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Introduction
Cancer drug discovery has undergone a paradigm change over the past few years, from
predominantly cytotoxic agent-based therapy to therapy aimed at genetic and molecular targets,
thanks to a growing understanding of the genes and pathways responsible for cancer initiation
and progression and to new drug discovery technologies. The success of drugs like
trastuzumab, imatinib, gefitinib, and erlotinib has demonstrated that the targeting of specific
oncogenic signal transduction pathways can be clinically useful.1 One such pathway, the
Hedgehog-Glioma-associated oncogene homolog zinc finger protein (Hh-Gli)a signaling
pathway, has attracted drug discovery scientists for the past decade. Hh-Gli signaling plays an
important role in the embryonic patterning and development of many tissues and somatic
structures as well as maintaining and repairing mature tissues in adults.2-4 Uncontrolled
activation of the Hh-Gli pathway has been implicated in several cancers, including
medulloblastoma, rhabdomyosarcoma, melanoma, basal cell carcinoma, and breast, lung, liver,
stomach, prostate, and pancreatic cancers. 2, 5-8 Inhibition of the aberrant Hh-Gli pathway
(Figure 1) has thus emerged as an attractive target for anticancer therapy.9-11 One Hh pathway
inhibitor has shown promising results in phase I clinical trials and is proceeding to phase
II12 studies, and two other compounds have entered phase I clinical trials.13, 14 In this article,
we review the medicinal chemistry efforts to identify and design inhibitors of Hh-Gli signaling
and present a perspective of future developments in this dynamic field. We also present a brief
overview of the role of Hh-Gli signaling pathway in normal development and cancer.

The hedgehog (Hh) gene was first identified during a search for embryonic lethal mutants of
Drosophila melanogaster, which found that mutation of Hh resulted in altered segment
patterning of the larva.15 Subsequently the gene was identified in many other invertebrates and
vertebrates, including humans. Three mammalian counterparts of the Hh gene, termed Sonic
hedgehog (Shh), Dessert hedgehog (Dhh), and Indian hedgehog (Ihh), were identified by
combined screening of mouse genomic and cDNA libraries.16 Hh undergoes multiple
processing events, including autocatalytic cleavage of the C-terminal domain combined with
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addition of a cholesterol moiety at the cleavage site, and an N-terminal palmitoylation, to
generate the active ligand.17-19

The receptor of secreted Hh protein is the multipass transmembrane protein Patched (Ptch).
Of the two vertebrate homologs of Ptch, Ptch1 and Ptch2, the role of Ptch1 is better understood.
In the absence of Hh ligand, Ptch inhibits the activity of the downstream effector Smoothened
(Smo). The binding of Hh inactivates Ptch, resulting in activation of Smo.20 In Drosophila, a
complex of proteins comprising Fused (Fu), Suppressor of Fused (SuFu), and Costal-2 (Cos2)
mediates signaling downstream of Smo and is aided by several kinases, such as protein kinase
A (PKA), glycogen synthase kinase 3 (GSK3), and casein kinase 1 (CK1). Mammalian
homologs of Fu and Cos2 have not yet been identified, suggesting that the signaling
mechanisms differ in mammals and Drosophila. 21, 22 Several mammalian-specific kinases
that are required for Shh signaling have been identified.23-25 These proteins modulate the
function of Gli (Ci in Drosophila), the only transcription factor identified to date that operates
directly downstream of Hh.

The first vertebrate Gli gene to be discovered was human Gli1, which was amplified about 50-
fold in a malignant glioma.26 Vertebrates have three Gli proteins (Gli1, Gli2 and Gli3), all of
which have five highly conserved tandem zinc fingers, a fairly conserved N-terminal domain,
several potential PKA sites, and a number of additional small conserved regions in the C-
terminal end. Despite these similarities, the functions of the Gli subtypes differ. Both Gli2 and
Gli3 contain activation and repressor domains. Consequently, in the absence of upstream Hh
signal, full-length Gli3 and, to a lesser extent, Gli2, are constitutively cleaved to generate a
truncated repressor form.27-29 Hh signaling inhibits this cleavage, resulting in full-length Gli2
and Gli3, which have activator function. Gli1, in contrast, does not undergo proteolytic
cleavage and acts as a constitutive activator.27 The transcription of Gli1 gene is initiated by
Hh and is also controlled by Gli3.27 Target genes of the Hh pathway other than Gli1 include
Ptch, several Wnt and TGFβ superfamily proteins, cell cycle proteins such as cyclin D, and
stem-cell marker genes such as NANOG and SOX2.30, 31 Investigators are now attempting to
comprehensively identify the Gli1-target genes.32, 33

Hh signaling in development and tissue maintenance
The Hh signaling pathway is crucial for proper embryonic development.34 It is also essential
for restraining growth in the nervous system and other tissues, and in maintenance of stem cells
in adults.35-37 The expression and roles of Hh in vertebrate tissues/organs has been extensively
described in the recent reviews.34, 38

Two of the functions of Hh in vertebrate embryonic development are both crucial and relatively
well understood: neural tube differentiation and anteroposterior limb patterning. The
predominant mechanism of Hh signaling in these functions is paracrine signaling, in which the
Hh molecules act in a gradient fashion. For example, in vertebrate limb buds, exposure to
different concentrations of Shh modulates patterning of the interdigital mesenchyme, which
influences the proper growth of digits in a specific pattern.39 In neural tube development, Shh
produced by the floor plate causes dorsoventral patterning, the specification of ventral cell
populations, and general cellular proliferation in the brain.40 Holoprosencephaly, a disorder
involving the development of forebrain and midface in which ventral cell types are lost, is
caused in humans by mutations that lead to loss of Shh activity.41

Another important feature of Shh signaling is that the Gli subtypes have both unique and
overlapping functions. While ectopic expression of Gli1 in the midbrain and hindbrain of
transgenic mice results in expression of some ventral cell types, mice homozygous for a
mutation in the region encoding the zinc finger domain of Gli1 develop normally.42, 43

However, Gli1/Gli2 double mutant mice have phenotypes with severe multiple defects,
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including variable loss of the ventral spinal cord, and smaller lungs; therefore, Gli2 plays a
more important role in spinal cord and lung development than does Gli1. In contrast, Gli1/
Gli3 double mutant mice did not have these phenotypes.43 Gli2 and Gli3 have both been
implicated in skeletal development, with each subtype serving specific functional roles.44, 45

Gli2 mutant mice exhibit severe skeletal abnormalities including cleft palate, tooth defects,
absence of vertebral body and intervertebral discs, and shortened limb and sternum.45 Gli3
appears to be the major mediator of Shh effect in the limbs, as Gli1/Gli2 double mutant mice
had a normal digit number and pattern while Gli3 mutant mice showed polydactyly.43, 46

Genetic analyses of Gli mutants revealed that requirement for Gli subtypes development is
quite divergent even among vertebrates. In zebrafish, both detour (dtr) mutations (encoding
loss-of-function alleles of Gli1) and you-too (yot) mutations (encoding C-terminally truncated
Gli2) have defects in body axis formation and expression of Hh-target genes in the brain,47

suggesting divergent requirements for Gli1 and Gli2 in mouse and zebrafish.

