a cylinder. Each base ring is filled and
highlighted by thick covalent bonds. The H-bonded bases of the
characteristic loop E structure, here the G9-U10-A19 base triple, are
linked with dotted lines. Note that Ul in this crystal structure is
not paired with G27. The image was generated using Pymol.
(B) Secondary structure annotated by MC-Annotate. (C) Secondary
structure annotated by RNAview. (D) Stacking annotation.
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To illustrate the benchmarking of RNA 3D structure
modeling results, we generated loop E 3D structures using
MC-Sym (Parisien and Major 2008; see Materials and
Methods). We generated a decoy of 9847 3D structures,
where each structure is at least at 1 A RMSD from each
other. The RMSDs (all atoms but H) between these struc-
tures and the crystal structure range from 1.6 Ato 7.8 ./OX,
whereas the INF values range from 0.49 to 0.89 (Fig. 3). We
note that for a given RMSD threshold, we have a wide
range of INF values, and for a given INF threshold, we have
a wide range of RMSDs. However, as RMSDs worsen, the
INF values also worsen. We note an absence of population
in the upper right corner (i.e., high RMSD and high INF
values). The Pearson correlation coefficient between RMSD
and INF values is P = 0.60 for this particular decoy.

For further analyses, we randomly selected three of the
MC-Sym-generated structures. Structure A is located in the
upper-left corner of Figure 3 and is shown in Figure 4A. This
structure has good RMSDs (1.64 10\) with the crystal structure,
and good INF and DI values, 0.88 and 1.86, respectively.
Since RMSDs are averaged values, they do not inform about
the maximum modeling error. Therefore, we also report the
max RMSD(ij) (j > i), i.e., the maximum RMSD over any
sequence fragment defined by i and j; j > i. If we exclude
from the analysis the dangling nucleotide Ul in the crystal
structure, the fragment that has maximum RMSD with the
crystal structure is C20-C21 with 1.7 A. This is shown by
the fact that C20 and C21 are base paired in the generated
structures, as annotated by RNAview, but they have
problematic geometries in the crystal structure, as indicated
by the absence of annotation by MC-Annotate (Fig. 2B).

Structure A contains 29 TP, i.e., 29 of the 30 base
interactions (10 base pairs and 20 base stacks) in the crystal
structure. Six FP are made: (1, 2) two upward stacking
between C3-U4 and C5-C6. Note that in principle these
base-stacking interactions make sense since they are located
in a stem. They were not detected in the crystal structure by
MC-Annotate; (3) a flip of the C20 base around the
glycosidic bond creates an inward stacking A19-C20; (4)
as assumed in the modeling, A8—-C20 now form a base pair
(H/W trans); (5) the dangling nucleotide U1 in the models is
base paired to G27 as a canonical W/W cis type; and (6) as
assumed in the modeling, U7-C21 now form a base pair
(S/H trans). Due to the C20 base flip, the upward stacking
A19-C20 and C20-C21 are not reproduced, making two FN.

Structure B was selected in the upper right section of
Figure 3, i.e., it has a good INF (0.88), but a bad RMSD with
the crystal structure (3.76 A). It is shown in Figure 4B. If we
remove Ul, the worst fragment is G2—C20 (19-nucleotides
[nt] long) with 3.66 A. This is shown in Figure 4B by a
shifted backbone in almost all nucleotide positions. Struc-
ture B contains 28 of the 30 base interactions (10 base pairs
and 20 base stacks) in the crystal structure. Five FP are
made. They are the same as in structure A, but the upward
stacking between C5—C6 is absent as in the crystal structure.
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FIGURE 3. Distribution of (RMSD, INF) values. For each MC-Sym
generated structure, the RMSD and INF values when compared with
the crystal structure are plotted. The oblique line is the linear
regression (P = 0.6). The horizontal line is at an INF of 0.85, and
the vertical line at 2.0 A RMSD.

The two FN due to the C20 base flip are also present in
structure B. In addition, no inward base stacking is detected
between G9 and G18.

