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Abstract
Advances in Geographical Information Systems (GIS) and Global Positioning Systems (GPS) enable
accurate geocoding of locations where scientific data are collected. This has encouraged collection
of large spatial datasets in many fields and has generated considerable interest in statistical modeling
for location-referenced spatial data. The setting where the number of locations yielding observations
is too large to fit the desired hierarchical spatial random effects models using Markov chain Monte
Carlo methods is considered. This problem is exacerbated in spatial-temporal and multivariate
settings where many observations occur at each location. The recently proposed predictive
process, motivated by kriging ideas, aims to maintain the richness of desired hierarchical spatial
modeling specifications in the presence of large datasets. A shortcoming of the original formulation
of the predictive process is that it induces a positive bias in the non-spatial error term of the models.
A modified predictive process is proposed to address this problem. The predictive process approach
is knot-based leading to questions regarding knot design. An algorithm is designed to achieve
approximately optimal spatial placement of knots. Detailed illustrations of the modified predictive
process using multivariate spatial regression with both a simulated and a real dataset are offered.

1. Introduction
Recent advances in Geographical Information Systems (GIS) and Global Positioning Systems
(GPS) enable accurate geocoding of locations where scientific data are collected. This has
encouraged collection of large spatial datasets in many fields and has generated considerable
interest in statistical modeling for location-referenced spatial data. This trend is particularly
apparent in large-scale natural resource inventories and environmental monitoring initiatives.
The data collected in these settings are commonly multivariate, with several spatial variables
observed at each location. Given these data, researchers and resource analysts are typically
interested in modeling how variables are associated both within and across locations. Specific
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interest lies in obtaining full inference for model parameters and subsequent predictions along
with estimates of associated uncertainty.

Here, we focus upon the setting where the number of locations yielding observations is too
large for fitting desired hierarchical spatial random effects models using Markov chain Monte
Carlo methods. That is, such fitting involves matrix decompositions whose complexity
increases as O(n3) in the number of locations, n, at every iteration of the MCMC algorithm,
hence the infeasibility or “big n” problem for large datasets. This computational burden is
exacerbated in multivariate settings with several spatially dependent response variables as well
as when spatial data are collected over time.

In an effort to maintain the richness of desired hierarchical spatial modeling specifications in
the presence of large datasets, Banerjee et al. (2008), proposed a class of models based upon
the idea of a spatial predictive process (motivated by kriging ideas). The predictive process
projects the original process onto a subspace generated by realizations of the original process
at a specified set of locations (or knots). The approach is in the same spirit as process model
approaches using basis functions and kernel convolutions, that is, specifications which attempt
to facilitate computation through lower-dimensional process representations. A shortcoming
of the original formulation of the predictive process is that it induces a positive bias in the non-
spatial error term of the models. Further, Banerjee et al. (2008), identified several open
questions regarding the spatial design for placement of knots.

The contribution of this paper is to address both of these issues. In particular, we extend the
univariate modified predictive process offered in Finley et al. (in press), by detailing the
multivariate modified predictive process that effectively partitions and removes the bias in the
non-spatial error terms. Further, we offer an algorithm that places a specified number of knots
such that spatially averaged prediction variance is minimized, noting that a predictive process
with smaller predictive variance might be viewed as better approximation to the parent process.

The remainder of this manuscript evolves as follows. Section 2 reviews the multivariate
predictive process, introduces our proposed bias reducing modification, and describes the
Bayesian implementation of the proposed multivariate models. Section 3 illustrates the
proposed methods with a simulated dataset and a dataset that couples forest inventory data
from the USDA Forest Service Bartlett Experimental Forest with imagery from the Landsat
sensor and other variables to map predicted forest biomass by tree species. Section 4 outlines
our proposed improved knot design algorithm and provides a simulation study. Finally, Section
5 concludes with a brief discussion including future work.

2. Predictive process models
Geostatistical settings typically assume, at locations s ∈ D ⊆ ℜ2, a response variable Y(s)
along with a p × 1 vector of spatially-referenced predictors x(s) which are associated through
a spatial regression model such as,

(1)

where w(s) is a zero-centered Gaussian Process (GP) with covariance function C(s, s′) and
 is an independent process modeling measurement error or micro-scale variation

(see, e.g., Cressie (1993)). In applications, we often specify C(s, s′) = σ2 ρ(s, s′; θ) where ρ(·;
θ) is a correlation function and θ includes decay and smoothness parameters, yielding a constant
process variance. The likelihood for n observations Y = (Y(s1),…,Y(sn))T from (1) is Y ~ N
(X β, ΣY), with ΣY = C(θ) + τ2In, where  is a matrix of regressors and
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. Evidently, both estimation and prediction require evaluating the
Gaussian likelihood, hence, evaluating the n × n matrix . While explicit inversion to compute
the quadratic form in the likelihood is replaced with faster linear solvers, likelihood evaluation
remains expensive for big n, even more so with repeated evaluation as needed in MCMC
algorithms.

