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Abstract
Nonlinear random effects models with finite mixture structures are used to identify polymorphism
in pharmacokinetic/pharmacodynamic phenotypes. An EM algorithm for maximum likelihood
estimation approach is developed and uses sampling-based methods to implement the expectation
step, that results in an analytically tractable maximization step. A benefit of the approach is that no
model linearization is performed and the estimation precision can be arbitrarily controlled by the
sampling process. A detailed simulation study illustrates the feasibility of the estimation approach
and evaluates its performance. Applications of the proposed nonlinear random effects mixture model
approach to other population pharmacokinetic/pharmacodynamic problems will be of interest for
future investigation.
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1. Introduction
There is substantial variability in the way individuals respond to medications, in both treatment
efficacy and toxicity. The sources of a drug’s underlying pharmacokinetic and
pharmacodynamic variability can include demographic factors (such as age, sex, weight),
physiological status (such as renal, liver, cardiovascular function), disease states, genetic
differences, interactions with other drugs and environmental factors. In their seminal work,
Sheiner, Rosenberg and Melmon (1972) proposed a parametric nonlinear mixed-effects
modeling framework for quantifying both within and between subject variability in a drug’s
pharmacokinetics, and developed an approximate maximum likelihood solution to the
problem. Since the introduction by Beal and Sheiner (1979) of the general purpose software
package NONMEM implementing this approach, other approximate maximum likelihood
algorithms have been introduced to solve the nonlinear random and mixed effects modeling
problem (see Davidian and Giltinan (1995) for an extensive review). An exact maximum
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likelihood (i.e., no linearization) solution to the parametric population modeling problem based
on the EM algorithm has also been proposed by Schumitzky (1995) and fully developed and
implemented by Walker (1996). The population modeling framework has had a significant
impact on how pharmacokinetic (and pharmacodynamic) variability is quantified and studied
during drug development, and on the identification of important covariates associated with a
drug’s inter-individual kinetic/dynamic variability.

While population models incorporating measured covariates have proven to be useful in drug
development, it is recognized that genetic polymorphisms in drug metabolism and in the
molecular targets of drug therapy, for example, can also have a significance influence on the
efficacy and toxicity of medications (Evans and Relling, 1999). There is, therefore, a need for
population modeling approaches that can extract and model important subpopulations using
pharmacokinetic/pharmacodynamic data collected in the course of drug development trials and
other clinical studies, in order to help identify otherwise unknown genetic determinants of
observed pharmacokinetic/pharmacodynamic phenotypes. The nonparametric maximum
likelihood approach for nonlinear random effects modeling developed by Mallet (1986), as
well as the nonparametric Bayesian approaches of Wakefield and Walker (1997) and Rosner
and Mueller (1997), and the smoothed nonparametric maximum likelihood method of Davidian
and Gallant (1993) all address this important problem. In this paper we propose a parametric
approach using finite mixture models to identify subpopulations with distinct pharmacokinetic/
pharmacodynamic properties.

An EM algorithm for exact maximum likelihood estimation of nonlinear random effects finite
mixture models is introduced, extending the previous work of Schumitzky (1995) and Walker
(1996). The EM algorithm has been used extensively for linear mixture model applications
(see McLachlan and Peel (2000) for a review). The algorithm for nonlinear mixture models
presented below has an analytically tractable M step, and uses sampling-based methods to
implement the E step. Section 2 of this paper describes the finite mixture model within a
nonlinear random effects modeling framework. Section 3 gives the EM algorithm for the
maximum likelihood estimation of the model. Section 4 addresses individual subject
classification, while an error analysis is presented in section 5. A detailed simulation study of
a pharmacokinetic model is presented in section 6. Section 7 contains a discussion.

2. Nonlinear Random Effects Finite Mixture Models
A two-stage nonlinear random effects model that incorporates a finite mixture model is given
by

(1)

and

(2)

where i=1,…,n indexes the individuals and k=1,…,K indexes the mixing components.