In adults, the Hh pathway is essential for restraining growth in the nervous system and other
tissues, and in maintenance of stem cells. Zhang and Kalderon have shown that Hh acts
specifically on stem cells in Drosophila ovaries and that these cells cannot proliferate in the
absence of Hh.48 Other studies showed that Hh signaling in the postnatal telencephalon both
promotes proliferation and maintains populations of neural progenitors, suggesting that Shh
signaling in the mammalian telencephalon may participate in the maintenance of a neural stem
cell niche.35 The role of Hh in proliferation of adult neural progenitor cells was confirmed by
a study in which Shh was overexpressed and proliferation was inhibited by using a Smo
antagonist.49

Hh signaling in cancer
Hh genes have the ability to induce tissue proliferation. This function is important in
embryogenesis and tissue maintenance, but inappropriate activation of the pathway can result
in tumorigenesis.50 Tumors in about 25% of all cancer deaths are estimated to involve aberrant
Hh pathway activation.4 Tumorigenesis or tumor growth can result from abnormal up-
regulation of Hh ligand or from deregulation of the expression or function of downstream
components by, for example, loss of Ptch,51-53 activating mutations of Smo,54 loss of SuFu,
55 amplification or chromosomal translocation of Gli1,26 or Gli2 gene amplification or
stabilization of Gli2 protein.56

The first Hh pathway gene found to be amplified in cancers was Gli1, which was expressed at
high levels in human glioblastoma and derived cell lines.26 Subsequently, Gli1 was found to
be consistently expressed in a variety of glial tumors, and Gli1 overexpression was shown to
induce central-nerves system hyperproliferation.57 Gli1 overexpression has also been observed
in a panel of brain tumors ranging from low-grade to high-grade in a study that identified
Gli1 expression as the only reliable marker of Hh pathway activity.31 Further, cell proliferation
in primary cultures of many of these tumors was inhibited by Gli1 small-interfering RNA.31

Gli1 expression was correlated with tumor grade in PDGF-induced gliomagenesis in mice.58

Hh signaling components other than Gli1 also contribute to tumorigenesis in specific subsets
of glioblastomas. In PDGF-induced tumors, expression level of Shh was correlated with the
tumor grade. However, other studies found only a subset of gliomas to contain high levels of
Shh.31

Another cancer with defects in Hh pathway regulation is basal cell carcinoma (BCC). Human
Ptch was first identified by virtue of its mutation in patients with Gorlin Syndrome (GS), a
genetic disease that gives rise to sporadic BCC.59 The mutations of Ptch identified in BCC
include deletions producing truncated proteins and insertion or nonsense mutations
accompanied by loss of heterozygosity (LOH) or mutations in the other allele.51, 52 These
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mutations inhibit the ability of Ptch to suppress Smo, resulting in constitutive Hh signaling.
While Ptch1 abnormalities are detected in the majority of BCC patients, it is now clear that a
subset of BCC is also driven by a mutation in Smo that decreases its sensitivity to inhibition
by Ptch.54 In addition, overexpression of Gli1 protein causes BCC-like tumors in mice,
establishing the importance of Gli1 transcription in BCC tumorigenesis.60 The level of Gli1
transcript can be used to discriminate BCC from certain other skin tumors.61 However,
blocking of Gli-based transcription has not yet been shown to arrest BCC growth.

Medulloblastoma, the most common malignant pediatric brain tumor, is linked with mutations
in Ptch and Smo and mutations in other Hh pathway genes such as SuFu and Gli.62 Inactivation
of the Ptch locus by deletion and mutation has been found in about 10% of sporadic
medulloblastomas.53 Shh pathway involvement in these tumors was further confirmed by
studies in which treatment of murine medulloblastomas with Smo inhibitors inhibited cell
proliferation and reduced tumor growth in mice.63-65 Taylor et al.55 identified SuFu as a tumor-
suppressor gene whose mutation predisposes individuals to medulloblastoma. They found that
a subset of children with medulloblastoma carry germline and somatic mutations in SuFu,
accompanied by loss of heterozygosity of the wild-type allele.55 Several of these mutations
encoded truncated SuFu proteins that are unable to export Gli protein from the nuclei. In
addition, the tumor-suppressor REN has also been linked with medulloblastoma in which the
allelic deletion and reduced expression of REN is frequently observed. It is suggested to inhibit
medulloblastoma growth by negatively regulating the Hh pathway. 66-68

Hh has also been shown to be an early and late mediator of pancreatic cancer tumorigenesis.
Shh was not detected in normal adult human pancreata but was aberrantly expressed in 70%
of pancreatic adenocarcinoma specimens.69 Participation of Shh signaling has been indicated
at multiple stages of pancreatic carcinogenesis and is accompanied by multiple oncogenic
factors, including K-Ras, one of the most frequently mutated genes in pancreatic cancer.70,
71 Activated Hh signaling was detected in cell lines established from primary and metastatic
pancreatic adenocarcinomas, and the Smo inhibitor cyclopamine induced apoptosis in a subset
of the pancreatic cancer cell lines both in culture and mice.72

Numerous studies indicate that Hh signaling is involved in prostate cancer. Sanchez and others
reported the expression of Shh-Gli pathway components in adult human prostate cancer.8
Treatment of primary prostate tumor cultures and metastatic prostate cancer cell lines with
Smo inhibitors blocked the pathway and proliferation. Increased expression of Shh in prostate
cancer cells upregulates Gli1 expression and dramatically accelerates the growth of prostate
tumor xenografts.73 Elevated Shh activity distinguished metastatic from localized prostate
cancer, and manipulation of this pathway modulated the invasiveness and metastasis of these
tumors.72, 74

Hh signaling has also been implicated in various other cancers, such as lung, colorectal, bladder,
endometrial, ovarian, and esophageal carcinomas and rhabdomyosarcoma.75-83 The role of
Hh-Gli signaling pathway in cancer and it potential as therapeutic target has been reviewed in
more detail in recent articles.10, 11, 30, 84