Finally, structure C (Fig. 4C) was selected in the lower
left region of Figure 3, i.e., bad INF (0.71), but relatively
good RMSD (2.03 A). Again, the worst fragment is G2—
C20, but its RMSD is now 2 A. What hurts the RMSD of
this model is related to difficulties to reproduce the base
triple and the A8—C20 base pair of the crystal structure;
typical errors in RNA modeling. In our particular case, it is
noteworthy that the bases in the generated base triple have
a more planar geometry than those observed in the crystal
structure (Fig. 4D). As for the A8—C20 base pair, its H/W
trans type now makes a consensus between MC-Annotate
and RNAview. Structure C contains 21 of the 30 base inter-
actions in the crystal structure. Seven FP are made: (1-5)
are the same as in structure A; but, in addition, (6) an
upward stacking between A16—-G17 is detected that was not
detected in the crystal structure; (7) the flanking base pair
of the GAGA tetraloop, which is changed to a W/H trans
(S/H trans in the crystal). The three FN of structure B are
also made in structure C (two are due to the C20 base flip)
(Fig. 4E). In addition, four upward stackings are not
detected between A11-C12, C12—G13, A14-G15, and U4-
C5. The outward stacking between G13-G17 and the G9-
U10 S/H cis base pair are also not detected. The tenth FN is
the absence of the S/H trans G13—A16 base pair.

Deformation profile

The DP is a distance matrix representing the average dis-
tance between a predicted model (PM) and reference model

(RM). The DP matrix is obtained by (1) computing all 1-nt
superimposition of PM over RM and then (2) for each
superimposition, computing the average distance between
each base in RM and the corresponding base in PM. Let
RM; and PM,; represent the ith nucleotides of RM and PM
respectively, let SUP(A;,B;) be the model that results from
the superposition of model B over the reference model A,
minimizing the RMSDs between all the atoms of the nucleo-
tides A; and B, and let AVG_DIST(A;,B;) be the average dis-
tance between all atoms of the nucleotides A; and B;. Thus,
the deformation profile of PM regarding RM is defined as:

DP;; = AVG_DIST [SUP(RMh PM,),, RM]} .

FIGURE 4. Three models of the rat 28S rRNA loop E. The models are
shown colored and the crystal structure in gray (PDB code 1Q9A). (Blue)
Well modeled regions (RMSD < 0.5 A), (red) badly modeled regions
(RMSD > 3.0 A). The models were optimally aligned (all atoms but
H) with the crystal structure. (A) Model with a good INF (0.88; TP 29;
FP 6; FN 2) and a good RMSD (1.64 A); DI = 1.86. (B) M0d§l with a
good INF (0.88; TP 28; FP 5; FN 3), but a bad RMSD (3.76 A); DI =
4.30. Although the geometry of the base pairs is well conserved,
the thread through the phosphate atoms is shifted. (C) Model with a
bad INF (0.71; TP 21; FP 7; FN 10), but a good RMSD (2.03 A); DI =
2.85. The thread through the phosphate atoms is well superimposed,
but the base-pairing geometry is wrong. Structural features that
lead to a bad INF include: (D) base-stacking parameters that differ
between the crystal (yellow) and model (blue) structures, such as G9,
which shows a high rise in the crystal structure when compared with
the model, and A19, for which a tilt can be observed between the
crystal and model structures; and (E) base-pairing parameters that dif-
fer between the crystal and model structures, such as C20, which flips
(propeller twist of 180°) between the crystal and model structures.
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Figure 5 illustrates the process of computing a DP
matrix.

Once a pair of nucleotides (PM;, RM;) is superimposed,
every other pair of nucleotides will be closer or farther
depending on how well PM; predicts RM,. Those average
distances are represented in the ith row of the matrix. Thus,
the row average provides information about local similarity
regarding the ith nucleotide. For example, an individual
row with higher values than the rest of the matrix (Figs.
6, 7, represented as yellow/red rows in the DP matrices)
usually means a particularly poorly predicted nucleotide.
The jth column of the matrix contains the average atomic
distances between the jth nucleotides of PM and RM, for
each superimposition. Thus, the column average indicates
how the distance between PM; and RM; depends on the
overall prediction of all nucleotides. Finally, the main
diagonal contains the average atomic distance of each
nucleotide, allowing a perspective of individual nucleotide
conformation similarity.

An interesting property of DP is the ability to reveal
similarity information at several structural scales. The
rectangles corresponding to the intersection of two strands
indicate the relative similarity between those strands. This
way, one can easily apprehend the structural similarity at
intradomain (such as between both strands of a helix or the
nucleotides of a loop) and interdomain scales (such as
between two helices or two loops).

