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Abstract
The large amount of data produced by biological live cell imaging studies of cell behavior requires
accurate automated cell segmentation algorithms for rapid, unbiased and reproducible scientific
analysis. This paper presents a new approach to obtain precise boundaries of cells with complex
shapes using ridge measures for initial detection and a modified geodesic active contour for curve
evolution that exploits the halo effect present in phase-contrast microscopy. The level set contour
evolution is controlled by a novel spatially adaptive stopping function based on the intensity profile
perpendicular to the evolving front. The proposed approach is tested on human cancer cell images
from LSDCAS and achieves high accuracy even in complex environments.
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1. INTRODUCTION
Live cell imaging is emerging as an important tool in biomedical research. Nevertheless, there
are few, if any, robust analysis systems capable of automatically extracting quantitative
information from cell image streams. Large scale quantification of the dynamical behavior of
cell populations in a variety of experimental systems would provide important capabilities for
many areas of cell biology. In addition, such quantitative cellular data would be useful in many
theoretical contexts. For example, high throughput-based drug discovery efforts would be more
reliable if the timing and mechanism of cell death could be detected automatically, as existing
methods for cell death determination are not mechanism-specific. Identification of
abnormalities related to cell growth induced by anti-cancer treatments might lead to good
indicators of undesirable side-effects in a candidate drug. Theoretical developments in the field
of Cellular Biophysics have long been hampered by the lack of quantitative data at the level
of a single cell. Phase-contrast microscopy is an ideal non-perturbing imaging technology for
these studies examining long-term cell behaviors [1] since harmful side effects are minimized
or avoided using fluorescent excitations which become toxic to cells over time. However, a
necessary prerequisite for single-cell analysis frameworks using phase contrast microscopy
imaging is the accurate and reliable detection of cell borders which is the focus of this paper.

In recent years, active contours have become popular for cell segmentation [2]. Geometric
model of active contours [3] presents desirable properties such as the lack of need to
reparameterize the curve and automatic handling of topology changes via level set

NIH Public Access
Author Manuscript
Proc Int Conf Image Proc. Author manuscript; available in PMC 2009 September 14.

Published in final edited form as:
Proc Int Conf Image Proc. 2008 October 12; 2008: 1804–1807. doi:10.1109/ICIP.2008.4712127.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



implementation [4]. The major drawbacks of this approach is the leakage due to weak edges
and stopping at local maximums in noisy images. While the region based active contours [5–
7] overcome these drawbacks, they require a bimodal image model to discern background and
foreground which is not applicable in higher resolution cell image acquisition. Figure 1 shows
a typical phase contrast image of a cell. The white region surrounding the cell is the typical
phase halo produced by the imaging process and proportional to the local thickness of the cell.
A straight-forward implementation of [5] converges to the boundaries between phase halo and
the rest of the image. Using various features in Chan and Vese formulation such as variance
to discern cells from background [8] gives satisfactory results but the sharp phase halos
contribute to the variance and may cause early stopping of curve evolution in certain cases.
Similarly, edge stopping functions used in regular geodesic active contours, if initialized
outside of the cells, respond to the outer edges of phase halos and cause early stopping which
produces an inaccurate segmentation that includes the phase halo in the cell area. When the
curve is initialized inside the cells, the texture inside the cell also causes premature stopping
before the curve reaches to the boundary. Often phase halo is seen as a nuisance and is
compensated by normalizing the image. While this produces a halo-free image, it also weakens
the cell boundaries further, especially in the areas where cells are flattened. This leads to the
leakage in the curve evolution. One remedy is to enforce a model on the cell shape such as
[9], but it fails for cells with highly irregular shapes. Nuclei based initialization and
segmentation [10,11] is also not applicable to images such as in Figure 1.

To obtain an accurate segmentation, we propose an approach that exploits the phase halo effect
instead of compensating it. The phase contrast microscopy imaging process produces a phase
halo around the cell and as a result, the intensity profile in the perpendicular direction to the
local cell boundary is similar; it passes from the brighter phase halo to the darker cell boundary
at every boundary point. To exploit this observation, we propose to initialize the curve just
outside the cell and the phase halo so that the initial curve resembles the final boundary in order
to coincide the ideal boundary normal with the curve normal; and control the evolution of the
curve by modifying the edge stopping function in such a way that the curve does not stop at
the halo edge but at the actual cell boundary. By selecting at which edge in the local normal
direction the curve stops, we effectively let the curve evolve through the halo and stop at the
actual boundary. We also use a spatially adaptive force which slows the curve evolution in
boundaries to prevent leakage. The rest of the paper is organized as following: section 2
explains the ridge measures we use to obtain a close initialization, section 3 presents the
modified geodesic active contour, the experimental results are discussed in section 4 and
conclusion is given in section 5.