Recently, Banerjee et al. (2008) proposed a class of models based upon a predictive process
that operates on a specified lower-dimensional subspace by projecting the original or parent
process. The lower-dimensional subspace is chosen by the user by selecting a set of “knots”

, which may or may not form a subset of the entire collection of observed
locations . The predictive process w(̃s) is defined as the “kriging” interpolator

(2)

where  comprises the parent process realization over the knots

in  is the corresponding m × m covariance matrix, and

.

The predictive process w(̃s) ~ GP(0, C̃(·)) defined in (2) has non-stationary covariance function,

(3)

and is completely specified by the parent covariance function. Realizations associated with
Y are given by , where cT(θ) is the n × m matrix whose
ith row is given by cT(si; θ). The attractive theoretical properties of the predictive process
including its role as an optimal approximator have been discussed in Banerjee et al. (2008).

The predictive process in (2) immediately extends to multivariate Gaussian process settings.
For a q × 1 multivariate Gaussian parent process, w(s), the corresponding predictive process
is

(4)

where  is the cross-covariance matrix
(see, e.g., Banerjee et al. (2004)),  is q × mq and

 is the mq × mq dispersion matrix of . Eq. (4) shows w̃
(s) is a zero mean q × 1 multivariate predictive process with cross-covariance matrix given by
Γw̃(s, s′) = T(s; θ) *−1(θ) (s′; θ). This is especially important for the applications we consider,
where each location s yields observations on q dependent variables given by a q × 1 vector

. For each Yl(s), we also observe a pl × 1 vector of regressors xl(s). Thus, for
each location we have q univariate spatial regression equations which can be combined into
the following multivariate regression model:

(5)
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where XT(s) is a q × p matrix  having a block-diagonal structure with its lth diagonal

being the 1 × pl vector . Note that β = (β1,…,βp)T is a p × 1 vector
of regression coefficients with βl being the pl × 1 vector of regression coefficients
corresponding to . Likelihood evaluation from (5) that involves nq × nq matrices can be
reduced to mq × mq matrices by simply replacing w(s) in (5) by w̃(s).

Further computational gains in computing *−1(θ) can be achieved by adopting
“coregionalization” methods (Wackernagel, 2003; Gelfand et al., 2004; Banerjee et al.,
2008) that model , where each ρl(s, s′; θ) is a univariate
correlation function satisfying ρl(s, s′; θ) → 1 as s → s′. Note that Γw(s, s) = A(s)AT(s), hence

 can be taken as any square-root of Γw(s, s). Often we assume A(s) = A and assign
an inverse-Wishart prior on AAT with A a computationally efficient square-root (e.g., Cholesky
or spectral). It now easily follows that *(θ) = (Im ⊗ A) Σ*(θ)(Im ⊗ AT), where Σ*(θ) is an
mq × mq matrix partitioned into q × q blocks, whose (i, j)th block is the diagonal matrix

. This yields a sparse structure and can be computed efficiently using
specialized sparse matrix algorithms. Alternatively, we can write Σ* as an orthogonally

transformed matrix of an m × m block-diagonal matrix, , where ⊕
is the block-diagonal operator and P is a permutation (hence orthogonal) matrix. Since P−1 =
PT, we need to invert qm × m symmetric correlation matrices rather than a single qm × qm

matrix. Constructing the nq × mq matrix , we further have

(6)

where the Kronecker structures and sparse matrices render easier computations.

2.1. Modified predictive process and its implementation
The predictive process systematically underestimates the variance of the parent process w(s)
at any location s. This follows immediately since we have var(w(̃s)) = cT(s, θ)C*−1(θ)c(s, θ),
var(w(s)) = C(s, s) and that 0 ≤ var(w(s)|w*) = C(s, s)−cT(s, θ)C*−1(θ)c(s, θ). In practical
implementations, this often reveals itself by overestimating the nugget variance in predictive
process versions of models such as (1), where the estimated τ2 roughly captures the τ2 + E(C
(s, s) − cT(s)C*−1(θ)c(s)). (Here, E(C(s, s) − cT(s)C*−1(θ)c(s)) denotes the averaged bias
underestimation over the observed locations.) Indeed, Banerjee et al. (2008) observed that
while predictive process models employing a few hundred knots excelled in estimating most
parameters in several complex high-dimensional models for datasets involving thousands of
data points, reducing this upward bias in τ2 was especially problematic.

