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Abstract
Cognitive Science research is hard to conduct, because researchers must take phenomena from the
world and turn them into laboratory tasks for which a reasonable level of experimental control can
be achieved. Consequently, research necessarily makes tradeoffs between internal validity
(experimental control) and external validity (the degree to which a task represents behavior outside
of the lab). Researchers are thus seeking the best possible tradeoff between these constraints, which
we refer to as the optimal level of fuzz. We present two principles for finding the optimal level of
fuzz, in research, and then illustrate these principles using research from motivation, individual
differences, and cognitive neuroscience.

A hallmark of cognitive science involves the interplay of methods from different disciplines.
Despite the importance of this interplay, methodological discussions in Psychology under the
banner of cognitive science tend to focus on statistical issues such as the possibility that null
hypothesis testing may lead research astray (e.g., Killeen, 2006). Much less discussion has
centered on how to use the power of multidisciplinary cognitive science to construct research
questions in ways that are likely to provide insight into the difficult questions that the field
must address. In this paper, we present a principle that we call the optimal level of fuzz that we
believe can guide good research. We start by defining the concept of fuzz and then discuss a
set of principles that can guide researchers toward finding the optimal level of fuzz for their
research. Next, we present three case studies of the optimal level of fuzz in action. Finally, we
discuss the implications of this principle for research.

What is Fuzz?
Within cognitive science, experimental research in psychology provides data that can be used
to constrain theories in neuroscience and psychology and to inspire new computational methods
in artificial intelligence and reinforcement learning. Experimental research in psychology must
typically trade off between internal and external validity. Internal validity is the basic idea that
our experiments should be free from confounds and alternative explanations so that the results
of our experiments can be unambiguously attributed to the variables we manipulated in our
studies. External validity is the degree to which our studies reflect behavior that might actually
occur outside the laboratory.

Logically speaking, of course, these dimensions do not have to trade off, but often human
behavior is determined by many different interacting factors. Furthermore, people’s mental
states are not observable, and there are limits to what we can learn about the mind from
observations that are restricted to the final results of a psychological process. Consequently,
psychology has developed a variety of methods for manipulating circumstances in the
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laboratory to bring about desired behaviors and has constructed systems for illuminating
internal mental processes. For example, many studies use lexical decision tasks in which a
subject is shown strings of letters that may or may not form a word and is asked to judge as
quickly as possible whether the string forms a word. This task is quite useful for measuring
the activity of concepts during a cognitive process. Tasks like this have been used in a variety
of studies ranging from work on language comprehension to studies of goal activation (e.g.,
Fishbach, Friedman, & Kruglanski, 2003; McNamara, 2005). However, people are rarely asked
to judge explicitly whether a string of letters is a word outside of the lab, and so this task does
not reflect the kinds of behaviors that people carry out in their daily lives.

Optimizing Fuzz
Psychological research sits at the frontier of this tradeoff between internal and external validity,
because it is addressing the thorniest questions about human behavior. After all, if a process
could be understood just by observing it in the world, then there would be no reason to carry
out research. Furthermore, there is a gradual accretion of knowledge in science so that previous
research helps us understand psychological mechanisms that were once poorly understood.

However, researchers can choose a location on this frontier for carrying out research.
Maximizing what is learned about a process requires both ensuring that studies address people’s
behavior outside the lab and also that studies strive to use tasks with high internal validity. We
refer to this ideal as seeking the optimal level of fuzz. Although this may seem obvious, much
of research is either too fuzzy or not fuzzy enough. At times, we might choose to observe a
behavior that has not typically been studied, using very little experimental intervention, in order
to better characterize the phenomena in the world that research aims to understand. Such
research is often too fuzzy to adequately evaluate the processes underlying the real-world
behavior. At other times, we might develop highly constrained laboratory studies that provide
a high degree of control over the situation, thereby providing evidence for causal factors that
influence performance. These studies are often not fuzzy enough to be sufficiently relevant to
the original behavior of interest.

We believe that the multidisciplinary approach central to cognitive science provides a way to
find the optimal level of fuzz. In this section, we discuss two principles that we believe are
critical for finding the optimal level of fuzz:

1. The research problem must have some relationship to behavior outside the lab.

2. The research task must have a clear task analysis, preferably embedded in a
mathematical, computational, or dynamical model.

We start with the principle that research problems must bear some relationship to behavior
outside the lab. It is particularly important to try to minimize the number of layers of
psychological research between the behavior in the lab and the behavior of interest outside the
lab. For example, hundreds of psychological studies have been done on Tversky and
Kahneman’s (1983) “Linda” problem that was developed to study the conjunction fallacy.1
This problem was an interesting demonstration of an apparent error in logical reasoning. It is
clearly important to get to the root of factors that cause these apparent errors in judgment, but
much of the research that has been done seems more focused on the Linda problem itself rather
than on the broader psychological mechanisms governing reasoning behavior. In our view, at

1The “Linda” problem is usually phrased like this: Linda is 28 years old. She is active in a number of women’s rights groups. She
volunteers in a shelter for battered women, and often participates in marches for abortion rights. Then, participants are asked to judge
the probability that Linda is a bank teller and also the probability that she is a bank teller who is also a feminist. In the original studies,
participants often judged the probability that she was a bank teller who is also a feminist to be higher than the probability that she is a
bank teller even though the probability that she is a bank teller cannot be less than the probability that she is a bank teller who is also a
feminist. This pattern of responses is called the conjunction fallacy.
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the point where a line of research is focused more on a particular task from the literature than
on a core phenomenon that occurs outside the lab, it is insufficiently fuzzy. That is, it does not
have enough external validity to illuminate behavior outside the lab.