Jfﬁ
\"‘/8

dds

‘-) 143
SUP(RM,, PM, ) SUP(RM,, PM,) P
D
2 d21 d22 - d24 [d25
DP =
4 .- 443 daa  d45

FIGURE 5. Building steps of the deformation profile. (A) A predicted
model (PM) will be compared with the reference model (RM). After
superimposing PM over RM, minimizing the RMSD between nucleo-
tides 2 (B) and 4 (C), the average distances between all atoms of corre-
sponding nucleotides is calculated and recorded in DP matrix (D).
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It is worth noticing that values in a DP are not nor-
malized across the whole matrix. Values close to the main
diagonal tend to be smaller than values farther away. This is
because nucleotide pairs closer from the superimposing
pair tend to have smaller average atomic distances than
those farther away. Consequently, one should only com-
pare DP values from regions at similar distances to the
main diagonal or, obviously, values from DPs of distinct
models.

Example: The hammerhead ribozyme

To exemplify the deformation profile, we compared three
predicted models of a hammerhead ribozyme with the
reference crystal structure (PDB: INYI) (Dunham et al.
2003). We generated a decoy of 9999 3D structures, where
each structure is at least at 1 A RMSD from each other. The
RMSDs (all atoms but H) between these structures and the
crystal structure range from 2.5 A to 15.8 A. Selecting
models from decoys is a thorny question. Here, we limited
our analysis to a series of structural properties offered by
the MC-Pipeline website (see Materials and Methods). We
reduced the decoy by performing a five-clustering of the
10,000 models, and selecting one model per cluster that
has a small volume (<25,000), a good P-Score (<—15),
and to either be bipolar or coplanar (at the >0.7 level)
(Laederach et al. 2007). The “thresholds” were established
by comparing each structural property with RMSDs to the
crystal structure (Supplemental Fig. S1). The selected
models and their properties are shown in Table 1.

From the modeling results, we further analyzed models
553, 633, and 2698, the resulting DPs of which are pictured
in Figures 6 and 7, and Supplemental Figure S2, respec-
tively. The models share 3.4, 12.2, and 4.9 A RMSDs with
the crystal structure, respectively. The helical regions of the
models score fairly well and much better than interhelical
and interloop regions (Table 2). Not surprisingly, nucleo-
tides involved in canonical WC base pairing are better
predicted than nucleotides involved in noncanonical base
pairs or in loops. The 3- and 2-nt-long single-stranded
regions (L1 and L3) present the worst deformation score of
all short (<5-nt) contiguous regions (Supplemental Fig.
S3), except for L3 in model 2698, which was particularly
well predicted. The difficulty in predicting L1 and L3 also
reflects in the poor prediction of the relative positions of L1
and L3. The main difference between prediction quality
among the three models is due to the relative position of
helix H1 with respect to the other two helices. Noticeably,
the coaxial stacking of helices H2 and H3 was reasonably
well predicted in all three models. While model 553 scored
well in all helix-helix relative positions, models 633 and
2698 present a displacement of helix H1 regarding H2 and
H3. In model 2698, helix H1 is slightly twisted, which
significantly penalizes H1XH2 and, to a lesser extent,
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value, from minimum (white) to maximum deformation (red) value. (D) Superimposition of the model and reference 3D structures. (E)

Interaction network of the original molecule.

H1XH3. In model 633, helix H1 has its double-helical axis
rotated by half a turn, pointing in the opposite direction of
HI1 in the reference molecule, which is reflected in the high
values of H1 XH2 and H1XH3.

DISCUSSION

So far, the field of 3D structural modeling has been driven
by RMSD comparisons. In particular, GDT-TS (global
distance test) is a measure that accounts for the number
of atoms that are within 1, 2, 4, and 8 A of the RMSD from
a reference structure (Zemla et al. 1999; Ginalski et al.
2005). A perfect model scores 1.0. Recently, optimal GDT-
TS scores of ~0.35 for a tRNA (~75 nt) and 0.20 for the

P4-P6 domain of a group I intron (~150 nt) have been
reported (Jonikas et al. 2009). In our study, the optimal
score for the hammerhead ribozyme (~40 nt) is 0.68.
However, when objectively selecting models from decoys by
applying K-clustering, GDT-TS scores of 0.20, 0.06, and
0.60 are obtained, respectively. In comparison, protein
structure predictions now reach GDT-TS scores as high
as 0.75 on average (Zhang 2008). These results highlight the
fact that there is a need for improved RNA model selection
and generation methods.