To remedy this problem, we propose a modified predictive process, defined as ẅ(s) = w(̃s) +
ε̃(s), where  is a process of independent variables
but with spatially adaptive variances. It is now easy to see that var(ẅ(s)) = C(s, s) = var(w(s)),
as desired. Furthermore, E[ẅ(s) | w*] = w(̃s) which ensures that ẅ(s) inherits the attractive
properties of w(̃s) (Banerjee et al., 2008). The adjustment for the multivariate predictive process
is analogous: following (6), we have ẅ(s) = w̃(s) + ε̃(s), where ε̃(s) ~ MVN(0, Γw(s, s) − T(s,
θ) *−1(θ) (s, θ)).

For estimating the modified predictive process model corresponding to (5), we have the data
likelihood from the set  = {s1,…,sn} as
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(7)

where  is the nq × 1 response vector,  is the nq × p matrix of regressors,

β is the p × 1 vector of regression coefficients and  is nq × mq. In
addition, . Given priors, model fitting employs a
Gibbs sampler with Metropolis–Hastings steps using the marginalized likelihood MVN(Xβ,

T(θ) *−1(θ) (θ) + Σε̃+ε(θ)), where .
Computing the marginalized likelihood for the predictive process likelihood now requires the
inverse and determinant of T(θ) *−1(θ) (θ) + Σε̃+ε(θ). The inverse is computed using the
Sherman–Woodbury–Morrison formula,

, requiring mq × mq
inversions instead of nq × nq inversions, while the determinant is computed as |Σε̃+ε(θ)|| *(θ)
+ (θ)Σε̃+ε(θ) T(θ)|/| *(θ)|. In particular, with coregionalized models T(θ) *−1(θ) (θ) can
be expressed as in (6), while

To complete the hierarchical specifications, customarily we set β ~ MVN(µβ, Σβ), while Ψ
could be assigned an inverse-Wishart prior. More commonly, independence of pure error for
the different responses at each site is adopted, yielding a diagonal

. Also we model AAT with an inverse-Wishart prior.
Assigning priors to parameters within θ will again depend upon the choice of correlation
function. A particularly flexible choice is the Matérn correlation function, which allows control
of spatial range and smoothness (see, e.g., Stein (1999)) and is given by

(8)

In (8), ν is a modified Bessel function of the third kind with order ν and ‖s−s′‖ is the Euclidean
distance between the sites s and s′. ϕ controls the decay in spatial correlation and ν is interpreted
as a smoothness parameter with higher values yielding smoother process realizations. The
spatial decay parameters are generally weakly identifiable and, reasonably informative priors
are needed for satisfactory MCMC behavior. Priors for the decay parameters are set relative
to the size of D, e.g., prior means that imply the spatial ranges to be a chosen fraction of the
maximum distance. The smoothness parameter ν is typically assigned a prior support of (0, 2)
as the data can rarely inform about smoothness of higher orders.

We obtain L samples, say , from p(Ω | Data) ∝ p(β)p(A)p(θ)p(Y | β, A, θ, Ψ), where
Ω = (β, A, θ, Ψ). Sampling proceeds by first updating β from an MVN(µβ|·, Σβ|·) distribution

with  and mean µβ|· = Σβ|·XT( T(θ) *−1(θ)
(θ) + Σε̃+ε)−1Y. The remaining parameters are updated using Metropolis steps, possibly with
block-updates (e.g. all the parameters in Ψ in one block and those in A in another). Typically,
random walk Metropolis with (multivariate) normal proposals is adopted; since all parameters
with positive support are converted to their logarithms, some Jacobian computation is needed.
For instance, while we assign an inverted Wishart prior to AAT, in the Metropolis update we
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update A, which requires transforming the prior by the Jacobian . Uniform priors
on the spatial decay parameters will require a Hastings step due to the asymmetry in the priors.

Once the posterior samples from , have been obtained, posterior samples
from P(w* | Data) are drawn by sampling w*(l) for each Ω(l) from P(w* | Ω(l), Data). This
composition sampling is routine because P(w* | Ω, Data) is Gaussian; in fact, from (7) we have
this distribution as

In some instances (e.g., prediction) we desire to recover ε̃, in which case we again use
composition sampling to draw ε̃(l) from the distribution

Once w* and ε̃ are recovered, prediction is carried out by drawing Y(l)(s0), for each l = 1,…,
L from a q × 1 multivariate normal distribution with mean XT(s0)β(l) + T(θ(l)) *−1(θ(l))
W*(l) + ε̃(l) and variance Ψ(l).