Part of the difficulty with implementing this principle is that laboratory research does have to
explore phenomena to some level of depth to ensure that they are well understood. One good
heuristic for determining whether research is sufficiently fuzzy is to focus on the degree to
which the results of the study are going to be applied to the broader phenomenon of interest
and to what degree they have implications only for the laboratory paradigm. For example, many
studies have examined people’s ability to learn to classify sets of simple items into one of a
small number of categories (Shepard, Hovland, & Jenkins, 1961; Wisniewski, 2002). Studies
within this paradigm have been used to explore whether people’s category representations
consist of prototypes or individual category exemplars (Medin & Schaffer, 1978; Posner &
Keele, 1970). The conclusions of these papers were focused primarily on classification abilities
outside the lab. However, there are also many studies that focus almost exclusively on
adjudicating between particular mathematical models that apply only to this particular
laboratory paradigm (e.g., Nosofsky & Palmeri, 1997; Smith, 2002). When the conclusion of
a paper refers primarily to theories that explain behavior in the laboratory paradigm, then we
take this as a signal that the research is insufficiently fuzzy.

The biggest gains in research, then, are going to come from examining important phenomena
that are likely to occur outside the laboratory but are not well understood. Treading new ground
has great potential for helping the field to better understand human behavior. To maximize the
effectiveness of this research, however, it is crucial to follow the second key principle of
optimal fuzz, which is to embed research in laboratory tasks that are well understood.

To make this principle clearer, we need to distinguish between tasks that are well-understood
and those that are highly-studied. Highly-studied tasks have been employed in a large number
of studies; well-understood tasks are characterized by the presence of a task analysis that
specifies the cognitive processes brought to bear on the task and, often times, a set of models
to characterize performance. For example, anagram-solving is a highly-studied task. However,
there is no task analysis that describes how people go about solving anagrams, and so it is
difficult to know what aspect of the process might be influenced by experimental
manipulations. Thus, anagram solving is not an optimal task to use to study the effects of some
other fuzzy variable (i.e., one that is related to behavior outside of the laboratory (see Principle
1)) on cognitive performance.

Good task analyses provide well-understood tasks with two important advantages for
optimizing the level of fuzz. First, these task analyses support the development of models that
can be used to describe people’s performance. This is where techniques from cognitive science
play a role. Although not obligatory, well-understood tasks often have mathematical,
computational, or dynamical models that can be used to characterize the processes used by
individuals through an analysis of their data. Models are quite useful, because they allow the
researcher to go beyond gross measures of performance such as overall accuracy or response
time that are often used as the primary results of psychological research. Often, there are many
ways to achieve a particular level of performance, at the aggregate or even the trial by trial
level. Models fit to the data from individual subjects make use of more information about their
pattern of responses to characterize their performance (Maddox, 1999).

In addition, a good task analysis permits a statement about the optimal strategy in a particular
task (Anderson, 1990; Geisler, 1989). In many studies, we give people a task and focus on the
accuracy of their performance. We assume that higher accuracy is better than lower accuracy.
In any given environment, however, there may be a particular strategy that is optimal to use.
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Thus, we should be interested in whether subjects are using the optimal strategy for a particular
environment (even if other cognitive limitations prevent them from achieving optimal accuracy
using that strategy). As we will see, the ability to identify the optimal strategy in a given
environment also allows us to distinguish between whether a particular psychological variable
affects a person’s propensity to use a particular type of strategy or whether it affects their ability
to adapt to the needs of a particular environment.

This combination of fuzzy variables (Principle 1) with un-fuzzy tasks (Principle 2) is the
paradigmatic case of the optimal level of fuzz. By embedding poorly understood variables
within well-understood tasks, we minimize the amount of leeway in the interpretation of these
studies. This strategy enables researchers to maximize the opportunity to turn fuzzy variables
into unfuzzy variables. In the next section, we present three examples of research programs
that have adopted a strategy that we see as consistent with the optimal level of fuzz.

The optimal level of fuzz in practice
We briefly review three lines of research that have used an optimal level of fuzz approach. The
first is a systematic exploration of the role of incentives on cognitive performance. The second
is an examination of individual differences in cognitive performance. The third comes from
fMRI studies of cognitive processing. In each of these case studies, we discuss how the two
principles of the optimal level of fuzz contributed to the success of the research effort. Two of
these examples use tasks for which there are mathematical models that define optimal
performance. The third uses computational modeling techniques from artificial intelligence to
create a task model.