RMSD-based measures might be a sufficient criterion for
modeling protein structures since the backbone trace is
indicative of the structure and correct positioning of the
side chains (Dunbrack and Cohen 1997). However, RNA
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FIGURE 7. Same as Figure 6 but for model 633.

structures contain specific patterns of interacting side
chains that are characteristic of folded modules and typical
to each overall architecture (Lescoute and Westhof 2006).
To evaluate adequately the accuracy of a predicted model, it
is key to assess how well such tertiary modules and the non-
Watson—Crick base pairs have been reproduced. We show
that, in the context of the modeling example we used, the
Pearson coefficient between RMSD and INF values (P = 0.6)
presents little correlation between the two indexes. Our
results further show that RMSDs do not provide informa-
tion about the quality and fidelity of the base interaction
network. Besides, the Pearson coefficient for structures with
RMSD =3.0 A (P = 0.2) is even weaker. These results point
to the potential risk of using averaged values such as RMSD
in evaluating the quality of RNA 3D models and, thus, the
structure prediction methods that generate them. Besides, if
the correlation on a small hairpin RNA example is already
low, then it is expected to be even lower on larger RNAs.

1882 RNA, Vol. 15, No. 10

Besides, the INF is less subject to variations than RMSD
for an RNA under thermal motion (Grishaev et al. 2008).
Intrahelical distortions include: collective atomic motion
resulting in slight helix twisting that rarely affect base-base
interactions (Fig. 4B), and relative atomic motion that is
handled by discretizing the base-base interactions using
symbolic annotation (Gendron et al. 2001; Leontis and
Westhof 2001; Lemieux and Major 2002; Yang et al. 2003).
Interhelical disposition from thermal motion affects the
angle between helices, which greatly affects atomic dis-
tances and thus RMSD. However, such changes in general
concern only a small fraction of the base—base interactions,
and thus do not affect much the INF (Table 1).

In the structure prediction field, models <3 A of RMSD
from an experimental structure are considered accurate.
Our results suggest extreme prudence at this particular
value, since in our test case the INF value of such models
can be as low as 0.7. In our example, structure C has an INF
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TABLE 1. Structural parameter values for five models of the hammerhead ribozyme

Model? Bipol® Copl® Rand” RMSD P-Sc® Vol INFI! e INFPP ¢ GDT-TS' Cluster
553 0.83 0.05 0.11 3.4 -23.6 23,635 0.82 0.90 0.60 2
633 0.80 0.12 0.08 12.2 —26.0 23,861 0.87 0.94 0.15 1
2698 0.81 0.12 0.07 4.9 -21.0 24,900 0.84 0.89 0.38 4
3778 0.84 0.05 0.12 12.2 —20.6 24,338 0.86 0.92 0.15 3
6870 0.76 0.08 0.16 13.9 ~16.5 23,599 0.79 0.89 0.09 5

2Model” represents one model per cluster (Cluster) selected from the results of a “five-clustering.”
bBipolar (Bipol), coplanar (Copl), and random (Rand) are measurements against the RMSD. These parameters describe the field of nucleobase
normal vectors, which have been shown to be highly organized in solved RNA structures (Laederach et al. 2007). A threshold at 0.7 for the

bipolar scores corresponds to a low RMSD (see Supplemental Fig. S1).

“The P-Score (P-Sc) against the RMSD measures the A-RNA likeliness of the phosphate chain—measured using the probabilities of valence
angles of three consecutive atoms and the torsion angles of four consecutive atoms. The probabilities, P, are converted in pseudo-energies, E,

using the Boltzmann relation: E = —RT log(P).

dApproximated ellipsoidal volume (Vol) against the RMSD. The volume is computed as described by Hao et al. (1992). A threshold at 25,000

corresponds to a low RMSD (see Supplemental Fig. S1).

®The INF values over base pairing and base stacking (INF?") and base-pairing interactions alone (INF°P).
fGlobal distance test (GDT-TS) values measure the average percentage of atoms within 1, 2, 4, and 8 A from the target structure (Zemla et al.
1999; Ginalski et al. 2005). The higher the value, the better the model compared with the target structure.

of 0.71. This structure, despite 21 TP, also had seven FP and
10 FN. If we look between 3 and 5 A of RMSD, then INF
values can be as low as 0.5; with a wider range of INF values
(0.5-0.9) located at or near 4 A of RMSD. Clearly, assessing
the quality and accuracy of any given RNA 3D model needs
both the RMSD and INF values.