2. HESSIAN-BASED CELL DETECTION
An initial curve that is close to the actual cell boundary is required to capture the desired
characteristic of the local directional derivative as shown in Figure 1. Shape-based properties
of the intensity surface are used to produce the initial coarse cell map. These properties are
chosen because of their robustness to image contrast and intensity variations. In phase contrast
microscopy images, the cell membrane boundaries and phase halos around the cells produce
crest lines (ridges and valleys), and subcellular structures produce blob or ridge like patterns
so the use of ridge detection methods are ideal for this purpose. Various ridge definitions can
be found in the literature that lead to different detection methods. In curvature based detection,
ridges can be defined as local extrema of principal curvatures [12,13]. Principal curvatures and
directions of a surface L correspond to the eigenvalues κ1 ≥ … ≥ κn−1 and eigenvectors ξ1 ≥
… ≥ ξn−1 of the shape operator matrix on the tangent space W:
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(1)

where I and II are the first and second fundamental forms and c = (Lx × Ly)/(|Lx × Ly|) [12].
Since computation of principal curvatures is expensive, mean curvature

 is often used [12,14] to classify surface patches (H < 0: peak, ridge,
or saddle ridge; H = 0: flat or minimal surface; H > 0: pit, valley, or saddle valley).

The local extrema for real-valued functions can be generalized to vector spaces using the
Hessian matrix [12]. A point x0 is classified as maximum if ∇L(x0) = 0 (critical point) and ℋ
(L(x0)) is negative definite (all eigenvalues λi < 0 ) where ℋ is the Hessian matrix:

(2)

For critical points (∇L(x0) = 0), with respect to the Taylor series expansion and curvature
definitions, eigenvalues λi and eigenvectors υi of the Hessian matrix correspond to principal
curvatures κi and principal directions ξi respectively [15]. Eigenvalues and eigenvectors of the
Hessian matrix have been used in many medical image processing applications as a ridgeness
measure [16,17]. Table 1 summarizes possible orientation patterns based on the value of the
eigenvalues λ1 and λ2 of the Hessian matrix ℋ. Laplacian operator (Eq. 3) is a good
approximation of the sign of the eigenvalues of the Hessian matrix. It returns positive values
for intensity valleys, negative values for intensity ridges, and small absolute values in
homogeneous regions with small noise.

(3)

Since we want to detect membrane boundaries, phase halos, and sub-cellular structures
associated with cells (dark ridges, bright ridges and dark blobs respectively ), we use |λ1(ℋ)|.
Initial cell detection is done by thresholding |λ1(ℋ)|. Threshold value Tr is chosen as 0.5σ
where σ is standard deviation of λ1(ℋ). Regions where |λ1(ℋ)| > Tr are classified as cells. The
obtained mask is further refined by morphological operations to make cell masks more
compact, to remove spurious detections and to refine cell contours.

3. GEODESIC ACTIVE CONTOUR EVOLUTION CONTROLLED BY
DIRECTIONAL DERIVATIVES

Ridges and blobs of the intensity surface are good initializations for cell detection, but obtained
ridge/blob maps have spurious results or discontinuities. Morphological operations handle
some of these problems but resulting cell masks are larger than the actual cells, particularly
where the phase halos are thick, since these masks include the phase halos around the cells. To
refine the initial cell detection, we propose a novel geodesic active contour segmentation with
spatially adaptive force and controlled evolution using modified edge stopping function with
directional derivatives. In level set based active contour methods, a curve  is represented
implicitly via a Lipschitz function ϕ by  = {(x, y)|ϕ(x, y) = 0}, and the evolution of the curve
is given by the zero-level curve of the function ϕ(t, x, y) [5]. We propose use of a modified
version of the geodesic active contours [3]. In regular geodesic active contours [3] the level
set function ϕ is evolved using the speed function,
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(4)

where Fc is a constant,  is the curvature term (Eq. 5) and g(∇I) is the edge stopping function,
a decreasing function of the image gradient which can be defined as in Eq. 6.

(5)

(6)

The constant balloon force Fc pushes the curve inwards or outwards depending on its sign. The
regularization term  ensures boundary smoothness and g(I) is used to stop the curve evolution
at cell boundaries. The term ∇g·∇ϕ is used to increase the basin of attraction for evolving the
curve to the boundaries of the objects. The geodesic active contours are more suitable for our
application where intensity inside the cell boundaries is highly heterogeneous, and there is no
clear difference between inside and outside intensity profiles so intensity thresholding or Chan-
Vese type minimal variance models are not applicable. However, since they are designed to
stop at edges, they suffer from: (1) early stopping on background or foreground edges, (2)
contour leaking across weak boundaries, and (3) for our particular application, early stopping
at outer edges of phase halos. To overcome the first problem, we use the ridge-based
initialization that starts the contour from outside very close to the actual boundary. To reduce
the effects of the second problem, we propose replacing the constant balloon force Fc in Eq. 4
with an intensity adaptive force FA:

(7)

This intensity adaptive force increases speed of contraction on bright phase halos and reduces
it on thin dark extensions and prevents leaking across weak edges. To handle the third problem,
we propose a directional derivative controlled edge stopping function. Despite the problem it
causes, the existence of phase halo increases the edge strength at cell boundaries which can be
utilized. We propose a selective edge stopping function gd (Eq. 10) controlled by the directional
derivative, that lets the curve evolve through the outer halo edge and stop at the actual boundary
edge. As shown in Figure 1, if initialized close to the actual boundary, the first light-to-dark
edge encountered in the local perpendicular direction corresponds to the actual boundary. By
choosing this transition as the stopping criterion we avoid the outer edge of phase halo. This
stopping function is obtained as follows. Normal vector N⃗ to the evolving contour/surface can
be determined directly from the level set function:

(8)

Edge profile is obtained using intensity derivative in the direction opposite to the contour
normal (from outside to inside):
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(9)

Dark-to-light transitions produce positive response in I−N⃗. We define the directional derivative
controlled edge stopping function gd as:

(10)

where H is the heaviside step function:

This sets gd to 1 at regions where there is a dark-to-light (background-to-halo) transition, and
keeps regular edge stopping function everywhere else. Thus it lets the active contour evolve
through dark-to-light edges and stop on light-to-dark edges.

4. EXPERIMENTAL RESULTS
Live cell image sequences were obtained using the Large Scale Digital Cell Analysis System
(LSDCAS). LSDCAS is a research core facility at the Holden Comprehensive Cancer Center
at the University of Iowa, and was developed to provide for non-perturbing live cell imaging
capabilities [1,19]. LSDCAS images cell cultures under conditions identical to those used in
routine biochemical and molecular investigations in biomedical research labs and is the only
open-source complete live cell imaging solution available to the biomedical research
community1. For the cell images shown in this paper, WM793 human melanoma cells were
grown on 25 cm2 plastic flasks in minimal essential medium (GIBCO) supplemented with 10%
fetal bovine serum and antibiotics. The inhomogeneous background is required to support
proper cell growth but complicates reliable image analysis. The fields analyzed were chosen
randomly from the T25 flask in which the cells are growing. These cells exhibit extensive
pseudopodia and lammelapodia morphological structures that make accurate segmentation of
thin structures very challenging for other techniques. The images were acquired using a Basler
camera, with a 20× objective and pixel resolution of 0.67 × 0.59 microns/pixel. For details of
the data acquisition and current analysis capabilities of LSDCAS, as well as cell culture
environmental control, see [1].

Figure 2 shows results of four methods on a sample frame. Figure 3 shows results of four
methods on magnified cells. Red contour represents the ridge-based initialization as described
before. For many cells, it produces a good approximation of the cell shape. Green contours
represent the segmentation results. Chan and Vese method on intensity image, as expected,
converges on phase halos. In an earlier study [8], the Chan and Vese method was applied to
variance images rather than intensity to exploit the observation that cells have more texture
than the background. For most of the cases good results were obtained in [8], but for some
cases where image statistics vary significantly, the segmentation was poor. Geodesic active
contour with fixed force and regular edge stopping function leaks through weak edges and is
stopped by the strong phase halo edges. If the spatially adaptive force is applied, the contour

1http://lsdcas.engineering.uiowa.edu
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tends to stop at weak edges most of the time as well as on strong halo edges. The proposed
directional selective edge stopping function with spatially adaptive force obtains the desired
result, it is stopped by weak halo-to-boundary edges, but evolves through the strong outer halo
edges and converges to the desired boundary, producing a very tight cell segmentation. The
proposed method is also tested on a different data set and similar results are obtained. This set
was obtained with a lower magnification and image characteristics such as contrast and cell
texture are different from the previous set. The proposed method in this paper also performs
superior in that case. The results are not shown here due to limited space.

5. CONCLUSION
A new approach to obtain accurate cell boundaries in phase contrast microscopy is presented
in this paper. The use of ridge and blob measures provides a robust initial detection that is
utilized to calculate the directional derivatives that are perpendicular to the local image
boundary to capture the desired intensity profile. The active contour is implemented with level
set and its evolution is controlled by the directional derivative to stop it at the desired edges.
This enables the active contour to pass through phase halo edges and stop at the actual cell
boundary. Furthermore, the use of spatially adaptive force slows the evolution and prevents
leakage at the boundaries. The approach is tested on cell images where the cells present highly
irregular morphological structures and the method provides very robust performance. This
approach can be extended to other domains (such as [20]) that require spatial or spatio-temporal
segmentation of certain objects that fit a specific profile. Accurate cell segmentation using
phase-contrast microscopy images will also enable the study of interacting populations of cells
in addition to single cells. The precise segmentation of cells with complex morphology and
cell border features will be essential for using high-throughput approaches to unravel the
biochemical mechanisms of mitotic catastrophe – an important response pathway that leads to
cell death in nearly all clinically important solid tumors [21].
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Fig. 1.
A sample cell image, its intensity profile at the marked direction, and the derivative of the
directional profile. The actual cell boundary point is marked on the graphs.
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Fig. 2.
Segmentation of a frame from human melanoma data set.
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Fig. 3.
Magnified contours of sample cells. Red: ridge-based initialization, green: final segmentation.
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Table 1
Possible orientation patterns based on the eigenvalues  (|λ1| ≤ |λ2|, H = high,
L = low) [18].

λ1 λ2 orientation pattern

L L Flat or Noise no preferred direction

H− L Bright tubular structure

H+ L Dark tubular structure

H− H− Bright blob-like structure

H+ H+ Dark blob-like structure
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