We make one comment at the outset, however. These sections focus on examples in which
fuzzy variables become less fuzzy by using well-understood tasks. It is crucial to recognize
that this strategy requires researchers to move out of their comfort zone in research. People
who typically study highly controlled laboratory studies rarely venture into the realm of fuzzy
variables. People who often study fuzzy variables rarely make use of laboratory tasks that can
be characterized by solid task analyses or models. Thus, this style of research requires that
some researchers make their work more fuzzy and others make their research less so. Indeed,
to foreshadow a conclusion we reach at the end, this style of work rewards collaborations
between individuals who have different styles of research.

Motivation and Incentives in Learning
Much research has been interested in the influence of incentives as motivating factors for
cognitive performance (e.g., Brehm & Self, 1989; Locke & Latham, 2002). Much of this work
has looked at organizational settings in which it becomes clear that incentives can influence
performance, but it is quite difficult to determine the source of these effects. That is, work in
these organizational contexts has high external validity, but it is hard to determine why these
effects are obtained.

Other research has used incentives as a way of creating situational manipulations of
motivational variables (Crowe & Higgins, 1997; Shah, Higgins, & Friedman, 1998). This work
has allowed incentives to be manipulated as an independent variable, and so it aims at a higher
degree of internal validity. However, most of the tasks used in this research are ones for which
there are not good task analyses, and so it ultimately has a suboptimal level of fuzz. For
example, Shah, Higgins, and Friedman (1998) had people solve anagrams under different
incentive conditions. As discussed above, it is not clear what strategies people use to solve
anagrams, and so only gross measures of performance can be obtained such as the number of
anagrams solved correctly by participants. Thus, this work aimed for high internal validity, but
the tasks were not understood well enough to be able to model the performance of individual
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participants. Using our framework, this work meets the aim of Principle 1 but not Principle 2
resulting in a suboptimal level of fuzz.

In order to explore the influence of incentives on performance more systematically, we first
turned to classification learning studies (see Maddox, Markman, & Baldwin, 2006). In these
simple classification tasks, participants were shown lines that differed in their length,
orientation, and position on a computer screen. They had to correctly learn to classify these
items into one of two categories.

Classification tasks on their own often have a suboptimal level of fuzz, because they address
issues that are primarily relevant to the study of laboratory classification tasks per se (i.e., they
fail on Principle 1). However, they have a number of desirable properties that prove useful for
generating an optimal level of fuzz when combined with poorly understood variables that have
high external validity. First, there are mathematical models that can be used to assess the
strategies that individual participants are using to make their classification decisions (F. G.
Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Maddox, 1999). These models can be fit
on particular blocks of trials during the study to assess how the strategy being used changes
over the course of the study.

Second, different ways of structuring the categories being learned make different kinds of
strategies optimal for the learning task. For example, if the rule that distinguishes between the
two categories can be stated verbally (e.g., the long steep lines are in one category and the rest
of the lines are in the other category), then the optimal strategy is to perform explicit hypothesis
testing on different rules until the correct rule is found. Figure 1a shows a three-dimensional
category structure. Each dimension of this “stimulus space” represents a perceptual dimension
along which the items can vary. In this case, the items are lines that vary in their length,
orientation, and position on a computer screen, and the points specify stimuli with particular
lengths, orientations, and positions that were used in the study. Subjects given this category
structure should use hypothesis testing to find this subtle verbal rule that combines length and
orientation.

Not all rules can be stated verbally. For example, Figure 1b shows a category structure with a
category boundary that is a line that cuts through the length and orientation dimensions. The
best verbal description of this rule is “If the length of the lines is greater than the orientation,
then the item is in one category, otherwise it is in the other category.” This statement does not
really make sense, because length and orientation are measured in different units. Much
research demonstrates that the best way to learn categories with this kind of information
integration structure is to allow the implicit habit-learning system to slowly acquire the
appropriate item-response mapping (e.g., Maddox & Ashby, 2004; Maddox, Ashby, & Bohil,
2003; Maddox, Filoteo, Hejl, & Ing, 2004). That is, people learning these categories must learn
to respond using their ‘gut feeling’ about which response is correct. Thus, there are different
optimal strategies for verbal rule-based and nonverbal information integration category
structures.

Given this framework, it is possible to compare the influence of two different kinds of
incentives, which we can loosely describe as carrots and sticks. A carrot is an incentive in
which good performance is rewarded by some bonus. Higgins (1997) suggests that a carrot
induces a motivational state that he calls a promotion focus, in which people become more
sensitive to potential gains in their environment. A stick is an incentive in which something is
taken away if performance is not good. Higgins (1997) suggests that sticks induce a
motivational state called a prevention focus, in which people become more sensitive to potential
losses in their environment.
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In addition to manipulating incentives, we can manipulate the reward structure of the task.
Most psychology experiments use a gains reward structure. Either participants receive points
as rewards for performance or they are given positive feedback for correct responses. However,
it is also possible to have a losses reward structure in which participants lose points during the
study (though they presumably lose fewer points for correct responses than for incorrect
responses).

Motivation from incentives is a fuzzy concept that can then be brought into an experimental
session to be studied. Shah, Higgins, and Friedman (1998) gave people either a carrot (i.e., a
situational promotion focus) or a stick (a situational prevention focus) and then asked them to
solve anagrams. Anagrams printed in green would give them potential gains in the task and
anagrams printed in red would give them potential losses in the task. Shah et al. found that
participants given a carrot tended to solve gains anagrams and participants given a stick tended
to solve loss anagrams.