Small Molecule Inhibitors of the Hh-Gli Pathway
The aberrant activation of Hh-Gli signaling in several cancers has made it an attractive target
for anticancer drug discovery. Here, we summarize the medicinal chemistry efforts to discover
Hh-Gli pathway inhibitors. The compounds known to date (January 2009) are classified as
inhibitors of Shh, Smo, class IV alcohol dehydrogenase (Alcohol dehydrogenase 7, Adh7),
and Gli transcription.
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The first small molecule inhibitor that blocks the Shh signaling by binding to Shh protein was
recently reported by Stanton et al.85 A macrocycle 1 (Figure 2) was discovered by screening
a 10,000 small molecule diversity-oriented library in small-molecule microarry for binding to
bacterially expressed Shh N-terminus fragment (ShhN). The hit compounds were further
evaluated in Shh-LIGHT II cells, a clonal NIH 3T3 cell lines stably incorporated with a Gli-
responsive Firefly luciferase reporter. The activity was measured as relative luciferase activity
after incubation with the compound in the presence of N-palmitoylated ShhN. The structure-
activity relationship (SAR) studies led to robotnikinin (2), a 12-membered macrocycle with a
3.1 μM Kd for the ShhN binding and a dose dependent inhibitor of ShhN-induced pathway
activation in Shh-LIGHT II cells. It did not show any substantial cytotoxicity in cell viability
assay. In a mouse Ptch1-/- cell line, in which the Ptch1 alleles were replaced with a β-
galactosidase (β-gal) reporter, compound 2 did not inhibited the β-gal levels, thus indicating
that it inhibits the Shh pathway upstream of Ptch1. It also inhibited alkaline phosphatase
induction in a dose-dependent manner in C3H10/T1/2 cells in the presence of ShhN, which
was rescued by purmorphamine,86 a Smo agonist (C3H10/T1/2 cells differentiate to osteoblasts
upon treatment with N-palmitoylated ShhN, an event measured by alkaline phosphatase as a
marker of the transformation87, 88). Compound 2 inhibited Shh-induced expression of Gli1
and Gli2 in primary human keratinocytes and human-derived skin tissue.85

Smoothened Inhibitors
The Hh pathway is initiated by binding of Hh to the transmembrane protein Ptch, which releases
the suppression of Smo and initiates a cascade of events resulting in expression of Hh-
responsive genes (Figure 1). Cyclopamine (3), the prototype inhibitor of the Shh pathway, is
currently in preclinical and clinical studies as an anticancer agent.89 Cyclopamine inactivates
Smo by binding to its heptahelical bundle.74, 90 A number of Smo inhibitors have now been
reported and can be classified as cyclopamine analogues or synthetic Smo antagonists.

Cyclopamine Analogues
Cyclopamine (3), a teratogenic steroidal alkaloid derived from the plant Veratrum
californicum, has been known since the 1960s. It was first reported to block the Shh signaling
pathway in 1998 by Cooper et al.91 The alkaloids cyclopamine and jervine (5) (Figure 3) from
this plant were associated with holoprosencephaly and other teratogenic effects in lambs born
to pregnant ewes in the 1960s.92, 93 Incardona et al.94 further showed that cyclopamine-induced
teratogenesis is independent of cholesterol metabolism and results from inhibition of Shh
signaling.

Incardona et al.95 also studied the SAR of cyclopamine derivatives and related steroidal
alkaloids (Figure 3) in a chick embryo neural plate explant assay by measuring Shh inhibition
as loss of HNF3β, a floor plate marker. For cyclopamine to be active, its E ring should be
perpendicular to rings A-D. Opening of this ring, as in veratramine (8), resulted in much weaker
activity. Oxidation of cyclopamine to cyclopamine-4-en-3-one (7) improved potency by at
least 2-fold in the explant assay. Jervine (5), a C11 ketone analogue of cyclopamine, was 5- to
10-fold less potent, although it was metabolically more stable in vivo. Reduction of jervine to
tetrahydrojervine (6) further decreased the activity by 3-fold. The glycoalkaloid analogue of
cyclopamine, cyloposine (4), was equipotent to jervine (5). The steroidal alkaloids solasodine
(9) and tomatidine (10), with E rings co-planar to the A-D rings, were 15- to 20-fold less active.
95

The modification of cyclopamine at the 3-position (Figure 4) by addition of a carbamate group
(11, 12) decreased activity 100-fold. The secondary amine in the ring F of cyclopamine and
jervine tolerates modifications (Figure 4), if its basicity is preserved. A small- to medium-size
substitution at this position (13-15) improved the inhibitory activity, which is lost by large-
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size substitution, possibly due to cell impermeability or steric hindrance. Any branched
substitution (16) close to the cyclopamine scaffold also decreases the activity. Oxidation of the
hydroxyl at the 3-position in the N-substituted derivatives improved activity by 2-fold over
that of the corresponding hydroxyl analogues (14 vs. 13). Compound 14 (3-keto-N-aminoethyl
aminocaproyl digyrocinnamoyl (KAAD)- cyclopamine) was identified as the most potent
inhibitor in this series.96 It showed 10-20-fold better potency but similar or lower toxicity as
compared to cyclopamine. Taipale et al.97 reported that the mechanism of action of
cyclopamine and its analogues is through reversal of oncogenic activation of the Hh pathway
by antagonism of Smo. Photo-affinity studies with a fluorescent-tagged derivative of
cyclopamine confirmed the direct binding of cyclopamine to the heptahelical bundle of Smo,
inducing a conformation that was structurally similar to that induced by Ptch.90 Compound
14 is currently in preclinical development.89

Researchers at Infinity Pharmaceuticals and Johns Hopkins carried out further SAR studies of
cyclopamine by making changes in rings A, D, and F (Figure 5) to overcome poor aqueous
solubility and chemical instability in acid.98-100 Tremblay et al.99 synthesized the D-
homocyclopamine analogue 17 (IPI-611) which was more stable than cyclopamine at low pH,
but its hydrochloride salt was less soluble in water and showed weaker activity than
cyclopamine. Oppenaeur oxidation of 17 to the corresponding conjugated enone yielded a
potent compound, 18 (IPI-269609/IPI-609)98-100 that inhibited differentiation of C3H10/T1/2
cells to osteoblasts (a Shh dependent event87, 88 measured by alkaline phosphatase assay) with
an EC50 of 200 nM. It also showed improved aqueous solubility and stability.98-100 Compound
18 can be prepared from cyclopamine with an overall yield of 25-30%.100 Removal of the keto
group and saturation of the 4,5-double bond (19) decreased activity.98 The N-acetamide
derivative, 20, showed activity similar to that of the parent compound, contrary to earlier
reports,96 suggesting importance of basicity of the nitrogen. Bulky groups such as benzyl
(21) reduced potency while the glycolate analogue (22) displayed activity similar to that of
18. Compound 23, with a side chain similar to that of 14 (KAAD-cylopamine), showed a 20-
fold increase in activity over that of 18, while its truncated analogue 24 was 10-fold more
potent. However, 23 and 24 are less soluble than 18.100 Replacement of the 3-keto group with
a methanesulfonamide group afforded 25 that potently inhibits C3H10/T1/2 cell
differentiation, and cell growth of human multiple myeloma, acute myeloid leukemia,
myelodysplastic syndrome, non-Hodgkin’s lymphoma, Hodgkin’s lymphoma, and pre-B cell
acute lymphoblastic leukemia cell lines. It also suppressed tumor growth in pancreatic cancer
and medulloblastoma mouse models and showed clear tumor regression in a medulloblastoma
model at higher doses.98

