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Abstract
We describe some of the capabilities of the ergm package and the statistical theory underlying it.
This package contains tools for accomplishing three important, and interrelated, tasks involving
exponential-family random graph models (ERGMs): estimation, simulation, and goodness of fit.
More precisely, ergm has the capability of approximating a maximum likelihood estimator for an
ERGM given a network data set; simulating new network data sets from a fitted ERGM using Markov
chain Monte Carlo; and assessing how well a fitted ERGM does at capturing characteristics of a
particular network data set.
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1. Introduction
The ergm package for R (R Development Core Team 2007), a cornerstone of the statnet suite
of packages for statistical network analysis, provides tools for modeling networks based on a
well-studied class of models called exponential-family random graph models (ERGMs) or p-
star models (Holland and Leinhardt 1981; Wasserman and Pattison 1996; Robins, Pattison,
Kalish, and Lusher 2007a). In particular, the package allows users to obtain approximate (or,
in some cases, exact) maximum likelihood estimates (MLEs); simulate random networks from
a specified ERGM; and perform graphical goodness-of-fit checks of the type described by
Hunter, Goodreau, and Handcock (2008). This article describes some of the technical
background and algorithms that drive the ergm package.
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1.1. Obtaining ergm
Because the ergm package is part of the statnet suite of packages, it may be obtained and loaded
by loading the statnet suite as described in Goodreau, Handcock, Hunter, Butts, and Morris
(2008a) or at the statnet project Web site at http://statnetproject.org/. Alternatively, a user may
choose to install and load just the ergm package itself in R via

R> install.packages(“ergm”)R> library(“ergm”)

(Throughout this article, R input is represented by italicized typewriter font beginning with the
R> prompt, or the + prompt if it is a continuation of a previous line.) Because the ergm package
depends on the network package (Butts 2008), the lines above will automatically install (if
necessary) and load the network package as well. All of these packages are available from the
Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/, and further
information about them may be obtained from the statnet Web site at
http://statnetproject.org/.

1.2. License and citation information
The ergm package is free and open-source, and released under GPL-3 with attribution
requirements for the software and its source code. To obtain license information go to
http://statnetproject.org/attribution/.

Please cite the ergm package when you use it for research that is published or otherwise publicly
distributed. Citation information is provided on our Web site at
http://statnetproject.org/citation.shtml, and can be obtained by typing citation(“ergm”).

1.3. ERGMs in a nutshell
The purpose of ERGMs, in a nutshell, is to describe parsimoniously the local selection forces
that shape the global structure of a network. To this end, a network dataset, like those depicted
in Figure 1, may be considered like the response in a regression model, where the predictors
are things like “propensity for individuals of the same sex to form partnerships” or “propensity
for individuals to form triangles of partnerships”. In Figure 1(b), for example, it is evident that
the individual nodes appear to cluster in groups of the same numerical labels (which turn out
to be students’ grades, 7 through 12); thus, an ERGM can help us quantify the strength of this
intra-group effect. The information gleaned from use of an ERGM may then be used to
understand a particular phenomenon or to simulate new random realizations of networks that
retain the essential properties of the original. Handcock, Hunter, Butts, Goodreau, and Morris
(2008) say more about the purpose of modeling with ERGMs; yet in this article, we focus
primarily on technical details.

In the remainder of the article, we introduce the two network datasets of Figure 1 that will be
used for illustrative purposes (Section 2), provide a brief technical summary of what an ERGM
is (Section 3), and list a few examples of ERGMs along with numerous references in which
these models are developed more fully (Section 4). Section 5 describes the algorithm for
producing approximate maximum likelihood estimates used by the ergm package, while
Sections 6 and 7 describe the simulation and goodness-of-fit capabilities, respectively, of the
package. The focus of this article is restricted to the technical aspects of modeling using
ERGMs, so it does not provide a proper discussion of the purpose of ERGMs nor how best to
construct ERGMs in practice. There is a large body of literature on these topics, and the
interested reader might turn to the special issue of Social Networks (Robins and Morris
2007), which contains several related articles and which provides extensive lists of references.
Additional aid on the practical use of the statnet suite of packages is given by Goodreau et
al. (2008a) in the form of a short tutorial.
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2. Network datasets in ergm
Several network datasets are included with the ergm package. To see a list of them, type:

R> data(package = “ergm”)

In this article, we use the samplike and faux.mesa.high networks, depicted in Figure 1,
to illustrate various aspects of the ergm package functionality. To learn more about these
particular datasets, or any of the datasets included with the ergm package, it is possible to view
their corresponding documentation files by using the help function, or, equivalently, the
question mark, as follows:

R> help(“samplike”)R> ? “faux.mesa.high”

In the samplike dataset of Figure 1(a), each node represents a monk within a particular
monastery and a directed edge from one to another indicates that the first named the second as
one of the three monks he likes the most, at any of the three distinct time points when the survey
was administered; type help(“sampson”) for more details. Three groups, identified by
Sampson (1968) after analyzing the trends in the pattern of ties over time, are indicated by the
three different shapes and colors of nodes. Note that the definition of group membership in this
case is endogenous: membership is not a measured attribute of the node, like age, that is
independent of the relational structure, but instead a latent cluster defined by the structure of
relations. The default behavior of the plotting function for a directed network like samplike
is to place arrows at one end of each line segment, indicating the direction of each edge.

In the faux.mesa.high dataset of Figure 1(b), each node represents a student in grades seven
through twelve at a hypothetical yet realistic school (or middle school-high school pair) in the
United States, and each edge indicates a mutual friendship in which each node named the other
as one of his or her top five male or top five female friends; see the appendix in Goodreau et
al. (2008a) for the origin of this data set. Boys are depicted by square nodes and girls by many-
sided polygons that appear circular; the label for each node indicates the grade in school
(seventh through twelfth). In contrast to the samplike network, the nodal attributes in this
case, grade and sex, are exogeneous. This difference means they can serve as predictors in a
generative model for the friendships. Since the edges indicate mutual friendships, this is an
undirected network.

In both figures 1(a) and 1(b), it is evident that the colors used for displaying the nodes are
related to the clustering of the nodes. However, the plotting function does not consider these
colors in any way when positioning the nodes; it only considers the pattern of edges and non-
edges that exist in the network. Since the colors in the samplike are derived from the pattern
of edges, the clustering by color is tautological. The fact that the nodes from
faux.mesa.high cluster by grades, however, is different. In this case the clustering reveals
a qualitative fact about this network, and the ergm package allows us to analyze properties like
this quantitatively. The exact R code used to produce both of these plots is given in Appendix
A—note that, because the algorithm used for the plots has a random element, this code will
not produce exactly the same layouts as in Figure 1.

3. ERGM specification
Let the random matrix Y represent the adjacency matrix of an unvalued (binary) network and
let Y denote the support of Y. Then we may think of Y as the set of all obtainable networks.
Typically, as in this article, one fixes the number n of individuals, so that y is a subset of all n
× n matrices whose entries are all zero or one and whose diagonal entries are all zero—since
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the (i, j) entry indicates an edge from i to j, forcing the diagonal to be zero means that self-
partnerships are disallowed. In the undirected case, Y contains only symmetric matrices.

3.1. The model
The distribution of Y can be parameterized in the form

(1)

where  is the vector of model coefficients and g(y) is a q-vector of statistics based
on the adjacency matrix y (Frank and Strauss 1986; Wasserman and Pattison 1996). Model (1)
may be expanded by replacing g(y) with g(y,X) to allow for additional covariate information
X about the network, as described in Section 4.3. The denominator,

(2)

is the normalizing factor that ensures that Equation 1 is a legitimate probability distribution.
Specification of Y, including the number of nodes, n, is an important yet often overlooked
aspect of model (1). If, for instance, an edge denotes a heterosexual sexual relationship, then
each element of Y should contain certain structural zeros, namely, all Yij for which both i and
j represent nodes of the same sex. At its largest, for a fixed n, Y may contain up to N =
2n(n−1) networks, a very large number even for moderate-sized n, which makes calculation of
κ(θ,y) the primary barrier to inference using this model.