3. Illustrations
We present two simulated data examples followed by an analysis of forest biomass data from
a USDA Forest Service experimental forest. Our modified predictive process implementations
were written in C++, leveraging threaded and processor optimized BLAS, sparse BLAS, and
LAPACK routines for the required matrix computations. The most demanding model
(involving 6000 spatial effects) took approximately 5 h to deliver its entire inferential output
involving three chains of 25,000 MCMC iterations on two Quad-Core 3.0 GHz Intel Xeon
processors with 32.0 GB of RAM running Fedora Linux. Convergence diagnostics and other
posterior summarizations were implemented within the R statistical environment
(http://cran.r-project.us.org) employing the CODA package.

3.1. Simulated illustrations
We start this section with an example that demonstrates the bias introduced when using the
unmodified predictive process; then, a second example of a computationally demanding
analysis of a large multivariate dataset that would require 6000 dimensional matrix
computations.

For the first example, we generate 2000 locations within a [0, 100] × [0, 100] square and then
generate the dependent variable from model (1) with an intercept as the regressor, an
exponential covariance function with range parameter ϕ = 0.06 (i.e., such that the spatial
correlation is ~0.05 at 50 distance units), scale σ2 = 1 for the spatial process, and with nugget
variance τ2 = 1. We then fit the predictive process and modified predictive process models
using a holding-out set of randomly selected sites, along with a separate set of regular lattices
for the knots (m = 49, 144 and 900). Table 1 shows the posterior estimates and the root mean
square prediction error (RMSPE) based on the prediction for the hold-out dataset. The
overestimation of τ2 by the unmodified predictive process is apparent and we also see how the
modified predictive process is able to adjust for the τ2. Not surprisingly, the RMSPE is
essentially the same under either process model.
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For the second example, we simulated a response vector Y(s) of length q = 6 for each of 1000
irregularly scattered locations over a [0, 1000] × [0, 1000] square domain using (5) and
associated parameter values given in Table 2. Spatial association was assumed to follow the
Matérn correlation function (8), with response-specific range, ϕ, and smoothness, ν, parameters
indexed with subscript 1,…, 6 in Table 2. The simulated locations and interpolated surfaces of
the resulting univariate responses are displayed in Fig. 1. Given these data, we considered sub-
models of (5) including the non-spatial (i.e., (5) without w(s)) and spatial non-separable (i.e.,
coregionalized) models with several knot intensities. For the spatial models, Ψ and Γw are
considered full q × q cross-covariance matrices. The iterative inversion of the 6000 dimension
matrix (i.e., q × n = 6 × 1000) makes fitting the full spatial models computationally challenging.
Therefore, the candidate spatial models employ the modified predictive process and consider
three knot intensities of 64, 100 and 225. Knots were located on a uniform grid over the domain.
We judge the performance of these models based on the ability to recover the true parameter
values, prediction of a hold-out set of 1000 locations, and visual similarity between the
predicted and true response surfaces.

Prior distributions are assigned to model parameters to complete the Bayesian specification.
As is customary, a flat prior was assigned to each intercept parameter β. The cross-covariance
matrices Ψ and Γw each receives an inverse-Wishart, IW(df, S), with the degrees of freedom
set to q + 1. For Ψ and Γw, the scale matrix, S, was constructed with zeros on the off-diagonal
elements and diagonal elements taken as the nugget and partial-sill values, respectively, from
univariate semi-variograms fit to the residuals of the non-spatial multivariate model. For each
response variable, the Matérn correlation function decay parameter ϕ follows a U(0.003, 3)
which, when ν = 0.5, corresponds to about 1 to 1000 distance units for the effective spatial
range (i.e., −log(0.05)/ϕ is the distance at which the correlation drops to 0.05). As previously
noted in Section 2, ν is typically poorly identified by the data and therefore we fix it at 0.5.

For each model, we ran three initially over-dispersed chains for 25,000 iterations. Convergence
diagnostics revealed 5000 iterations to be sufficient for initial burn-in and so the remaining
20,000 samples from each chain were used for posterior inference. The non-separable model
with 255 knots required the most computing resources, taking approximately 5 h to complete
the MCMC sampling; the non-spatial and separable models required substantially less time to
collect the specified samples.

For the three knot intensities, there was negligible difference among the parameter estimates.
Further, in only two instances, at the 64 knot intensity, did the estimated 95% credible interval
not cover the true parameter’s value. Table 3 presents the parameter estimates for the 64 knot
grid. At the 100 knot intensity and greater, all 95% credible intervals cover the true parameter
values and there is a marginal tightening of the spatial range parameters. We now turn our
attention to prediction of the hold-out set. The empirical coverage of 95% prediction interval
for the three knot intensities 64, 100, and 255 were 91%, 93%, and 96%, respectively. There
was no perceptible tightening of the prediction intervals as knot intensity increased; however,
increasing the knot intensity allowed estimates of w̃ to better approximate the local trends in
the residual spatial surface. Fig. 2 offers an interpolated surface for the median of the posterior
predictive distribution from the 100 knot model. These prediction surfaces closely approximate
the true response surfaces in Fig. 1.