Compound 18 showed inhibitory effect in a Gli-responsive reporter assay to a degree
comparable to that of cyclopamine. It diminishes the migration and colony formation of
pancreatic cancer cells, suppressed growth of a subcutaneous xenograft of pancreatic cancer
E3LZ10.7, abrogates metastasis in orthotopic pancreatic cancer xenografts of E3LZ10.7 and
Capan-1 cell lines. The results indicated that Smo inhibitors could be effective in inhibiting
metastasis in pancreatic cancers.101 Pretreatment with 18 diminishes tumorigenicity in vivo.
101 The hydrochloride salt of 18 formulated in water containing 30% of 2-hydropropyl-β-
cylodextrin displayed 80% oral bioavailability and a plasma half-life of 3.2 h in CD-1 mice.
100

Infinity Pharmaceuticals designed 26 (IPI-926)102 (structure not disclosed) as a second-
generation cyclopamine analogue that is orally bioavailable, has a long half-life in plasma
(10-24 h in multiple species) and tumors, and is active in vivo. Once-daily oral administration
of 26 at 40 mg/kg resulted in complete tumor regression in a murine medulloblastoma model.
102 Compound 26 also delays or prevents tumor recurrence after completion of chemotherapy
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in a small-cell lung cancer xenograft model.103 It entered phase I clinical trials for advanced
and/or metastatic solid tumor malignancies in September 2008.13

The cyclopamine lactam analogues (Figure 6) have also been reported to inhibit differentiation
of C3H10/T1/2 cells to osteoblasts in a alkaline phosphatase assay.104 The replacement of the
ring A of 18 with a γ-lactam ring and a trans A/B ring junction gave compound 27 with potent
activity (IC50 < 20 nM) in alkaline phosphatase assay. Change in the A/B ring junction to cis
configuration (28) resulted in > 5-fold decrease in the activity. Expansion of ring A to a seven
membered ring (29) restored the activity, although it was still 2-5-fold less active than 27.
Reversing the amide group of 29 (33) resulted in a significant loss in activity. The ring A-
methyl amide 30 was equipotent to 29, while the ring F-methanesulfonamide analogue 31
showed improvement in activity to match the potency of 27. However, incorporating both the
methyl group in ring A and the methanesulfonyl group in ring F togeter resulted in significant
loss in activity in 32. An unsaturated analogue (34) of 30 showed significant loss in activity.
Compound 29 effectively reduced the Gli-responsive luciferase reporter activity in pre-B cell
acute lymphocytic leukemia cell lines, and inhibited growth of primary cultures derived from
patients with multiple myeloma, acute myeloid leukemia, myelodysplastic syndrome, non-
Hodgkin’s lymphoma and Hodgkin’s disease. It was suggested that 29 affects a tumor-stroma
interaction in human pancreatic xenograft in mice, as it downregulated the mRNA levels of
murine Gli1 but not of human Gli1. It showed ED50< 7.5 mg/kg with once daily oral dose in
an allograft model of medulloblastoma from a transgenic mouse with loss of function mutations
in Ptch1 and Hypermethylated in Cancer (Hic1).104

Infinity Pharmaceuticals also reported cyclopamine analogues that have a heterocyclic ring
fused to ring A (Figure 7).105 Compound 35 showed potent inhibition (IC50 <100 nM) in an
alkaline phosphatase assay using C3H10/T1/2 cells in the presence of Shh-N. Ring D expansion
further improved the activity to yield the most potent compound, 36 (IC50 <20 nM). Any further
substitution on the pyrazole ring (37-39) or ring F (40-43), however, decreased the activity.
Replacement of the pyrazole ring with an oxazole (44) decreased the activity 1-5-fold, and
replacement of the ring with a 2-methylthiazole ring (45) decreased activity more than 5-fold
as compared to that of 36. Compound 36 significantly suppressed the growth of human
pancreatic cancer xenografts in mice at 40 mg/kg/day.105

Cyclopamine is poorly soluble in water, hindering its development as a drug. Zhang et al.106

recently reported carbohydrate-cyclopamine analogues (Figure 8) aimed at improving
solubility and introducing structural diversity. They utilized click chemistry (copper-catalyzed
azide-alkyne coupling) to synthesize a library from an alkyne-modified cyclopamine and
diverse azidosugars. Compound 46 showed activity against a lung cancer cell line (A549)
comparable to that of cyclopamine in a standard viability assay, with an IC50 of 33 μM as
compared to 49 μM for cyclopamine; however its aqueous solubility was superior. Another
β-linked analogue (47) was less potent than cyclopamine. They also suggested that α-linked
L-pyranose might be essential for activity.106

In an effort to decrease the adverse effects of cyclopamine, Kumar et al.107 synthesized
prodrugs of cyclopamine (Figure 9) by coupling cyclopamine to the peptide carriers that are
proteolytically removed in cancers. They designed the peptide carriers as substrates of the
tissue-specific serine protease prostate-specific antigen (PSA), which is expressed at high
levels in prostate but not in other organs. Two such carriers, His-Ser-Ser-Lys-Leu-Gln
(HSSKLQ) and Ser-Ser-Lys-Tyr-Gln (SSKYQ), were coupled with cyclopamine to yield
conjugates 48 and 49, respectively.107

Compounds 48 and 49 are converted to cyclopamine in the presence of PSA, with half-lives
of 3.2 h and 22 h, respectively. Both showed minimal activity in the DU145 prostate cancer
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cell line, which lacks PSA, but addition of PSA to the medium resulted in a 7-fold increase in
efficacy over that of cyclopamine. In vivo studies of these compounds are ongoing.107

Non-cyclopamine-Scaffold Compounds
Several pharmaceutical companies have identified new Smo inhibitors with drug-like
properties by optimization of high-throughput screen hits. One such small molecule, 101
(GDC-0449, Curis and Genentech, Figure 14), is currently in phase I/II clinical trials for
advanced BCC and solid epithelial tumor.108 Development of another candidate, 54
(CUR-61414, Figure 11), was suspended after phase I.89

The structurally diverse compounds 50 (SANT-1), 51 (SANT-2), 52 (SANT-3), and 53
(SANT-4) (Figure 10) were discovered by Chen et al.109 by screening 10,000 small molecules
for Hh signaling inhibition (IC50 values for 50-53 were 20, 30, 100, and 200 nM, respectively,
in a Shh-LIGHT II assay). These molecules have different mechanisms of action.109