Capturing the dissimilarity between two structures in a
single value, as does RMSD, is a practical way of assessing the
accuracy of predicted models. However, a single value can-
not provide enough information about the shape of the ac-
tual structure and the local dissimilarities. Understanding
the contribution of individual domain—nucleotides, helices,
single-stranded regions—to an overall dissimilarity score
demands the intervention of a human expert, which is not
compatible with the analysis of dozens or hundreds of
candidate models produced by automatic prediction tools.
The proposed deformation profile provides a compact repre-
sentation of RNA model dissimilarities from nucleotide
length to intradomain scales and can be used in complement
to the DI to fully assess the quality of predicted models.

MATERIALS AND METHODS

Generating MC-Sym decoys

To generate a decoy for the Loop E, we produced an MC-Sym
script from the dot-bracket notation supported by the RNAview
annotated secondary structure, “((((((((.C((C.))))INN))).” The
Dot2Sym program is an MC-Tool to generate MC-Sym input
scripts from dot-bracket notations (see Supplemental Informa-
tion). Note that no base-pairing type information is used, and
MC-Sym in such a case attempts all consistent base-pairing types.

For the hammerhead ribozyme, we also obtained a first
script from Dot2Sym using the following dot-bracket input:
“CCCCCC - LCCCCCCIMIMMCCCCDINII).” The script was man-
ually edited and can be found in the provided Supplemental
Information. We reduced the 10,000 structure decoys to a list of
five models using the five-clustering and the following SQL query:

TABLE 2. Intradomain and interdomain scores for all helices,
loops, helix-helix, and loop—loop combinations

Consequently, a full quantification of the comparison Intradomain Model 553 Model 633 Model 2698
between two RNA 3D .structures should include the overall Helix H1 231 . .
RMSD, max RMSD(4,)), INF, as well as the DI. If only one Helix H2 279 3.67 3.89
value is to be used, then the DI is the most significant one Helix H3 1.68 2.08 2.03
since it reflects the overall features encoded by the RMSD Loop L1 4.92 4.28 4.72
calibrated by the quality of the reproduced interaction Loop 113 A Sl 1T
network, which is encoded by the INF value. As the size of Interdomain Model 553 Model 633 Model 2698
modeled RNAs increases, the importance of using both

uantifiers increases as well since the correlation between HI > H2 8.8 21.85 13:25
9 w Wi H1 X H3 7.59 25.47 9.10
RMSD and INF values is expected to decrease. Finally, H2 X H3 3.85 585 6.49
phosphate or backbone atom-only, as well as canonical L1 X L3 20.26 34.54 13.13

base-paired region-only RMSD, should be avoided since
they are not indicative of the quality of the produced
models, and the field has now made sufficient progress in
RNA 3D modeling and prediction methods so that all-atom
models are now the gold standard.

The intradomain score of domain D is the average of all positions
(i, j) of the Deformation Profile where both nucleotides i and j
belong to D. The interdomain score of domains D1XD2 is the
average of all positions (i,j) and (k, |) of the deformation profile
where nucleotides i and k belong to D1 and j and 1 belong to D2.
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SELECT * FROM BKOiY0dM2m T1 INNER JOIN (SELECT
MIN(PScore) AS minP, Cluster FROM BKOiY0OdM2m WHERE
((Bipolar >= 0.7) OR (Coplanar >= 0.7)) and Volume <= 25000
and PScore <= -15 GROUP BY Cluster) T2 ON T1.PScore =
T2.minP and T1.Cluster = T2.Cluster WHERE T1.Volume <=
25000

See the MC-Sym FAQ (http://www.major.iric.ca/MC-Sym/
fag.html), commands.html page generated by MC-Sym, and
the MC-Pipeline website for details (http://www.major.iric.ca/
MC-Pipeline). The 3D structures were visualized and rendered
using Pymol (DeLano 2002).

RMSD

RMSD values were for all-atom but H, as computed using the
MC-RMSD program. MC-RMSD is part of the MC-Tools, which
are available from the authors.

Deformation profile

All the data processing, PDB file manipulation, and superimpo-
sition used to compute the Deformation Profile were done in
Python using Bio.PDB (http://biopython.org) and NumPy (http://
numpy.scipy.org/). The script to produce DP matrices is available
from the authors.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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