3.2. Forest biomass prediction and mapping
Spatial modeling of forest biomass and other variables related to measurements of current
carbon stocks and flux have recently attracted much attention for quantifying the current and
future ecological and economic viability of forest landscapes. Interest often lies in detecting
how biomass changes across the landscape (as a continuous surface) by forest tree species. We
consider point-referenced biomass (log-transformed) data observed at 437 forest inventory
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plots across the USDA Forest Service Bartlett Experimental Forest (BEF) in Bartlett, New
Hampshire. Each location yields measurements of metric tons of above-ground biomass per
hectare for American beech (BE), eastern hemlock (EH), red maple (RM), sugar maple (SM),
and yellow birch (YB) and five covariates: TC1, TC2, and TC3 tasseled cap components (see
Huang et al. (2002)) derived from a spring date of mid-resolution Landsat 7 ETM+ satellite
imagery from the National Land Cover Database (www.mrlc.gov/mrlc2k_nlcd.asp), and;
elevation (ELEV) and slope (SLOPE) derived from a digital elevation model data (see
http://seamless.usgs.govfor metadata). Fig. 3 offers interpolated surfaces of the response
variables. Covariates were measured on a 30 × 30 m pixel grid and are available for every
location across the BEF. Interest lies in producing pixel-level prediction of biomass by species
across large geographic areas. Because data layers such as these serve as input variables to
subsequent forest carbon estimation models, it is crucial that each layer also provides a pixel-
level measure of uncertainty in prediction. Following our discussion in Section 2.1, we see that
basing prediction on a predictive process could substantially reduce the time necessary to
estimate the posterior predictive distributions over a large array of pixels. A similar analysis
was conducted by Finley et al. (2008); however, due to computational limitations they were
only able to fit models using half of the available data and pixel-level prediction was still
infeasible.

Here we considered sub-models of (5) including the non-spatial and spatial non-separable
models with the modified predictive process and three knot intensities of 51, 126, and 206. For
all models Ψ and Γw are considered full q × q cross-covariance matrices where q = 5. Predictive
process knots were located on a uniform grid within the BEF. We judge the performance of
these models based on prediction of a hold-out set of 37 inventory plots, and visual similarity
between the predicted and observed response surfaces.

We assigned a flat prior to each of the 30 β parameters (i.e.,  with each pl
including an intercept, TC1, TC2, TC3, ELEV, and SLOPE). The cross-covariance matrices
Ψ and Γw each receives an inverse-Wishart, IW(df, S), with the degrees of freedom set to q +
1 = 6. Again, diagonal elements in the IW hyperprior scale matrix for Ψ and Γw were taken
from univariate semi-variograms fit to the residuals of the non-spatial multivariate model. The
decay parameter ϕ in the Matérn correlation function spatial follows a U(0.002, 0.06) which
corresponds to an effective spatial range between 50 and 1500 m. Again, the smoothness
parameter, ν, was fixed at 0.5, which reduces (8) to the common Exponential correlation
function. For each model, we ran three initially over-dispersed chains for 35,000 iterations.
Unlike in the simulation analysis, substantial effort was required to select tuning values that
achieved acceptable Metropolis acceptance rates. Ultimately, we resorted to univariate updates
of elements in Ψ1/2 and  to gain the control necessary to maintain an acceptance of
approximately 20%. Convergence diagnostics revealed 5000 iterations to be sufficient for
initial burn-in and so the remaining 30,000 samples from each chain were used for posterior
inference. The 206 knot model required approximately 2 h to complete the MCMC sampling
with the 106 and 51 knot models requiring substantially less time to collect the specified number
of samples.

For the three knot intensities, there was negligible difference among the β parameter estimates.
The estimated diagonal elements of Ψ and Γw for the three models were also nearly identical.
Further, all of the 95% credible intervals for the off-diagonal elements in Ψ and Γw overlapped
between the 126 and 206 knot models; however, the 206 knot model had several more
significant off-diagonal elements (i.e., indicated by a credible interval that does not include
zero). For the 51 knot model, off-diagonal elements of Γw were generally closer to zero and
the corresponding elements in Ψ were significantly different from zero, suggesting that the
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coarseness of this knot grid could not capture the covariation among the residual spatial
processes.