Another high-throughput screen of a library of 100,000 small molecules using a Hh-reporter
cell line (s12) led to discovery of the lead compound 54 (Figure 11), an aminoproline with an
IC50 of 100-200 nM, as compared to 500-700 nM for jervine (5).110 Compound 54 showed a
physicochemical profile suitable as a drug candidate and had no toxicity in preclinical testing.
It suppressed proliferation and induced apoptosis in BCC cells without affecting normal skin
cells.110 Curis prepared a library of derivatives of compound 54 to elucidate the SAR of the
amide group at the 4-postion of aminoproline, the substitution at the N1 position of the
pyrrolidine ring, and the piperazine ring. The cis isomers exhibited more than 100-fold greater
activity than the trans isomers. A cyclopropyl or isopropyl substitution of the amide at the 4-
position of the proline in 55 and 56, respectively, resulted in similar potency (IC50 < 100 nM).
Compounds 57 and 58, with a cyclopentane ring and CH(CH3)CF3 respectively, showed
weaker activity than did 55 and 56. Replacement of amide with urea (59) also decreased
activity. 3,4,5-Trimethoxybenzyl (61) or (2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl (62)
substitutions at the 1-position of proline were better tolerated than benzo[d][1,3]dioxol-5-
ylmethyl (54) or 3-methoxybenzyl (60). The piperazine ring on proline carbamide is essential
for activity. Its replacement with a methyl piperazine (64), piperidine (65), or aliphatic amine
(66) decreases activity by several-fold.111 Clinical trials of 54 were halted after a phase I study
as a topical agent in patients with BCC.89

Brunton et al. at Evotec and Curis increased the potency of the screening hit 67 (IC50 1.4 μM)
to the nanomolar level by lead optimization. They carried out SAR studies in a reporter assay
focusing on the urea group, the 4-fluorophenyl, and the quinazolinone ring (Figure 12). The
bis-desmethyl analogue of 67 (68) showed a 2-fold improvement in activity, indicating that
both methyl groups are not necessary. The methyl derivative 69 was 3-fold less active than
67. The 3-trifluoromethyl-4-chlorophenyl-substituted desmethyl analogue 70 showed a 20-
fold improvement in activity over 67, exhibiting an IC50 of 70 nM. Replacement of the 4-
fluorophenyl with an isopropyl group in 71 decreased activity 3-fold, indicating the importance
of the phenyl ring.112

Exelixis has described quinazolines (72-75) and pyridopyrimidine (76) (Figure 12).113 The
tetrahydroisoquinoline analog 72 exhibited an IC50 of 5.8 nM in a reporter assay in the Shh
LIGHT II cell line. The cyclopropyl-substituted 74 was most potent, with an IC50 of 2.8 nM.
Replacement of the quinazoline with pyridopyrimidine yielded the equipotent 76, with an
IC50 of 3.6 nM.113 Exelixis and Bristol-Myers Squibb are co-developing 77 (XL139/
BMS-833923)14, 114 (structure not disclosed) as an inhibitor of the Hh pathway. Compound
77 is in phase I clinical trials for advanced or metastatic cancers.14, 114
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Peukert et al. from Novartis reported a series of biarylcarboxamides (Figure 13) based on an
initial micromolar screening hit 78, which was originally designed as a microsomal triglyceride
transfer protein (MTP) antagonist.115, 116 These compounds were subjected to several screens
to identify ones that bind directly to Smo. SAR studies revealed that benzylamines (79) were
more potent than carboxamides or sulfonamides. The S-enantiomers (81 and 84) were
significantly more potent Smo inhibitors than R-enatiomers (80 and 83) which had more potent
MTP inhibitory activity. The trifluoromethyl group is essential for activity. The phenyl-
substituted 79 was 5-7-fold more potent than pyridyl analogs 81 and 82. The 5-membered
hetrocyclic analogues 84-86 showed the most potent activity in TM3Hh12 cells in a
transcription assay with approximately 10-fold selectivity over MTP inhibition, and also
showed direct Smo binding in membranes from CHO-K1 cells stably expressing HA-tagged
mouse or human Smo.115

Biarylcarboxamides, such as 87,117 and structurally similar bisamide compounds (88-91)118

also are active in the Gli- responsive luciferase reporter assay.

Curis has reported benzimidazole derivatives (92-96) (Figure 13) that are structurally similar
to 51.119 SAR study showed that addition of a methyl or chloro group at the 5-position of the
benzimidazole ring of 93 and 94, respectively, resulted in activity 50-fold greater than that of
92. Replacement of the methyl group in 93 with a N,N-dimethyl (95) resulted in a further 10-
fold increase in activity, to an IC50 <1 nM. Compound 96 (HhAntag/Hh-Antag691)120

inhibited Shh activity with an EC50 of 40 nM as compared to 500 nM for cyclopamine in a
Gli-responsive luciferase reporter assay, although the two compounds exhibited similar
(IC50 10-30 μM) inhibition of growth of medulloblastoma cultures.65, 119 Twice-daily oral
administration of 96 at 100 mg/kg for 2 weeks eliminated medulloblastomas that spontaneously
form in Ptch1+/-p53-/- mice,65 suggesting that 96 may penetrate the blood-brain barrier, at least
partially. No side effects were observed during a 50-day study. Compound 96 inhibited the
expression of several genes including Gli1 and Gli2 in the tumors of the mice,65 and eliminated
medulloblastoma allografts with an active Shh pathway but was ineffective against allografts
with an inactive Shh pathway; thus showing specificity for medulloblastomas in which the Shh
pathway is upregulated.121 Compound 96 (100 mg/kg twice daily for 4 days) also decreased
the volume of medulloblastoma allografts from another mice that had Cxcr6 mutation, over-
expression of Shh pathway target genes, and low levels of Ptch1.122 However, treatment of
young mice (postnatal day 10-14, a period of extremely rapid bone growth) with two doses of
100 mg/kg of 96 within 24 h resulted in permanent defects in bone structure and growth, despite
restoration of the somatic Hh reporter activity 48 h after withdrawing 96. The inhibition of Hh
pathway by 96 resulted in differentiation of chondrocytes, expansion of hypertrophic zone, and
breakdown in columnar organization leading to permanent defects in joint structures. The
complete inhibition of the Hh pathway in tumor cells is essential for tumor elimination while
even a transient exposure of proliferating chondrocytes to 96 can result in terminal
differentiation thus suggesting that these bone defects occurs within the therapeutic window
in the young mice. This finding raises a concern about using 96 in pediatric patients, although,
it is not known if the bone defect will occur in humans also.123 An earlier study in adult mice
did not show any major side effects,65 but the transient inhibition of Hh pathway might also
compromise the regenerative capacity of some adult tissues.123

Compounds that have a urea, thiourea, or sulfonamide linker in place of an amide linker were
also synthesized and evaluated.119 Sulfonamides 97-100 (Figure 13) also showed potent
activity.124

