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Abstract

The design, syntheses, and enzymatic activity of two submicromolar competitive inhibitors of
aspartate transcarbamoylase (ATCase) are described. The phosphinate inhibitors are analogs of N-
phosphonacetyl-L-aspartate (PALA) but have a reduced charge at the phosphorus moiety. The
mechanistic implications are discussed in terms of a possible cyclic transition-state during enzymatic
catalysis.

Since the discovery of N-phosphonacetyl-L-aspartate 1 (PALA) in 1971, and its subsequent
evaluation for use in cancer chemotherapy, the inhibition of aspartate transcarbamoylase
(ATCase) has received considerable attention.! To date, no inhibitor has been reported to be
more potent than PALA.2 Recently, based on crystallographic studies, Kantrowitz designed
inhibitor 2, which is nearly as potent as PALA, but is less highly charged due to the presence
of an amide group in the aspartyl moiety.3 To the best of our knowledge, inhibitors of ATCase,
which are restricted to a monoanionic species where PALA’s phosphonate group is located,
have not been studied. Herein, we report the first phosphinate inhibitors 3 and 4 of ATCase.
Inhibition with these phosphinates has mechanistic implications and may provide a new
direction for the design of compounds with a reduced charge and improved pharmacological

profiles.
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Analyzing the role of the charge at the phosphonate moiety of 1 is interesting based on the
proposal of an ordered cyclic transition-state for the proton transfer from nitrogen to oxygen
(Scheme 1).# Additionally, H-phosphinate 3 could constitute a prodrug of PALA if oxidation
takes place in vivo.

H-Phosphinate 3 was synthesized as shown in Scheme 2. Cinnamyl alcohol was converted into
cinnamyl-H-phosphinic acid 5 using a palladium-catalyzed allylation reaction.® Reaction of
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5 with triethyl orthoacetate provided the protected intermediate 6 in excellent yield.®
Ozonolysis of 6 to the aldehyde, followed by oxidation’ gave 7, which was reacted without
purification with L-aspartic acid dibenzyl ester to form amide 8. Deprotection through catalytic
hydrogenation, followed by acid hydrolysis provided 3 cleanly, and in good yield after
purification by ion-exchange chromatography. The possible presence of PALA was ruled out
based on NMR analysis of the final product, as well as the ion-exchange purification.

Hydroxymethyl phosphinate 4 was synthesized as shown in Scheme 3. Hydroxymethyl-H-
phosphinic acid® was silylated and reacted® with the bromoacetyl derivative of aspartic acid
in a well-known Arbuzov-like reaction. Esterification with diphenyldiazomethanel® provided
10, which was purified by column chromatography over silica gel. Catalytic debenzylation
provided the desired phosphinate 4 cleanly and in quantitative yield. No ion-exchange
purification was necessary in this case.

Compounds 3 and 4, as well as PALA, were evaluated against the catalytic subunit of ATCase
which was purified from the strain/plasmid combination pEK17/EK1104 as previously
described.? The results are shown in Table 1. Both phosphinates are weaker inhibitors than
PALA by one to two orders of magnitude (12 — 26 fold). This is not unexpected if ATCase
binds the phosphate dianion as suggested in Scheme 1. However, the loss in inhibition observed
with the monoanionic phosphorus moieties of 3 and 4, is perhaps not as pronounced as what
such a profound modification would entail. For example, in the case of 3-dehydroquinate
synthase (DHQ synthase), which is an example of an enzyme exploiting its substrate charged
state for catalytic gain, a similar modification results in a three to four orders of magnitude loss
in inhibition.13 Carboxylate 11 was synthesized (Scheme 4) and evaluated in order to establish
if simply providing a single negative charge is responsible for the inhibition observed with 3
and 4. Compound 11 was completely inactive against ATCase, thus confirming the importance
of the phosphorus geometry for inhibition with the phosphinate inhibitors.