Table 4 presents the parameter estimates of Γw, Ψ, and ϕ for the 126 knot model. For brevity
we have omitted β estimates but note that 15 were significant at the 0.05 level. Significant off-
diagonal elements Γw;2,3 and Γw;1,5 in Table 4 correspond the spatial correlations between BE
and YB and between EH and RM. These associations can also be seen in the interpolated
surface of w̃ depicted in Fig. 4, where surface patterns are similar between BE and YB and
between EH and RM.

Turning to prediction, it appears that the covariates and spatial proximity of observed inventory
plots explain a significant portion of the variation in the response variables, perhaps leading
to overfitting. We note that for our 37 hold-out plots the 95% prediction intervals are quite
broad yielding a 100% empirical coverage for all three knot intensities. Finally, comparing the
surface of pixel-level prediction for 1000 randomly selected pixels (Fig. 5) to the observed
(Fig. 3) we see that the model can capture landscape-level variation in biomass and spatial
patterns in biomass by species.

As described in Finley et al. (2008), the goal of these types of modeling exercises, that couple
remotely sensed covariates and georeferenced forest inventory, is to enable fine resolution
prediction of forest attributes (e.g., biomass) at the landscape scale. Ideally, the remotely sensed
covariates would explain all of the variation in the response variable; however, this is rarely
the case and we are often left with substantial spatial dependence in the residuals, as seen here.
As noted above, the computational burden of the full multivariate geostatistical model forced
Finley et al. (2008) to use only half the available forest inventory plot data. Although, we
considered only a subset of the covariates used in Finley et al. (2008) and worked with a log-
transformed response variable, we see several common trends in the residual spatial process
(e.g., significance among several cross-covariance terms). Ultimately, the predictive process
model makes this analysis and subsequent pixel-level prediction trivial for even a common
single processor workstation.

4. Optimal knot design
4.1. A brief review of spatial design

As with any knot-based method, selection of knots is a challenging problem with choice in two
dimensions more difficult than in one. Suppose for the moment that m is given. We are
essentially dealing with a problem analogous to a spatial design problem, with the difference
being that we already have samples at n locations. There is a rich literature in spatial design
which is summarized in, e.g., the recent paper of Xia et al. (2006). One approach would be the
so-called space-filling knot selection following the design ideas of Nychka and Saltzman
(1998). Such designs are based upon geometric criteria, measures of how well a given set of
points covers the study region, independent of the assumed covariance function. Instead, a
number of authors have investigated the problem of optimal spatial sampling design assuming
a particular spatial model. Model-based design often involves the minimization of a prediction-
driven design criterion which depends on the particular prediction objectives. See, for example,
McBratney and Webster (1981), Ritter (1996), and Zhu (2002). A recent work by Zhu and
Stein (2005) and Zimmerman (2006) considers designs to achieve good prediction and accounts
for covariance parameter estimation uncertainty using the likelihood. Diggle and Lophaven
(2006) discuss a Bayesian design criterion which minimizes the spatially averaged prediction
variance. Their Bayesian design approach naturally combines the goal of efficient spatial
prediction while allowing for uncertainty in the values of model parameters. Application-
specific numerical methods are often used to find optimal solutions. For example, Zhu and
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Stein (2005) implement the optimization using a simulated annealing algorithm. Xia et al.
(2006) consider algorithms such as sequential selection, block selection and stochastic search.

4.2. Proposed approach
For a given set of observations, our goal is to construct a knot selection strategy such that the
induced predictive process is a better approximation to the parent process. For a selected set
of knots, w(̃s) = E[w(s)|w*] is considered as an approximation to the parent process. Given θ,
the associated predictive variance of w(s) conditional on the predictive process w* on * can
be written as Vθ(s, *) = VAR[w(s)|w(·), *, θ] = C(s, s) − cT(s, θ)TC*−1c(s, θ), which measures
how well we approximate w(s) by the predictive process w(̃s).

One possible criterion in knot selection is then defined as a function of Vθ(s, *). One commonly
used criterion is:

where g(s) is the weight assigned to location s. In this paper we only consider the simple case
for which g(s) ≡ 1. Vθ( *) is referred to as spatially averaged predictive variance. In our case,
we compute the spatially averaged prediction variance over all the observed locations, i.e.,

We ultimately reduce the problem of knot performance to the minimization of a design criterion
which is the function Vθ( *).