There are many possible explanations for this effect. People might have their attention drawn
to items whose reward matches the motivational state induced by the incentive. Perhaps
participants are better able to adapt their strategy to rewards that fit the incentive. Finally, it is
possible that a match between an incentive and the rewards of the task influence the kinds of
cognitive processes that can be brought to bear on a task.

We explored these issues systematically using the classification methodology just described
(Maddox, Baldwin, & Markman, 2006). Participants were offered either a carrot (an entry into
a raffle to win $50 if their performance exceeded a criterion) or a stick (they were given an
entry into a raffle upon entering the lab and were told that they could keep the ticket if their
performance exceeded a criterion). Some participants gained points during the task, and were
given more points for a correct answer than for an incorrect answer. Some participants lost
points, but they lost fewer points for a correct answer than for an incorrect answer. In one set
of studies, participants learned a complex rule-based set of categories, while in a second set of
studies, participants learned an information integration set of categories in which the rule
distinguishing the categories could not be verbalized. In each study, mathematical models were
fit to individual subjects’ performance to examine how they changed strategies over the course
of the study.

The pattern of data from these studies revealed that when the motivational state induced by the
incentive matched the reward structure of the task, participants were more flexible in their
behavior than when the motivational state mismatched the reward structure. That is,
participants exhibited flexible behavior when the incentive was a carrot and the tasks gave
them gains or when the incentive was a stick and the tasks gave them losses. Participants’
behavior was relatively inflexible when the incentive mismatched the task. Flexibility was
defined as the ability to explore potential rules in this task.

Of importance, whether a participant performed a particular task well depended on whether
the task was one for which flexible behavior was advantageous. The rule-based task we used
required flexibility, and so participants performed better when there was a fit between the
incentive and the reward. Mathematical models fit to the data from this study suggested that
participants with a motivational match between incentive and reward found the complex rule
distinguishing the categories more quickly than did participants with a motivational mismatch.

In contrast, the information integration task required participants to avoid using rules and to
allow the habit-learning system to learn the task. For this task, participants’ performance was
better when they had a mismatch between the incentive and the reward than when they had a
match. In this case, the mathematical models suggested that participants with a motivational
match persisted in using verbalizable rules in this task longer than did participants with a

Markman et al. Page 6

J Exp Theor Artif Intell. Author manuscript; available in PMC 2009 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mismatch, which hindered their ability to learn the categories (see Grimm, Markman, Maddox,
& Baldwin, 2008, for a similar pattern of data).

This conclusion was corroborated by studies in a choice task. In the choice task, participants
were shown two piles of cards (Worthy, Maddox, & Markman, 2007). Participants were told
that the cards had point values on them. Their task was to draw cards from the decks. In the
gains task, the cards had positive point values and participants had to maximize the number of
points they obtained. In the losses task, the cards had negative point values, and participants
had to minimize their losses. There are two general strategies that one can use in this task. An
exploratory strategy involves selecting cards from each of the decks with a slight tendency to
favor the deck that is currently yielding the best values. An exploitative strategy involves
strongly favoring the deck that is currently yielding the best values. Pairs of decks were created
that favored each type of strategy. That is, for some pairs of decks the participant had to be
exploratory to exceed the performance criterion, while for other pairs of decks the participant
had to be exploitative to exceed the performance criterion. It is possible to fit mathematical
models to people’s performance in this task as well (Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006).

Consistent with the results of the classification task, we found that participants with a match
between the motivational state induced by the incentive and the rewards in the task were more
exploratory overall than were those who had a mismatch between incentive and reward. In
particular, participants with a motivational match performed better on the decks that required
exploration than on the decks that required exploitation. Participants with a mismatch
performed better on decks that required exploitation than on decks that required exploration.
Furthermore, the mathematical models fit to people’s data have one parameter that measures
a person’s degree of exploration/exploitation. The value of this parameter was consistent with
greater exploration for participants with a motivational match than for participants with a
motivational mismatch for both types of tasks.

To summarize, then, there is a complex three-way interaction between a motivational state
induced by an incentive, the reward structure of a particular task, and whether the task is best
performed by flexible exploration of the environment. Previous research with a suboptimal
level of fuzz had difficulty uncovering this pattern. By examining a poorly understood
phenomenon (motivation and incentives) using very well-understood tasks, it was possible to
discover this interaction. This work took tasks that are typically used in research that is not
sufficiently fuzzy and brought it to bear on fuzzy variables in a manner that illuminated a
complex interaction. To be clear, this work informs not only work on motivation and incentives
but also work on classification and choice. Motivation and incentives change the strategies
implemented by participants in these tasks. A complete computational model of classification
should therefore include some component that corresponds to motivational state, the relevance
of which would not have been apparent without placing classification research in the context
of fuzzier motivational influences.