At the first stage represented by (1), Yi = (y1i,…,ymii)
T is the observation vector for the ith

individual (Yi ∈ Rmi); hi (θi) is the function defining the pharmacokinetic/pharmacodynamic
(PK/PD) model, including subject specific variables (e.g., drug doses), and θi is the vector of
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model parameters (random effects) (θi ∈ Rp). In (1) Gi (θi, β) is a positive definite covariance
matrix (Gi ∈ Rmi×mi) that may depend upon θi as well as on other parameters β (fixed effects)
(β ∈ Rq).

At the second stage given by (2), a finite mixture model with K multivariate normal components
is used to describe the population distribution. The weights {wk}are nonnegative numbers
summing to one, denoting the relative size of each mixing component (subpopulation), for
which μk (μk ∈ Rp) is the mean vector and Σk (Σk ∈ Rp×p) is the positive definite covariance
matrix.

Letting φ represent the collection of parameters, {β,(wk, μk, Σk),k = 1,…,K}, the population
problem involves estimating φ given the observation data{Y1,…,Yn}. The maximum
likelihood estimate (MLE) can be obtained by maximizing the overall data likelihood L with
respect to φ. Under the i.i.d. assumption of the individual parameters {θi}, L is given by the
expression

(3)

The MLE of φ is defined as φML with L(φML) ≥ L(φ) for all φ in the parameter space.

3. Solution via the EM Algorithm
The EM algorithm, originally introduced by Dempster, Laird and Rubin (1977), is a widely
applicable approach to the iterative computation of MLEs. It was used by Schumitzky
(1995) and Walker (1996) to solve the nonlinear random effects maximum likelihood problem
for a second stage model consisting of a single normal distribution. The EM algorithm is
typically formulated in terms of “complete” versus “missing” data structure. Consider the
model given by (1) and (2) for the important case

(4)

where Hi (θi) is a known function and β = σ2. The component label vector zi is introduced as
a K dimensional indicator such that zi (k) is one or zero depending on whether or not the
parameter θi arises from the kth mixing component. The individual subject parameters (θ1,
…,θn) are regarded as unobserved random variables. The “complete” data is then represented
by Yc = {(Yi, θi, zi),i = 1,…,n} with {θi, zi} representing the “missing” data.

The algorithm starts with φ(0) and moves from φ(r) to φ(r+1) at the rth iteration. At the E-step,
define

where log Lc (φ) is the complete data likelihood given by
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(5)

Now

and by Bayes’ Theorem,

Introducing the notation

then

The expected value of (5) is given by

where

for some constant C.

The M-step takes φ(r) → φ(r+1) where φ(r+1) is the unique optimizer of Q(φ, φ(r)) such that

. Let φ′ = {β,(μk, Σk), k=1,…, K}, then the optimizer of Q(φ, φ(r))
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relative to φ′ occurs at interior points, and the corresponding components of φ(r+1) are the
unique solution to

(6)

From the expression of log p(Yi, θi | σ2, μk, Σk),

so

Also,

and

The unique solution of (6) is thus given by

(7)

(8)
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and

(9)

The updated estimates {wk
(r+1)} are calculated independently. If zi were observable, then the

MLE of wk would be . By replacing each zi by its conditional expectation from
the E step, the updating for wk is given by (see McLachlan and Peel, 2000):

(10)

Dempster et al. (1977) showed that the resulting sequence {φ(r+1)} has the likelihood improving
property L (φ(r +1)) ≥ L(φ(r)). It can be shown that the above updates are well-defined, that is

for all 1 ≤ k ≤ K, if  then  so that  and  are positive
definite. Wu (1983) and Tseng (2005) gave the sufficient conditions for the convergence of
φ(r) to a stationary point of the likelihood function L(φ). A number of starting positions are
suggested, however, in an effort to ensure convergence to a global maximum.

In order to implement the algorithm all the integrals in (7)–(10) must be evaluated at each
iterative step. For the non-mixture problem involving a relatively simple pharmacokinetic
model, Walker (1996) proposed Monte Carlo integration to evaluate the required integrals. We
and others (Ng et al., 2005) have found that importance sampling is preferable to the Monte
Carlo integration for approximating the integrals in the EM algorithm for a number of
representative models of interest in PK/PD. We have also applied importance sampling to the
current mixture model.