It can be proved that: (1) Vθ({ *, s0})−Vθ( *) < 0 for a new site s0, (2) Vθ({ *, s0})−Vθ( *) →
0 when , where  is any point of the knots, (3) Vθ({s1,…, sn}) = 0, where {s1,…,
sn} are the original observed locations. The variance covariance matrix under the parent process
model in Section 2 is ΣY = C + τ2I, and the variance covariance matrix from the corresponding
predictive process is given by Σpred = cTC*−1c + τ2I. The Frobenius norm between ΣY and
Σpred is ‖ΣY − Σpred‖ ≡ tr(C − cTC*−1c)2. Since C − cTC*−1c is positive definite, the Frobenius

norm , where λi is the ith eigenvalue of ΣY − Σpred. Also, the averaged
predictive variance V = tr(ΣY − Σpred)/n = ∑ λi/n.

In practice, the values of covariance parameters have to be estimated under the assumed model.
An option is to obtain the parameter estimations by using a subset of original data or fitting
the predictive process model based on a regular lattice of knots. (That is what we do.) Another
option is to adopt a Bayesian criterion, which places a prior on θ and then minimizes
Eθ(Vθ( *)) (see, Diggle and Lophaven (2006)).

Suppose the values of the parameters and the knot size m are given. We consider the following
sequential search algorithm approach to find the approximately optimal design:

• Initialization: specify allowable sampling locations of size N; possible choices include
a fine grid, the observed locations or the union of these two sets.

• Specify a set of locations of size n0 as starting points for knot selection; possible
choices include a regular grid, or a subset of the observed locations chosen randomly
or deterministically.
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• At step t + 1,

For each sample point si in the allowable sample set, evaluate V({ *(t), si}).

Remove the sample point with maximum decrease in V from the allowable sample
set and add it to the knot set.

• Repeat the above procedure until we obtain m points in knot set.

The sequential evaluation of V is achieved using a very efficient algorithm incorporating block-
matrix computation. We have successfully implemented the sequential algorithm in a
simulation study shown in Section 4.3. We remark that the sequential algorithm does not
necessarily achieve the global optimization solution. Alternative computational approaches are
available to be used in finding approximately optimal designs such as stochastic search and
block selection (see Xia et al. (2006)).

As for the choice of m, the obvious answer is “as large as possible”. Evidently, this is governed
by computational cost and sensitivity to choice. So, in principle, we will have to implement
the analysis over different choices of m and consider run time along with stability of predictive
inference; in our case, the value of minimized V under different choices of m.

Finally, we can perform a two-step analysis by combining this knot selection procedure with
the modified predictive process in a natural way: (1) choose a set of knots to minimize the
averaged predictive variances; (2) then use the modified process in the model fitting.

4.3. A simulation example using the two-step analysis
We generated 1000 data points in a [0, 100] × [0, 100] square and then generated the dependent
variable from model (1) with an intercept µ = 1 as a regressor, an exponential covariance
function with range parameter ϕ = 0.06 (i.e., an effective range of ~50 units), scale σ = 1 for
the spatial process, and with nugget variance τ2 = 1. We illustrate a comparison among three
design strategies, including regular grids, sequential search over all the observed locations and
sequential search over a fine regular lattice. In Fig. 6, we plot the averaged predictive variances
under each strategy. Sequential search algorithm is clearly better than choosing a regular grid
as knots. For instance, with 180 sites selected, sequential search over the observed locations
yielded an averaged predictive variance approximately 0.15. For the regular grids, roughly 150
additional sites are needed to achieve the same level of performance.

5. Summary and future work
Treating the “big N problem” for spatial data is currently an active research area and, with
increased data collection and storage capability, will become even more of an issue. With our
proposed modification and approximately optimal knot design, predictive process models offer
an attractive tool for handling this problem.

Future work will extend these models to handling space–time datasets, where, with high
temporal resolution, additional computational challenges exist. A related problem is scalability
of spatial models. Spatial modeling is often done on small scales to achieve high resolution or
at large scales, sacrificing resolution. Strategies that implement predictive processes offer the
possibility of studying high resolution over large regions.

Acknowledgments
The work of the first and third authors was supported in part by NSF-DMS-0706870, that of the third and fourth authors
was supported in part by NIH grant 1-R01-CA95995 and that of the second and fourth authors was supported in part
by NSF-DEB-05-16198.

Finley et al. Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
Banerjee, S.; Carlin, B.; Gelfand, A. Hierarchical Modeling and Analysis for Spatial Data. Chapman &

Hall; 2004.
Banerjee S, Gelfand A, Finley A, Sang H. Gaussian predictive process models for large spatial datasets.