Individual differences in cognitive processing
There is growing interest in individual differences in cognitive performance. This interest arises
from two sources. First, there have been intriguing observations of cultural differences in
cognitive performance that suggest the results of studies done on Western college students do
not generalize to all populations (e.g., Nisbett, Peng, Choi, & Norenzayan, 2001; Peng &
Nisbett, 1999). On the basis of these observations, researchers have explored individual
difference variables that are correlated with cultural differences that might explain these
differences in performance (Gardner, Gabriel, & Lee, 1999; Kim & Markman, 2006).
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For example, Nisbett and his colleagues have conducted a fascinating set of studies
documenting cultural differences in cognition (Masuda & Nisbett, 2001; Peng & Nisbett,
1999). They find that East Asian participants have a greater relative preference for proverbs
that embody contradictions than do Westerners. East Asians tend to give solutions to dilemmas
that involve compromise more than do Westerners. Recognition memory for objects in East
Asians is more influenced by the background context in which the object appears than are
Westerners. Nisbett has argued that these differences in performance may reflect a long history
of differences in cultural evolution between East Asian and Western cultures (Nisbett, Peng,
Choi, & Norenzayan, 2001).

Second, studies have demonstrated that individual differences correlated with cultural
differences affect cognitive performance. One such difference is self-construal (Markus &
Kitayama, 1991). Much research has demonstrated that East Asians tend to represent
themselves by focusing on the relationship between self and others. For example, the self-
concept may be populated with the roles the self plays in relation to others, like teacher and
friend. That is, East Asians have an interdependent self-construal. In contrast, Westerners tend
to represent themselves by focusing on characteristics of themselves as individuals. In this
case, the self-concept contains individual attributes, such as brown hair and likes golf. That is,
Westerners tend to have an independent self-construal.

Despite these chronic differences in self-construal across cultures, it is possible to temporarily
prime an interdependent or an independent self-construal. For example, Gardner and colleagues
(Gardner, Gabriel, & Lee, 1999; Lee, Aaker, & Gardner, 2000) have used a technique in which
they have participants circle the pronouns in a passage. An independent self-construal can be
primed by having participants circle the pronouns “I” and “me.” An interdependent self-
construal can be primed by having participants circle the pronouns “we” and “our.”

Kuhnen and Oyserman (2002) examined the influence of self-construal on cognitive
performance. They found systematic shifts in people’s performance with a manipulation of
self-construal. For example, they showed people large letters made up of smaller letters like
the example in Figure 2 that shows the letter F made up of smaller letter H’s (Navon, 1977).
They asked people either to identify the small letters or the large ones. Participants primed with
an independent self-construal identified the small letters faster than the large letters, while
participants primed with an interdependent self-construal were faster to identify the large letters
than the small letters. They suggest that results like this are consistent with the possibility that
individuals with an interdependent self-construal are more sensitive to context than are those
with an independent self-construal.

A difficulty interpreting studies like this (as well as the studies by Nisbett and colleagues) is
that there is no generally accepted task analysis for most of the studies done on cultural
differences and self-construal. Thus, there are many reasons why someone might identify the
smaller letters more quickly than the larger ones (or vice versa), to prefer proverbs that embody
contradictions to those with no contradiction, or to be relatively more strongly influenced by
background context. For example, speed of identification of small and large letters could be
due to context sensitivity (as proposed by Kuhnen and Oyserman (2002)), or it could be a result
of shifts in attention from global visual form to fine detail information that reflect information
processing channels within the visual system (Oliva & Schyns, 1997; Sanocki, 2001). Thus,
there is still a high degree of fuzz within this research area (because it meets Principle 1 but
not Principle 2). To examine this issue more carefully, studies were done exploring the
influence of differences in self-construal on causal induction.

In causal induction tasks, people are shown a set of potential causes that could influence an
effect (P. W. Cheng, 1997; Waldmann, 2000). For example, the potential causes might be
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liquids that influence the growth of plants, and the effect could be the growth of flowers on the
plant (Spellman, 1996). Participants typically see many experimental trials that pair potential
causes with effects. While induction from observed events can occur outside of the laboratory,
individuals do not often encounter and assess causality from dozens of pairings of causes and
effects. As such, this research area tends to be insufficiently fuzzy (because it meets Principle
2 but not Principle 1). An advantage of using this domain to study individual differences is
that there are mathematical models that can be used to determine optimal behavior in this
domain, and models that can help to assess what information participants are using when they
perform this task (e.g., P. W. Cheng, 1997; Novick & Cheng, 2004; Perales, Catena, Shanks,
& Gonzalez, 2005).

Typically, people use some kind of covariation information between causes and effects to
assess the influence of a potential cause on the effect. If an effect occurs more often in the
presence of a cause than in its absence, that cause is likely to promote the effect. If an effect
occurs less often in the presence of a cause than in its absence, that cause is likely to inhibit
the effect.2

A particularly interesting covariation structure is one that embodies Simpson’s paradox (see
Spellman, 1996). In Simpson’s paradox, the presence of two causes is confounded so that both
of them co-occur often. The effect also occurs often in the presence of both causes, and so
people often infer that both causes have the potential to promote the effect. However, one of
the causes actually inhibits the effect. The only way to recognize correctly that one of the causes
is inhibitory is to pay attention to the rare cases in which the inhibitory cause occurs in the
absence of the other cause (which promotes the effect). That is, correctly identifying which
cause promotes the effect and which cause inhibits the effect requires paying attention to the
context in which the causes appear. Thus, the optimal strategy in this task is to pay attention
to the context in which a potential cause appears. Further, it is possible to mathematically
calculate the relationship between a cause and an effect taking the other cause into account,
which is known as a conditional contingency (Spellman, 1996). Using mathematical models,
one can determine if a given subject’s causal judgment or predictions during learning
approximate an unconditional contingency (e.g., attention to a single cause) or a conditional
contingency (e.g., attention to the context).