We note that all the integrals above have the following form

For each mixing component, a numbers of samples are taken from an envelope distribution,

, and used to approximate the integrals as follows
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(11)

For each mixing component for each subject, the envelope distribution is taken to be a
multivariate normal density using the subject’s previously estimated conditional mean and
conditional covariance as its mean and covariance. Therefore all the random samples are
independent and individual specific. For details of the importance sampling approach in
general, see Geweke (1989). The number of independent samples, T, will depend on the
complexity of the model and the required accuracy in the integral approximations.

4. Classification of Subjects
It is of interest to assign each individual subject to a subpopulation. Such a classification will
allow further investigation into the genetic basis of any identified PK/PD polymorphism. The
quantity τi (k) = E{zi (k) | Y, φ} in the E step is the posterior probability that the ith individual
belongs to the kth mixing component. The classification involves assigning an individual to
the subpopulation associated with the highest posterior probability of membership. For
example, for each i, (i =1,…,n), set

or to zero otherwise. No additional computation is required since all the τi (k) are evaluated
during each EM step.

5. Standard Errors
Assuming the regularity conditions from Philppou and Roussas (1975), it can be shown that
asymptotically as n → ∞,

where .

Now

and the gradient components are calculated for k=1,…,K as
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and for k=1,…,K−1,

Introduce the notation sϖk = ((sΣk)1,1, (sΣk)2,1 …, (sΣk)p, p), where (sΣk)i, j is the component of
the lower triangular part of sΣk in the (i, j) position. Put these results together to produce the
vector

so

All the computations can be performed during the importance sampler calculation at the final
iteration of the EM algorithm.

6. Example
In this section a simulation study is conducted to evaluate the proposed algorithm for
calculating the exact MLEs for a population finite mixture model. A one compartment
pharmacokinetic model is used, with the observations of plasma concentration given by

where D is a bolus drug administration with 100 units of dose, V represents the volume of
distribution and k is the elimination rate constant. For all the individuals, mi = 5 with t1 = 1.5,
t2 = 2, t3 = 3, t4 = 4 and t5 = 5.5. The within-individual error is assumed to be i.i.d. with variance
0.01. Data sets were simulated from this model for each of 100 subjects sampled from the
following population model:
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where Vi and ki are assumed to be independent. A total of 200 such population data sets were
generated. This model represents the pharmacokinetics of a drug with an elimination that can
be characterized by two distinct subpopulations.

The formulation of Section 2 has been modified to accommodate the important case where a
subset of parameters are modeled by a multivariate normal distribution and the remaining
parameters follow a mixture of normals (see modified updating formulas in the Appendix).
The MLEs were obtained for each of the 200 population sets using the EM algorithm with
importance sampling described above. For each of the estimated parameters φ, its percent
prediction error was calculated for each population data set as:

These percent prediction errors were used to calculate the mean prediction error and root mean
square prediction error for each parameter. In addition, for each population data set, the
calculated standard errors were used to construct 95% confidence intervals for all estimated
parameters. The percent coverage of these confidence intervals was then tabulated over the
200 population data sets. Finally, the individual subject classification accuracy was evaluated
for each population data set.

Figure 1 provides a graphical illustration of the results showing the true population distributions
of V and k along with the estimated distribution obtained from the 200 simulated population
data sets. Quantitative results are presented in Table 1, which gives mean and root mean square
prediction errors (RMSE) as well as the percent coverage of the calculated confidence intervals
for each of the estimated parameters. The parameter estimates, overall, match the population
values and the percent coverage of confidence intervals is reasonable. The estimates of
population variance have relatively greater biases and RMSE. Over the 200 population data
sets, on average 1.54 out of 100 subjects were classified in the wrong subpopulation. The largest
number of subjects misclassified was 4, while all the subjects were correctly classified in 83
of the 200 population data sets.