Genentech and Curis have reported pyridyl (101-103)125 and quinoxaline (104-106)126

compounds (Figure 14). Compound 101 is currently in a phase I study for locally advanced or
metastatic solid tumors and phase II clinical trials for advanced BCC, metastatic colorectal
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cancer, and advanced ovarian cancer.12, 108, 127 Compound 101 (IC50, 3 nM in a Gli-responsive
luciferase reporter assay) is an once-daily orally active, potent inhibitor of Smo that has an
extremely long half-life (10-14 days) with sustained high-micromolar plasma concentrations.
Daily dosages of 150, 270, and 540 mg of 101 were tested in phase I studies in patients with
BCC or pancreatic, colorectal, or adenocystic carcinomas. It showed at least 2-fold down-
regulation of Gli1 expression in skin punch biopsies, irrespective of the dosage level. Two of
nine patients with BCC on treatment with 101 had a confirmed response, four had a confirmed
partial response, two had stable disease, and one had progressive disease. No dose-limiting
toxicity was observed. The side effects included fatigue, asymptomatic hyponatremia,
dysgeusia, and alopecia.12, 128

Novartis reported phtalazine analogues (107-114, Figure 15) as Smo antagonists.129 The
compounds were evaluated for inhibition of Gli-responsive luciferase activity in TMHh12 cells
in the presence of a small molecule Smo agonist. Compounds which showed shift in IC50 with
increase in concentration of Smo agonist were judged to be directly interacting with Smo. The
compounds were also screened in a Smo binding assay to determine IC50 for displacement of
a radio-labeled small molecule Smo agonist from a filter-bound mouse and human Smo.129

Merck had discovered triazole derivatives as 11-β-hydroxysteroid dehydrogenase type-1
inhibitors for metabolic disorders.130 Some of these derivatives, 115-120 (Figure 16), also
showed Smo antagonist activity in the Shh-Light II reporter assay, and Smo binding assay and
suppressed medulloblastoma xenograft growth in mice models.131

Smo Intracellular-Loop Analogues
Smo resembles a G protein-coupled receptor (GPCR) in general topology. Remsberg et al.
132 designed structural analogues of the Smo intracellular loop. Unlike inhibitors designed for
GPCRs using this strategy that were often non-specific (due to significant sequence homology
in the intracellular loop), the peptides derived from the Smo intracellular loop were expected
to be specific due to the unique structure of Smo, which is conserved among species.132 The
peptide analogues of the intracellular loop of Smo were evaluated for growth inhibition in the
MCF-7 breast cancer cell line. The second and third loop derivatives were further optimized
by C-terminal and N-terminal truncation to identify a 10-amino-acid derivative of the N-
terminal half of the second intracellular loop, 121 (SMOi2-12, Palmitoyl-LTYAWHTSFK),
with a nanomolar IC50. The retroinverso peptide of 121 with all-D-amino acids and reverse
sequence, 122 (SMOi2-20, Ac-KFSTHWAYTLK-e-Pal (all-D-)), was metabolically more
stable and 200-fold more potent than 121, with an IC50 of 0.3 nM in an MTT assay in SK-Mel2
melanoma cells.132

Inhibitors of Adh7
Inhibitors of class IV alcohol dehydrogenase 7 (Adh7) were also reported as the Hh signaling
antagonists, though the exact mechanism of action of these compounds for the Hh pathway is
not understood. The Hh signaling has been shown to be affected by the deletion mutation of
retinal dehydrogenase 2 (Raldh2).133 Raldh2 converts retinal, which is produced by alcohol
dehydrogenase from retinol, to retinoic acid. Thus Hh signaling can be partially affected by
Adh7.134

A high-throughput screen of 20,000 compounds using a transcription assay driven by Gli-
responsive elements in the presence of Shh N-terminus led to identification of 2,4-
disubstitutued thiazole compounds as Hh pathway inhibitors (e.g. 123 and 124, Figure 17). 2-
Aminothiazole 123 (JK184) inhibited the Shh-N-mediated Gli-transcription with an IC50 of
30 nM. Inhibition of the pathway was confirmed also by RT-PCR, in which 123 showed
suppression of Gli1 and Ptch1 expression. In a cytotoxicity assay, compound 123 inhibited the
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growth of cell lines with abnormally activated Hh signaling, including the pancreatic cancer
cell lines L3.6pl, Panc 05.04, and BxPC3 and the medulloblastoma cell lines D283 med and
Daoy, with GI50 of 3-21 nM, while showing no toxicity to normal human dermal fibroblast
cells.134, 135 Compounds with arylamide substitution at the 2-position of thiazole (124) were
less active than 123. Compound 123 induced 30-50% inhibition of tumor growth in xenograft
models of human L3.6sl and BxPC3 pancreatic cancers when administered orally, but its
efficacy was comparable to that of cyclopamine when it was administered subcutaneously,
indicating poor oral bioavailability (16%, t1/2 = 1.3 h). It did not compete with BODIPY-
cyclopamine for binding with Smo, indicating that it acts by a mechanism other than the direct
Smo binding. Compound 123 was shown to inhibit the class IV alcohol dehydrogenase,
Adh7.134 Hh pathway antagonists structurally similar to 123 were also discovered by screening
another chemical library.136

Licentia Oy screened a diversity-oriented library of 6000 small molecules in a Gli-responsive
luciferase reporter assay in the Shh-LIGHT2 cell line. They identified 12 compounds with
IC50 values ranging from 100 nM to 1 μM, including 125-127 (Figure 17), which share the 2-
aminothiazole structure with 123 and 124.124

Inhibitors of Gli-mediated Transcription
Most of the medicinal chemistry efforts involving the Hh-Gli pathway have focused on
targeting Smo. However, some cancers have alternative mechanisms for activating the Hh-Gli
signaling through effectors that are downstream of Smo, thus rendering Smo inhibitors
ineffective. For example, mutation or over-expression of SuFu,21, 55, 137 REN,66, 67 Gli1,6,
30, 138 and Gli2,56, 139 have been shown to activate this pathway. Thus, inhibitors of Gli-
transcription, the final event in the pathway, would have broader applicability in cancers,
irrespective of the component responsible for the activation of the Hh-Gli signaling.