Kim, Grimm, & Markman (2007) exposed people to a covariation structure embodying
Simpson’s paradox following a self-construal prime. A third of the participants were primed
to have an interdependent self-construal, a third were primed to have an independent self-
construal, and the remaining third did not get a prime and served as a control group. Consistent
with the idea that people with an interdependent self-construal are more influenced by context
than are those with an independent self-construal, people primed with an interdependent self-
construal were more likely to recognize that the inhibitory cue was indeed an inhibitor of the
effect than were those with an independent self-construal or the control participants.

This example demonstrates further how using the optimal level of fuzz can help us understand
the influence of a poorly understood variable on cognitive performance using a task that is
often examined only in very un-fuzzy contexts. In this case, individual differences appear to
influence behavior outside of the laboratory (Principle 1). However, there were many

2Mathematically, this relationship between a cause and an effect is formalized in the ΔP rule. In this rule, the unconditional contingency
(UC) between a cause (C) and an effect (E) represents the covariation between the cause and the effect ignoring other potential causes.
This UC is computed by subtracting the probability of the effect when the cause is absent from the probability of the effect when the
cause is present:
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speculations about the effects of individual difference variables like self-construal on
performance. By using a causal reasoning task (which often appears in studies whose
implications are drawn primarily for other laboratory causal reasoning tasks), it is possible to
generate a rigorous mathematical definition of sensitivity to context (Principle 2). Therefore,
researchers can demonstrate more conclusively that manipulations of self-construal affect the
degree to which people are influenced by contextual variables.

The optimal level of fuzz in cognitive neuroscience
The final example we present in this paper examines the interpretation of fMRI data.
Understanding how the brain implements any number of psychological processes could not be
more fundamental in terms of focusing research on phenomena that have real-world relevance.
Neuroscience methodologies such as fMRI have been used for some time to understand
perceptual and cognitive processing; more recently these methodologies have been used to
investigate how the brain implements social and affective processes as well.

Studies using fMRI most commonly examine differences in brain activity by comparing
experimental conditions that show significant behavioral differences. Many studies do not
statistically examine the relation between brain activations and behavioral differences.
Therefore, many fMRI experiments rely on gross measures of behavior and they may tell us
more about where a process might occur in the brain instead of how that brain region
implements that process (e.g., Buxton, 2002; Poldrack & Wagner, 2004).

A number of promising lines of research, however, have begun to use techniques that follow
the principles of the optimal level of fuzz. In this research, people are given tasks for which
there is a good task analysis. This task analysis is embedded in a mathematical or computational
model, and that model is then fit to people’s behavior. The parameters that emerge from this
modeling effort are then related to changes in neural activity, as measured by the relative
amount of oxygenated blood (BOLD signal), in particular brain regions to better understand
how they implement psychological processes. In this section, we give three brief examples of
this technique in action. The first predicts activity in multiple brain regions from different
values of a single model parameter. The second uses a model to separate apparently similar
behavior into qualitatively different processes, corresponding with differing activity levels in
identical regions. The last splits activity according to the timing of different model
computations, predicting the complex time-course of several brain areas within a single trial.

Gläscher and Büchel (2005) explored how different brain regions underlie learning in
Pavlovian conditioning. In particular, they were interested in whether different areas support
learning at different time-scales. Previous neuroimaging studies could not disambiguate short-
and long-term learning because they did not vary the conditioned stimulus-unconditioned
stimulus (CS-US) contingency (e.g., D. T. Cheng, Knight, Smith, Stein, & Helmstetter,
2003; Knight, Cheng, Smith, Stein, & Helmstetter, 2004). Gläscher and Büchel avoided this
ambiguity by creating a situation in which CS-US contingencies varied over time. Two pictures
of a face and house oscillated between being strongly and weakly predictive of a painful
stimulus. People reliably learned when the painful stimulus would follow a given picture, as
measured by skin conductance and explicit predictions.

Of course, how participants predicted the US is the fuzzy issue. Any single correct prediction
—and the corresponding BOLD signal—is due to the interaction of short- and long-term
learning. To tease the two apart, Gläscher and Büchel used a mathematical model with a
variable learning rate parameter. In the Rescorla-Wagner model (Rescorla & Wagner, 1972),
learning on a single trial is a function of previous predictions and the prediction error on that
trial. The weight placed on the prediction error influences how rapidly the model responds to
a single trial; low and high weights represent slow and fast learning rates, respectively. Gläscher
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and Büchel compared model predictions with slow and fast learning rates separately against
fMRI data from different brain regions. They found that slow-learning model predictions
matched activity in the amygdala, an area associated with maintaining stimulus-response
contingencies. In contrast, they found that fast-learning model predictions matched activity in
fusiform and parahippocampal cortices, areas associated with visual processing and more
short-term memory phenomena, such as priming. Without the differing model predictions, they
would have been unable to dissociate the behavioral relevance of the activity in these regions.
Worse yet, without the finely-tuned functions to track signal within the fuzzy noise, they may
not have found significant activity in either region.