Central to the calculation of the MLEs is the computation of the integrals in (7)–(9), as
approximated by importance sampling in our implementation. Using one of the 200 population
data sets we examined the influence of the number of samples (T) used in the importance
sampler, as well as the number of EM iterations required to achieve two digits of accuracy for
each of the estimated parameters. Table 2 presents the parameter estimates from 50 EM
iterations by using 1000, 2000 and 3000 samples in the important sampling. Accuracy to two
digits was obtained with 1000 samples. Based on this experience, T was taken to be 1000 in
this simulations study and 50 EM iterations were run on each data set.

Error! Reference source not found
demonstrates the convergence of log-likelihood values for a particular data set by starting the
50 EM iterations from 9 different positions. The log-likelihood values were approximated via
Monte Carlo integration
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where . In any particular example, of course, the number of EM
iterations, the number of samples T used to approximate integrals, as well as the use of different
starting guess will depend on the experiment design and complexity of the model.

7. Discussion
In this paper, an EM algorithm for maximum likelihood estimation of nonlinear random effects
mixture models is presented that has application in pharmacokinetic/pharmacodynamic
population modeling studies. It extends the previous work on the use of the EM algorithm for
MLE of nonlinear random effects models, to the case of finite mixture models, and reinforces
the practicability of using exact (no linearizing approximation) MLE estimation in PK/PD
modeling studies (see also, Kuhn and Lavielle (2005) for a stochastic EM variation). The
parametric mixture model MLE approach presented also complements previous work on
nonparametric Bayesian and smoothed nonparametric MLE, in addressing the increasingly
important problem of identifying subpopulations with distinct PK/PD properties in drug
development trials. We note that approximate maximum likelihood methods using mixture
models are also available in NONMEM.

The EM algorithm has been used extensively for fitting linear mixture models in numerous
applications in diverse fields of study. Even for linear problems involving mixture of normal
components, a number of challenges attend the use of the EM algorithm for maximum
likelihood estimation (McLachlan and Peel (2000)) that are also relevant to the nonlinear
random effects problem. These include: potential unboundness of the likelihood for
heteroscedastic covariance components; local maxima of the likelihood function; and choice
of the number of mixing components. Application of the algorithm for nonlinear random effects
mixture models presented here can be guided by the extensive work related to these issues for
linear mixture modeling.

We have investigated the possible unboundness of the likelihood for the example considered
in this paper. If, for example, in the first component of the mixture, μ1 satisfies hi (μ1) = Yi for
any i and Σ1 → 0, then the likelihood will tend to infinity, and the global maximizer will not
exist. By restricting the covariance matrices Σk, k = 1,…, K to be equal (homoscedastic
components), as is often done in mixture modeling, the unboundness of the likelihood will be
eliminated. In our example with heteroscedastic variance components, each individual has five
error-associated observations, while the parameter space is of dimension two. The condition
for likelihood singularity is therefore very unlikely to be satisfied.

Future work is also needed to extend the algorithm to include important practical cases
involving more general error variance models and random effects covariates.
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Appendix

Appendix
For the example in Section 6, as in other PK/PD problem, it is often reasonable to assume that
the mechanism of genetic polymorphism applies to only part of the system, for example, drug
metabolism or drug target. It is therefore desirable to partition the parameter θi into two
components, one (αi) that follows a mixture of multivariate normals and the second (βi) defined
by a single multivariate normal distribution: θi = {αi, βi}, where αi and βi are independent. The
EM updates for this special case are given by:
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and

The updates for {wk, 1 ≤ k ≤ K} and σ2 are the same as in Section 3.
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Fig. 1.
True (solid line) and estimated (dotted line) population densities of k (upper panel) and V (lower
panel) from the population simulation analysis.
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Fig. 2.
Convergence of log-likelihood by starting the EM algorithm from 9 positions.
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Table 2
Parameter estimates by importance sampling with 1000, 2000 and 3000 samples

Parameter T=1000 T=2000 T=3000

μV 19.85039 19.84843 19.85201

μk1 0.30840 0.30837 0.30853

μk2 0.60038 0.60029 0.60079

w1 0.75164 0.75157 0.75269

σV
2 5.73544 5.72227 5.70365

σk1
2 0.00327 0.00323 0.00328

σk2
2 0.00202 0.00203 0.00200

σ 0.09706 0.09687 0.09692
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