Lauth et al.140 reported two small-molecule inhibitors of the Gli-transcription, 128 (GANT61)
and 129 (GANT58) (Figure 18), discovered in a screen based on inhibition of Gli1-transcription
in HEK293 cells transiently transfected with plasmid cDNAs encoding Gli1 and a Gli-
responsive luciferase reporter. Since they block the reporter signal induced by exogenously
upregulated Gli1, they are expected to be active against cancers in which Gli1 is over-
expressed.74, 138 Both compounds also inhibited endogenous Hh signaling at an IC50 of 5 μM
in an NIH 3T3 cell line in which the Gli reporter was stably incorporated and induced with a
Smo agonist. Unlike cyclopamine, compounds 128 and 129 decreased the expression of Gli1
and Hip1 in Sufu-/- cells, indicating that they act downstream of SuFu. Gli1-positive 22Rv1
prostate cancer xenografts in mice were eradicated by subcutaneous injection of 50 mg/kg of
compound 128 every second day for 18 days.140

Natural Products for Inhibition of Gli-Transcription
Hosoya et al.141 designed a cell-based assay to determine Gli1-mediated transcription (Gli-
responsive luciferase reporter assay under presence of exogenously over-expressed Gli1) and
cell viability (using a fluorimetric microculture cytotoxicity assay) to screen a library of 94
natural products and 192 plant extracts for ability to inhibit the Gli1-transcription without
affecting cell viability. Cyclopamine was inactive in this assay at 40 μM, indicating that the
assay selectively targeted signaling downstream of Smo. Active compounds were also
evaluated for inhibition of Gli2-transcription activity. Three novel classes of inhibitors were
identified (Figure 19).141

The sesquiterpene zerumbone (130), isolated from Zingiber zerumbet, inhibited Gli1- and Gli2-
transcription with IC50 values of 7.1 μM and 0.91 μM, respectively, showing 7-fold selectivity
for Gli2 over Gli1. The enone moiety of 130 is important for the inhibition. Other terpenoids,
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flavonoids, phenylpropanoids, and their glycosides showed weak or no inhibition.
Staurosporinone (131) was most active among the bisindole alkaloids 131-134, inhibiting Gli1-
and Gli2-transcription with IC50 values of 1.8 and 2.7 μM, respectively. The extract of Physalis
minima was the most active of 15 plant extracts. The 13, 14-seco-16, 24-cyclosteroids physalin
F (135) and physalin B (136) isolated from this plant extract inhibited Gli1-mediated
transcription with IC50 values of 0.66 and 0.62 μM, respectively, without affecting the cell
viability. Both compounds showed 2-2.5-fold selectivity for Gli1 over Gli2. Compounds 131,
135, and 136 had 3-5-fold greater cytotoxicity in the PANC1 human pancreatic carcinoma cell
line, which has activated Hh-Gli signaling, than in the C3H10/T1/2 cell line.141

The same group also evaluated the active component of an extract of Zizyphus cambodiana
(Rhamnaceae). The pentacyclic triterpenes colubrinic acid (137), betulinic acid (138), and
alphitolic acid (139) inhibited Gli1-mediated transcription with IC50 values of 38, 32, and 42
μM, respectively. All three compounds showed cytotoxicity against the PANC1 and DU145
cell lines, and compound 137 also inhibited Ptch expression in PANC1 in a dose-dependent
manner. Compounds 137 and 138 induced apoptosis and decreased the expression of Bcl2, an
anti-apoptotic target gene of Gli1-transcription.142

Pyrazoline compounds 140 and 141 (Figure 20) downregulated expression of Ptch1 and
Gli1 in the non-small cell lung carcinoma (NSCLC) cell lines H460 and A549 at 30 μM
concentration.143 These compounds also induced apoptosis in NSCLC, melanoma,
mesothelioma, sarcoma, human hepatocellular carcinoma, colon, prostate, pancreatic, breast,
gastric, nasopharyngeal, and glioma cell lines. Alteration of the length of the carbon chain
(142) or replacement of the hydroxyl group on the amide substituent with a carboxylic acid
(143) or alkyl (144) group decreased or eliminated the cytotoxicity. Compound 145, with
isopropyl groups on the pyrazole ring in place of phenyl, showed loss of the cytotoxicity.
Compound 141 suppressed the growth of NSCLC H460, melanoma LOX, and NSCLC A549
in mouse xenograft models.143

We further analyzed the SAR of 141 analogues by synthesizing 146-151 (unpublished results,
Figure 20). Removal of the phenolic hydroxyl of 141 (146) substantially decreased the
inhibitory activity for Gli1-transcription in C3H10/T1/2 cells that were transiently co-
transfected with plasmid cDNAs encoding Gli1 and a Gli-responsive luciferase reporter.
Aromatization of the pyrazole ring (147) resulted in loss of activity. Alteration of the linker
element in 141 by reversing the amide group afforded an equipotent compound 148. The
methoxy analog 149 and the aromatized analogues 150 and 151 showed weaker inhibition. We
also have replaced the pyrazoline moiety with another scaffold and will describe the results in
a forthcoming report.

Conclusion and Perspective
Involvement of the Hh-Gli pathway in many cancers has motivated pharmaceutical companies
and academic drug discovery groups to develop inhibitors for this pathway.145 These discovery
efforts have led to several lead compounds and clinical candidates (Table 1). Cyclopamine
proved to be an excellent prototype Hh pathway inhibitor and helped in elucidating the biology
of the pathway. A part of the drug discovery efforts have focused on cyclopamine analogues
which have resulted in one compound with an improved profile that is currently in phase I
clinical trials.13 High-throughput screening, the other main focus of the drug discovery efforts,
and subsequent medicinal chemistry studies have also led to discovery of a diverse set of small
molecules targeting Smo. Table 2 enlists the screening assays used for evaluation of compounds
presented in this review. Compound 54 was the first Smo inhibitor to enter the clinical trials
as a topical agent in patients with BCC, but trials were subsequently halted after the phase I
study.89 Results of the phase I trial of another small molecule Smo inhibitor 101 have provided
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a proof-of-concept for Hh-Gli pathway inhibitors as anticancer agents (six of nine patients with
BCC showed a confirmed or a confirmed partial response and two had a stable disease).128,
146

Most drug discovery efforts till now have been focused on targeting Smo. However, recently
compounds targeting Gli-mediated transcription,140-143 a downstream event in the Hh-Gli
pathway, have also been reported and can be good prototypes for medicinal chemistry studies.
Furthermore, inhibitors targeting the downstream events could provide a broader spectrum of
activity against cancers where Hh-Gli pathway components downstream of Smo including
SuFu,21, 55, 137 REN,66, 67 Gli1,6, 30, 138 and Gli2,56,139 (Figure 1) have been implicated in
deregulation. Smo inhibitors might not be effective in such cases, for example, Gli proteins in
isolated SuFu(-/-) mouse embryonic fibroblasts, having cell-autonomous downstream
activation of the Hh signaling, showed a constitutive Gli activity that could not be inhibited
by cyclopamine as activation occurs downstream of Smo.147, 148 Drugs specifically designed
to modulate these downstream components would provide personalized medicine for the
patients with specific mutations in this pathway.