Another case of using modeling to simplify complex activity in a complex environment comes
from work on the different processes underlying decision making under uncertainty (Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006). Daw et al. scanned participants while they chose
between four potential rewards. Reward on each trial was probabilistic, and the relative
probabilities of the four options changed over time. To optimize reward, one must often exploit
the option that appears to have the highest probability of reward, but also explore other options
that may have become more rewarding. Decision making in such a complex, variable
environment is similar to naturalistic tasks like foraging. The variability also makes it difficult
to separate exploitative decisions from exploratory ones.

Daw et al. used a reinforcement learning model, similar in principle to the Rescorla-Wagner
model, to fit participants’ data. At a given trial, the model uses the participant’s previous
decisions and reward history to represent a belief about the expected value of each option, the
certainty of that belief, and the likelihood for exploration. Using these model estimates,
decisions on individual trials can be separated according to whether a person selected the option
with the highest expected value or another option. This separation allows for the isolation of
the neural patterns underlying the exploration and exploitation patterns uniquely.

Daw et al. found that exploratory decisions (i.e. choices of sub-maximal options) are associated
with increases in the BOLD signal in frontopolar cortex and intraparietal sulcus, areas
associated with cognitive control and decision making. In contrast, exploitative decisions (i.e.
choices of maximal options) are associated with decreases in signal in the same regions. Again,
use of a well-understood task was critical for finding these differences. If the authors had treated
each decision uniformly instead of using model-driven estimates of process, they would not
have seen any differences.

In addition to analyzing tasks that involve different processes on different trials, it is also
possible to use models to decompose the processes and neural signal within a single trial
(Anderson & Qin, 2008). While most fMRI studies usually focus on simple tasks with trials
that take place in a few seconds, Anderson and his colleagues explore more naturalistic
reasoning tasks that may take minutes or hours (thereby meeting Principle 1). To look at such
large-scale behavior, Anderson and Qin scanned people while they performed a task that
involved completing a series of arithmetic operations on each trial. The task was designed so
that all participants would go about performing the task using the same set of steps. This
approach was used to eliminate as much variability across people as possible. They modeled
participants’ performance using principles of symbolic AI embedded in ACT-R (Anderson,
1993), a production system that acts like a programming language for constructing models of
complex tasks. The model included six modules, each designed to perform a function
associated with a different brain region, such as obtaining visual information about the problem
from a computer screen, retrieving information from memory, and preparing motor operations
to make responses (thus meeting Principle 2).

Markman et al. Page 11

J Exp Theor Artif Intell. Author manuscript; available in PMC 2009 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The model makes predictions about when and how long each module is active for each
arithmetic problem. For example, in a problem that requires five intermediate responses, the
motor module would be briefly active during those five moments. Anderson and Qin compared
the model estimates of each module’s activity against the BOLD signal in the brain regions
associated with that module’s type of processing. For example, they predicted that the left
fusiform area would be associated with the type of visual processing relevant to the task. In
the fMRI scans from their study, they found a correlation of .91 between activity in this brain
area and the predictions of the model. High correlations were also obtained between the
predictions of the model and activity in areas that they associated with memory retrieval and
goal orientation.

Again, the model analysis is crucial for understanding the fMRI data. Without separating
portions of the BOLD signal, activity in regions only briefly but critically involved in the task
could have been undetectable. Likewise, regions that were active would have been lumped
together in an undifferentiated network. Labeling these regions simply as “involved in
arithmetic reasoning” belies their unique functions and the complexity of their interaction.

The approach embodied in these three studies represents an important advance in the use of
fMRI to study behavior. The use of a detailed model of behavior that specifies a step-by-step
process by which people carry out a task supports detailed predictions about the way that brain
activity in different regions of the brain will vary over time. Such detail increases the likelihood
of understanding the relation between neural activity and how it supports a particular
psychological process. This approach allows researchers to make stronger claims about the
functions of brain areas than are possible just by looking at brain regions that are active
throughout the task globally. Thus, the optimal level of fuzz approach applied to cognitive
neuroscience holds significant promise for allowing us to better understand the interactions
among brain regions in cognitive processing.

Implications
While all researchers are likely to agree that finding an optimal level of fuzz is important in
principle, it is difficult to achieve in practice. Thus, we identified two principles that can help
lead to an optimal level of fuzz in research, and then we provided examples of these principles
in action. First, research should seek to explain phenomena that are not yet well understood,
but are focused on behaviors that occur outside the laboratory. Second, the experimental
approach to these problems should seek tasks that are quite well understood and, ideally, permit
models that can be fit to the data of individual participants. This latter point encourages
researchers studying behavior to work with people in other areas of cognitive science to develop
formal and computational models of task performance that can be used to illuminate patterns
of data.