Interestingly, H-phosphinate 3 might also be oxidized in vivo to PALA thus providing a
potential prodrug of the anticancer compound.5 14 In fact, there is some precedent for the
oxidation of H-phosphinate compounds into the corresponding phosphonates: for example, 3-
aminopropyl-H-phosphinate (CGP 27492), a potent GABAg receptor agonist, is oxidized to a
significant extent when administered to rats.52 In terms of inhibitor design, the possibility of
synthesizing cyclic phosphinate inhibitors to mimic the transition-state shown in Scheme 1
should be investigated. Even with an initial loss in binding affinity, the resulting transition-
state analogs might lead to potent time-dependent inhibition.

In conclusion, we have synthesized the first phosphinate inhibitors of ATCase. Although the
observed inhibition constants are consistent with the enzyme initially binding to the phosphate
dianion of carbamyl phosphate, inhibitors 3 and 4 show significant potency. In fact, these
appear to be the most potent non-phosphonate inhibitors of ATCase. Additionally, H-
phosphinate 3 could function as an oxidatively activated PALA prodrug. Implementing the
charge reduction simultaneously in both the phosphorus moiety as in 3 and 4, and in the
aspartate moiety as in 2 might result in useful inhibition while decreasing the overall charge
of PALA. This, and cyclic inhibitors to mimic the postulated transition-state, will be the object
of future studies.
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Scheme 1.

ATCase-catalyzed transformation and postulated transition-state
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Reagents and conditions: (a) H3PO, (2.0 equiv.), Pd(OAC), (0.2 mol %), xantphos (0.22 mol
%), DMF, 85 °C, Ny, 7 h, 95 %; (b) CH3C(OEt)3 (6.0 equiv.), BF3*OEt, (0.16 equiv.), rt,
N>, 24 h, 80 %; (c) O3, CH,Cl,, —78 °C then Me,S (6.8 equiv.), =78 °C to rt, Np, 14 h; (d)
NaClO, (1.5 equiv.), NaH,PO4.H,0 (1.5 equiv.), 2-methyl-2-butene (2.0 equiv.), tBuOH/
H»0, 0 °Cthenrt, 1 h; (e) L-aspartic acid dibenzyl ester p-toluenesulfonate (1.8 equiv.), DMAP
(2.5 equiv.), EDCeHCI (3.5 equiv.), Et3N (2.0 equiv.), THF, rt, N, 16 h, 70 % from 6; (f)
H», Pd/C, THF/H,0, 17 h; (g) Amberlite IR 120 plus, THF/H-0, 80 °C, 15 h, 57 % from 8
after ion exchange chromatography.
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Scheme 3.

Reagents and conditions: (a) N-(bromoacetyl)-L-aspartic acid dibenzyl ester (1.0 equiv.),
HMDS (2.5 equiv.), TMSCI (2.5 equiv.), toluene, reflux, 14 h; (b) Ph,CN5, toluene, rt, 10 min,
50 % from 9; (c) Hyp, Pd/C, THF/H,0, 24 h, 100 %.
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Reagents and conditions: (a) L-aspartic acid dibenzyl ester p-toluenesulfonate (1.0 equiv.),
DMAP (2.5 equiv.), EDC*HCI (2.5 equiv.), Et3N (1.1 equiv.), THF, rt, Ny, 5 h, 78 % from 6;
(b) Hy, Pd/C, THF/H,0, 24 h, 83%.
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Table 1
& Inhibition constants for PALA and phosphinates 3 and 4
Inhibitor Inhibition Constant (K;)® | inhibition Type
PALA 1 16+2nM competitive
H-phosphinate 3 417 £85nM competitive
Hydroxymethylphosphinate 4 193 +32nM competitive

a R . . . . .
Colorimetric assay detecting the formation of N—carbamoyl—L—aspartate.1:L The E. coli catalytic subunit of ATCase was used.

b .o .
Inhibition relative to carbamyl phosphate Ky =28 + 7 uM.
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