3.2. Change statistics
An alternative specification of the model (1) clarifies the interpretation of the coefficients. To
articulate this alternative, we first introduce the notion of a vector of change statistics. Such a
vector is a function of three things: A particular choice g(·) of statistics defined on a network,
a particular network y, and a particular pair of different nodes (i, j) that is either ordered or
unordered, respectively, according to whether y is directed or undirected. We define the vector
of change statistics as

where  and  represent the networks realized by fixing yij = 1 or yij = 0, respectively, while
keeping all the rest of the network exactly as in y itself. In other words, δg(y)ij is the change
in the value of the network statistic g(y) that would occur if yij were changed from 0 to 1 while
leaving all of the rest of y fixed.

In terms of the change statistic vector, model (1) may be shown to imply the following
distribution of the Bernoulli variable Yij, conditional on the rest of the network:

(3)

where the logit function is defined by logit(p) = log[p/(1 − p)] and  represents the rest of the
network other than the single variable Yij. When the network statistics involve covariates X in
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addition to y, as we will describe in Section 4.3, we may add X to the notation and write
δg(y,X)ij.

Equation 3 reveals two facts: First, the probability on the left hand side depends on  only
through the change statistics δg(y)ij, not on g( ) or g( ) themselves. In many cases, it is much
easier to calculate δg(y)ij than it is to calculate g( ) or g( ), and this fact can lead to efficient
computational algorithms. As an example of this phenomenon, the Erdös-Rényi model of
Section 4.1 implies that δg(y)ij = 1 for all y and for all i and j.

Second, Equation 3 says that each component of the δ vector may be interpreted as the increase
in the conditional log-odds of the network, per unit increase in the corresponding component
of g(y), resulting from switching a particular Yij from 0 to 1 while leaving the rest of the network
fixed at . For examples of these kinds of interpretations for an actual dataset, refer to Sections
4 and 6 of Goodreau et al. (2008a).

The specific statistics that may be included in the g(y) vector in the ergm package are listed
and described in Morris, Handcock, and Hunter (2008). In the next section, we illustrate the
use of only a small fraction of the available terms on the samplike and faux.mesa.high
datasets. It is important to remember that because samplike is directed and
faux.mesa.high is undirected, there are certain types of model terms that may not be used
with one or the other of these datasets. A summary of these restrictions may be found in the
table in Appendix A of Morris et al. (2008).

4. Examples of ERGMs
Here, we offer a brief glimpse at some important categories of ERGMs. We also give numerous
references for readers interested in delving more deeply into the intricacies of building ERGMs,
which is a subject that we cannot adequately cover given the limited space available and the
limited scope of this article.

4.1. Bernoulli and Erdös-Rényi models
In the remainder of this article, we take

to be the parameter space. The dimension q of Ω is at most N − 1 (for the “saturated” model),
although it is typically much smaller than this. For example, if the dyads Yij = Yji of an
undirected network are mutually independent and Y consists of the set of all possible undirected
networks, the model can be written

(4)

where θij = logit [P θ,Y(Yij = 1)] is the log-odds of a tie in the (i, j) dyad and
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[Recall that the logit, or log-odds, function is defined by logit p = log p − log(1 − p).] Thus,
for model (4), q = n(n − 1)/2 and the elements of the vector g(y) are just yij. This model is often
called a Bernoulli network. The special case where the dyads have a common probability

implies that q = 1, g(y) =  is the number of partnerships in the network, and the
single coefficient θ can be interpreted as the common log-odds of partnership formation within
any dyad. The mathematical properties of this homogeneous Bernoulli network model, also
known as the Erdös-Rényi model, have been extensively studied—see Albert and Barabási
(2002) and the many references therein—but the simplicity and homogeneity that make it
tractable also make it less useful as a realistic model for social phenomena.