One important point that emerges from this work is that the optimal level of fuzz is best
achieved by research teams rather than by individual researchers. It is unlikely that any
individual researcher will have expertise in the variety of areas that are required to do this work
well. For example, research on motivation requires familiarity with a range of literatures that
do not often overlap with work on many cognitive tasks. Furthermore, not every researcher is
likely to have the modeling skills necessary to fit the data from individual subjects to a model
that is diagnostic of performance. Thus, this approach to research prizes collaborative work.
The experience of the authors of this paper is that such collaborative work, while difficult to
get started, has great rewards. Furthermore, collaborative work has always been at the heart of
cognitive science as a discipline.
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In addition, this style of work requires that researchers and reviewers be open to research areas
and research techniques that cross traditional disciplinary lines. Again, this issue is one central
to the core of cognitive science. The first two examples we presented in this paper are projects
that combine topics frequently explored by social psychologists with research techniques
drawn from the cognitive literature. The last example draws on expertise in brain imaging and
cognitive psychology. Often, research like this pulls both the researchers and the readers of
papers on these techniques out of their comfort zone. Indeed, researchers often have a visceral
negative reaction to research that takes a strikingly different approach to work than the one
they typically adopt. The optimal level of fuzz approach requires checking this gut reaction
and embracing new styles of research.

The three examples given in this paper are all cases of ongoing research in which new insights
are being generated by adopting new approaches to research. In addition, there are many
examples of how introducing new methods has pulled researchers out of their comfort zone in
ways that have led to important new results. For example, the introduction of data from
neuroscience to the study of classification has had a beneficial impact on the field. By the early
1990s, much research in classification focused on comparisons of model fits to simple
classification tasks, and many papers were focused on determining whether one model
accounted for more data than another (e.g., F.G. Ashby & Maddox, 1993; Nosofsky & Palmeri,
1997; Smith & Minda, 2000). Researchers began to draw insights from neuroscience. This
focus led to a recognition that there are multiple memory systems that may serve our ability to
learn new categories, and that different types of categories may thus be learned in qualitatively
different ways (e.g., F. G. Ashby, Alfonso-Reese, Turken, & Waldron, 1998). This research
has led to important new discoveries using methods from cognitive neuroscience (such as
studies of patient groups and imaging studies) as well as more traditional experimental methods
(e.g., F.G. Ashby, Ennis, & Spiering, 2007; Knowlton, Squire, & Gluck, 1994; Maddox &
Filoteo, 2001).

The optimal level of fuzz suggests that model development and task analysis is an important
part of laboratory research studies. Often, psychologists bring a task into the lab, but then
analyze the data only with ANOVA or simple regression models. These statistical techniques
are models of performance that refer primarily to the experimentally manipulated variables in
a study. Often, however, there is other information in people’s performance that can be used
to distinguish among alternative explanations of how people were carrying out a task. It is
frequently worth the effort to develop some kind of model to help distinguish among these
alternatives. Often, when it proves difficult to develop a model for a particular task, that is a
sign that there are aspects of the task that are not yet well-enough understood to support model
development. Rather than shying away from developing these task analyses, it is important to
dive into this process. As we have seen, exploring fuzzy variables often informs model
development by illuminating previously unforeseen complexities.

A further implication of the optimal level of fuzz is that researchers must question the
assumptions underlying their typical research paradigms. Often, in an effort to control a
paradigm, researchers start with a desired outcome, and then adjust the paradigm until the
experiment “works.” When the study works out far differently than expected, the researcher
concludes that there was something wrong with the study and repeats it, tweaking the
methodology to achieve the desired result.

Finally, it is important to recognize that the optimal level of fuzz is a process for research.
Initially, every task worthy of study is poorly understood. Much research needs to be done to
generate task analyses and to create models. Every task is fuzzy at first, and requires research
to be made less fuzzy. At the point where a laboratory task is sufficiently well-understood, it
takes substantial ingenuity to identify other fuzzy variables that are good candidates to be
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brought into studies using well-understood tasks. Over time, of course, even these fuzzy
variables become less fuzzy, thereby raising new opportunities for research to progress.

We suggest that there is much to be learned about human behavior from the parameters within
which experimental procedures work as expected. Rather than adjusting our experiments just
to ensure that they work as expected, we should use these parameters to inform our work as
we seek to understand more complex elements of human behavior. For example, we often add
motivational incentives to our research projects under the assumption that these incentives will
get participants to “pay more attention” to our study or to “try harder.” We find a combination
of incentives that gets participants to perform the task of interest to us. However, by treating
these incentives and motivational processes as background parts of our experimental
procedure, we fail to get a firmer grasp on important concepts like what motivational aspects
of a task get people to “pay more attention” or what it means psychologically to “try harder.”
On the optimal level of fuzz approach, these questions should be front and center in our
research.
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Figure 1.
(a) Sample rule-based category structure, and (b) sample information integration category
structure. Rule-based category structures are easy to describe verbally. Information integration
structures are hard to describe verbally.
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Figure 2.
Sample stimulus with a large letter made up of smaller letters like those used in studies by
Navon (1977). In this case, the large letter F is made of small letter H’s.
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