Journal of the Royal Statistical Society, Series B 2008;70:825–848.
Cressie, N. Statistics for Spatial Data. Vol. 2nd ed.. New York: Wiley; 1993.
Diggle P, Lophaven S. Bayesian geostatistical design. Scandinavian Journal of Statistics 2006;33(1):53–

64.
Finley A, Banerjee S, Ek A, McRoberts R. Bayesian multivariate process modeling for prediction of

forest attributes. Journal of Agricultural, Biological, and Environmental Statistics 2008;13(1):1–24.
Finley A, Banerjee S, Waldmann P, Ericsson T. Hierarchical spatial modeling of additive and dominance

genetic variance for large spatial trial datasets. Biometrics. (in press).
Gelfand A, Schmidt A, Banerjee S, Sirmans C. Nonstationary multivariate process modeling through

spatially varying coregionalization. Test 2004;13(2):263–312.
Huang C, Wylie B, Homer C, Yang L, Zylstre G. Derivation of a tasseled cap transformation based on

landsat 7 at-satellite reflectance. International Journal of Remote Sensing 2002;8:1741–1748.
McBratney A, Webster R. The design of optimal sampling schemes for local estimation and mapping of

regionalized variables. II. Program and examples. Computers and Geosciences 1981;7(4):335–365.
Nychka D, Saltzman N. Design of air quality monitoring networks. Case Studies in Environmental

Statistics 1998:51–76.
Ritter K. Asymptotic optimality of regular sequence designs. The Annals of Statistics 1996;24(5):2081–

2096.
Stein, M. Interpolation of Spatial Data. New York: Springer; 1999.
Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications. Springer; 2003.
Xia G, Miranda M, Gelfand A. Approximately optimal spatial design approaches for environmental health

data. Environmetrics 2006;17(4):363–385.
Zhu, Z. Ph.D. Thesis. University of Chicago. Dept. of Statistics; 2002. Optimal sampling design and

parameter estimation of gaussian random fields.
Zhu Z, Stein M. Spatial sampling design for parameter estimation of the covariance function. Journal of

Statistical Planning and Inference 2005;134(2):583–603.
Zimmerman D. Optimal network design for spatial prediction, covariance parameter estimation, and

empirical prediction. Environmetrics 2006;17(6):635–652.

Finley et al. Page 12

Comput Stat Data Anal. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Interpolated surfaces of the simulated multivariate response values over 1000 sites. Response
variables ordered 1–3, top row and 4–6, bottom row. Site locations overlaid on top left panel.
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Fig. 2.
Interpolated surfaces of the median predicted multivariate response values over a grid of 1000
hold-out sites. The order of panels corresponds to Fig. 1. Predictions based on the 100 knot
locations overlaid on top left panel.
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Fig. 3.
Interpolation surfaces of log-transformed metric tons of biomass per hectare by species
measured on forest inventory plots across the BEF. Response variables ordered BE, EH, top
row and RM, SM, YB, bottom row. The set of 437 forest inventory plots is represented as
points in the top left panel.
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Fig. 4.
Interpolated surfaces of the 126 knot model’s median w̃ at each inventory plot. Top left panel
shows forest inventory plots (small points) under the 126 knots (large points). The order of
response variables in the subsequent panels corresponds to Fig. 3.
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Fig. 5.
Interpolated surfaces of the 126 knot model’s median predicted response value over a random
subset of 1000 pixels in the BEF. Top left panel shows the subset of prediction pixels (small
points) under the 126 knots (large points). The order of response variables in the subsequent
panels corresponds to Fig. 3.
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Fig. 6.
Averaged prediction variance (V) versus number of knots (m). Solid dots denote results for
regular grids; dash-dotted line denotes results for the sequential search over the observed data
locations (starting with 49 randomly chosen sites from the observed locations), and; solid line
denotes results for the sequential search over a 60 × 60 regular grid (starting with a 7 × 7 regular
grid).
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Table 1

Parameter estimates for the predictive process and modified predictive process models in the univariate
simulation

µ σ2 τ2 RMSPE

True 1 1 1

m = 49

Predictive process 1.365 (0.292, 2.610) 1.367 (0.652, 2.371) 1.177 (1.067, 1.230) 1.2059

Modified process 1.363 (0.511, 2.392) 1.042 (0.522, 1.915) 0.936 (0.679, 1,140) 1.2048

m = 144

Predictive process 1.363 (0.524, 2.324) 1.387 (0.764, 2.442) 1.095 (0.959, 1.244) 1.1739

Modified process 1.332 (0.501, 2.240) 1.141 (0.643, 1.784) 0.932 (0.764, 1.223) 1.1718

m = 900

Predictive process 1.306 (0.235, 2.545) 1.121 (0.853, 1.581) 0.993 (0.851, 1.155) 1.1685

Modified process 1.307 (0.230, 2.632) 1.045 (0.763, 1.493) 0.984 (0.872, 1.210) 1.1679
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