Consider the samplike dataset, which is contained in the ergm package and which may be
accessed, once ergm is loaded, by typing

R> data(“sampson”)

Some information about the dataset may be obtained by typing help(“sampson”) or help
(“samplike”). To obtain summary statistical information, we may type either samplike or
summary(samplike):

R> samplike

Network attributes:

vertices = 18

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE

total edges= 88

...

A directed network with eighteen vertices (nodes) could have up to 18 × 17 = 306 edges. Since
this network has 88, we should expect the maximum likelihood estimator for δ in an Erdös-
Rényi model to equal logit (88/306) = −.90716. To verify this fact using the ergm package, we
may use the following commands:

R> model1 <- ergm(samplike ~ edges)R> model1$coefedges−0.9071582

Note that the ergm command requires the formula format in R, much like other regression-
like functions such as lm for linear regression or glm for generalized linear models. For
ergm, the formula should be of the form

network object ~ <model term 1> + <model term 2> + ...

where the model terms determine the elements of the g(y) vector. The ergm function allows
many possible model terms other than edges; a complete catalog is given in Morris et al.
(2008).
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4.2. The p1 model
Holland and Leinhardt (1981) appear to be the first to propose log-linear models for social
networks. Suppose that we take y to be the set of all directed graphs, with independent dyads
[i.e., the pairs (Yij, Yji) are independent for different choices of {i, j}] and the following model
for tie probabilities:

In this specification, each dyad has its own probability distribution. This model can represent
arbitrary nodal indegree and outdegree marginal distributions and strength of reciprocity (or
mutuality) within dyads. It can be written in log-linear form as

(5)

which is a special case of Equation 1 with q = 3n(n − 1)/2. Holland and Leinhardt (1981) refer
to this as the p1 model, though they point out that it has too many coefficients to be useful
statistically and instead consider a simplified version of model (5) in which all of the ρij are
equal (to ρ) and ϕij = θ + αi + βj. In this model, ρ may be considered the mutuality effect; αi
and βj are the sender and receiver effects, respectively, of the ith and jth nodes; and θ is the
overall edge effect, analogous to the intercept in a linear regression. We may fit this model
using maximum likelihood estimation as follows (because ergm uses a complex algorithm to
fit this model, as described in Section 5.1, the ergm command may take a few minutes):

R> model2 <- ergm(samplike ~ edges + sender + receiver + mutual,+ seed 

= 2345, verbose = TRUE)R> summary(model2)

==========================Summary of model 
fit==========================Formula: samplike ~ edges + sender + 
receiver + mutualNewton-Raphson iterations: 88MCMC sample of size 

10000

Monte
Carlo MLE
Results:

Estimate Std. Error MCMC s.e. p-value

edges −2.54244 0.14724 0.011 < 1e-04 ***

sender2 −0.85810 0.72326 0.032 0.236495

sender3 −0.29592 0.72313 0.017 0.682705

...
<output
edited for
length>

receiver17 −1.45863 0.34780 0.005 < 1e-04 ***

receiver18 −1.17712 0.32407 0.005 0.000336 ***

mutual 3.71983 0.12621 0.002 < 1e-04 ***
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---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null Deviance: 424.21 on 306 degrees of freedom

Residual Deviance: 224.11 on 270 degrees of freedom

Deviance: 200.09 on 36 degrees of freedom

AIC: 296.11 BIC: 430.16

The seed argument is used here and elsewhere in the article to make the output exactly
reproducible, since the fitting algorithm is random; however, we have noticed that there exist
some differences among the output produced by some platforms for some of the examples
nonetheless. We obtained these results using R version 2.6.2 on a Windows machine using
ergm version 2.1 and network version 1.3. The verbose = TRUE argument results in a lot of
output as the algorithm proceeds. The control = control.ergm(check.degeneracy =
TRUE) option would have invoked a check for degeneracy that takes quite a bit of time for this
particular model due to the fact that it contains 36 parameters. Model degeneracy is discussed
briefly by Handcock et al. (2008) in this volume, and in more detail by Handcock (2003b,a).