The Hh-Gli pathway has been reported to play a role in metastasis.74, 81, 149 Gli1 has been
shown to induce expression of Snail resulting in reduced expression of proteins, such as E-
cadherin that maintains epithelial organization, thus resulting in a metastatic phenotype which
can be inhibited by cyclopamine.74 Gli1 and Snail were also significantly overexpressed in
50% and 75% of the metastatic foci, respectively, in samples obtained from patients with
disseminated pancreatic cancer.150 The local or systemic interference in Hh-Gli signaling was
reported to inhibit melanoma growth and prevent metastasis in mice.149 Therefore, inhibitors
of the Hh-Gli pathway may be effective in preventing metastasis.

The Hh-Gli pathway is essential in development and tissue maintenance; therefore great care
should be taken to assess the safety of drugs that act through this pathway. Phase I clinical
study of 101 indicates a satisfactory safety profile in adults,12 but permanent defects in bone
structure were observed in young mice (10-14 days old) exposed to another Smo inhibitor
(96)123 though no serious side effects were observed in adult mice.65 This would also underline,
as mentioned in previously, the importance of designing inhibitors of downstream events of
this pathway especially for pediatric therapeutics. Gli1-transcription, one such downstream
event, plays an important role in several cancers6, 30, 139 and has been suggested as a potential
target for development of novel therapies.121, 138 Gli2 expression has also been implicated in
the tumorigenicity of human glioma stem cells.30 Gli1 knockout mice have been reported to
show no obvious abnormalities, whereas Gli2 and Gli3 knockout mice show abnormal skeletal
growth and embryonic or perinatal lethality.5, 43, 45, 138 Gli2 is an important factor for
expression of parathyroid hormone-related peptide (PTHrP) in the developing growth plate,
while Gli1 and Gli3 do not stimulate the PTHrP promoter.44 An important mediator of bone
differentiation, bone-morphogenetic protein (BMP)-2 is regulated by Gli2 but not by
Gli1.151 Runx2, an essential transcription factor for bone formation has a down-stream function
of BMP2 signaling, and is upregulated by Gli2 in C3H10/T1/2 cells152 that express very little
endogenous Gli1. Therefore, selective inhibition of Gli1-transcription might eliminate the
permanent bone defects observed with a Smo inhibitor.145

The significance of the Hh-Gli pathway as an anticancer drug target has been supported by
numerous experiments using homogenous cancer cell cultures with aberrant Hh-Gli signaling.
Recent evidence has shown importance of paracrine mechanism for upregulating the Hh
signaling in a tumor animal model.120 This observation raises the need to consider the stroma-
tumor interactions in Hh-Gli signaling in the experimental models.153 Other observations also
suggest that maintenance of the Hh-Gli pathway in cancers needs such paracrine regulation.
For example, in a human pancreatic xenograft mouse model, compound 29 only downregulated
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the murine Gli1 mRNA levels but not the human Gli1.104 Nolan-Stevaux et al.154 have also
suggested that paracrine signaling in adjacent mesenchymal cells via secreted Shh ligand is
responsible for pancreatic ductal adenocarcinoma progression. Such stroma-tumor interactions
have been well demonstrated in many faces of cancer progression, as pioneered by Judah
Folkman’s work in tumor angiogenesis. Secondary screens that mimic the paracrine Hh
environment could be used to further evaluate hit compounds. Co-culture of cancer cells and
stroma cells have been previously used to study micro-environments involving paracrice Hh
controlled angiogenesis.155 The functional role of the Hh-Gli pathway in tumor progression
needs to be further studied for creating the next generation of lead compounds with better safety
and clinical efficacy.
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Figure 1. Hedgehog pathway activators and inhibitors
The Hh receptor Ptch is a transmembrane protein that inhibits the activity of Smo in the absence
of Hh. Binding of Hh results in activation of Smo, which then modulates Gli transcription
factors to initiate transcription of Hh target genes. Proteins involved in modulating signal relay
between Smo and Gli are as indicated. Pathway suppressors are indicated in red and activators
in green color. The molecules in this pathway that are targets for chemical inhibitors include
Smo and Gli.
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Figure 2.
Shh inhibitors.
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Figure 3.
Cyclopamine derivatives and related steroidal alkaloids.
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Figure 4.
Cyclopamine analogues with substitution at 3-position or secondary amine in F ring.
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Figure 5.
D-Homocyclopamine analogues.
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Figure 6.
Cyclopamine lactam analogues.
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Figure 7.
Cyclopamine analogues with a fused heterocyclic ring.
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Figure 8.
Carbohydrate cyclopamine analogues. Compound 46 is 89/11 mixture of α/β.
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Figure 9.
Cyclopamine prodrugs.
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Figure 10.
Compounds discovered by screening with a Shh-reporter.
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Figure 11. Aminoprolines
Aminoproline Smo inhibitors.
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Figure 12. Quinazolinones and quinazolines

Mahindroo et al. Page 34

J Med Chem. Author manuscript; available in PMC 2010 July 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 13.
Biarylcarboxamide, bisamide, benzimidazole, and sulfonamide derivatives.
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Figure 14.
Pyridyl and quinoxaline Smo inhibitors
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Figure 15.
Phthalazine Smo inhibitors.
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Figure 16.
Phthalazine Smo inhibitors.
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Figure 17.
2-Aminothiazoles.
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Figure 18.
Small molecule Gli-transcription inhibitors from a high-throughput screen.
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Figure 19.
Natural product inhibitors of Gli-transcription.
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Figure 20.
Triarylpyrazolines. Compound 140-146 and 148-149 are racemic trans isomers.
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Table 1
Hh-Gli pathway inhibitors in clinical and preclinical studies.*

Compound Target Stage of Development

Cyclopamine (3)144 Smo Preclinical/Clinical

KAAD-Cyclopamine (14)97 Smo Preclinical

18 101 Smo Preclinical

26 13 Smo Phase I

54 89 Smo Halted after Phase I

7714, 114 Smo Phase I

9665, 123 Smo Preclinical

101 108 Smo Phase I/II

128 140 Gli Preclinical

*
as of December 2008.

J Med Chem. Author manuscript; available in PMC 2010 July 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mahindroo et al. Page 44

Table 2
Assay methods used in each discovery program

Assay method Compounds

Chick embryo neural plate explant 3-10 95

Shh-responsive luciferase reporter assay in a colonal cell line
derived from NIH-3T3

11-16 96

Alkaline phostphatase 1-2,85 17-24,100 27-34,104 35-45105

Shh-LIGHT-II 1-2,85 50-53,109 72-76,113 115-120,131 125-127124

Gli-responsive luciferase reporter (no exogenous Gli) 54-66,110, 111 67-71,112 78-86,115 87,117, 88-91,118 92-96,119
101-103,125 104-106,126 107-114,129 123-124,134 128-129,140

Smo binding 78-86115

Gli-responsive luciferase reporter with exogenous Gli1 or Gli2 130-139,141, 142 140-145,143 146-151
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