Note that summary(model1) produced a lot of information besides the coefficient estimates.
The standard errors and loglikelihood values on which the deviance, AIC and BIC values are
based use stochastic approximations discussed in Hunter and Handcock (2006). Also note that
there are only 17 sender effects (sender2 through sender18) and 17 receiver effects, even
though there are 18 nodes. This is because inclusion of all 18 effects would result in a linear
dependency among the statistics of g(y), which should be avoided here, as in all statistical
models.

The estimates above are approximate maximum likelihood estimates obtained using a
stochastic algorithm based on Markov Chain Monte Carlo (MCMC); hence, the results will
not be exactly the same for all runs. However, if exact reproducibility of coefficient estimates
is important, it is possible to seed the random number generator manually using the seed
argument to the ergm function; type ?ergm for more details. In this particular case, the formula
in Equation 1 simplifies considerably and it is possible using numerical methods to find the
exact maximum likelihood estimator, i.e., without resorting to a stochastic MCMC-based
algorithm. Holland and Leinhardt (1981) do this, but unfortunately it is not possible to compare
their results directly with ours because they use a slightly different dataset.

These early simple ERGMs, which have no exogeneous covariates and assume independence
across dyads, have been substantially extended and generalized in subsequent social network
literature. Based on developments in spatial statistics (Besag 1974), Frank and Strauss
(1986) introduce forms of dependence with Markov structure. Wasserman and Pattison
(1996) incorporate exogeneous and endogenous nodal attributes (Pattison and Wasserman
1999) and make a distinction between explanatory and response variables (Robins, Pattison,
and Wasserman 1999), resulting in social influence (Robins, Pattison, and Elliott 2001b) and
social selection (Robins, Elliott, and Pattison 2001a) models. These generalizations essentially
allow analysis of networks with “colors” on the nodes, where “color” is used to indicate the
attribute values conceptually as Figure 1 does literally. Recent developments include new
forms of dependency structures, to take into account more general neighborhood effects. These
models relax the one-step Markovian dependence assumptions, allowing investigation of
longer range configurations, such as longer paths in the network or larger cycles (Pattison and
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Robins 2002). Models for bipartite (Faust and Skvoretz 1999) and tripartite (Mische and Robins
2000) network structures have also been developed.

4.3. Exogenous covariates and dyadic independence
Attribute information is easily incorporated into an ERGM (Fienberg and Wasserman 1981).
Suppose we wish to examine the impact of p exogenous attributes represented by an n × n ×
p array, X, whose ijkth element is the value of the kth attribute for the potential edge represented
by the Bernoulli random variable Yij. Note that this construction allows the attributes to be
functions of nodal covariates. For instance, Xijk might be the absolute difference in ages
between nodes i and j, say, |agei − agej|. As a practical matter, note in this example that it is
not actually necessary to store the entire X array; it is much simpler to store only the vector
giving the age of each node along with a rule for how to calculate Xijk when needed.

To modify the ERGM of Equation 1 to allow X to influence the probability distribution of Y,
we replace g(y) by g(y,X), indicating that the statistics depend on the attribute information in
addition to the relationship information. As an example, suppose that g(y,X) includes the
following terms (where the equivalent ergm-package codings are given in square brackets):

• # of edges in y [ergm code: edges]

• # of edges between students of the same grade, counted separately for each possible
grade [nodematch(“Grade”, diff = TRUE)]

• # of edges involving males, with male-male edges counted twice [nodefactor
(“Sex”)]

We might say that this model contains terms for the overall number of edges, a differential
homophily effect for grade, and a main effect for sex. We may fit this model using the
faux.mesa.high dataset as follows:

R> data(“faux.mesa.high”)R> model3 <- ergm(faux.mesa.high ~ edges + 

nodematch(“Grade”, diff = TRUE) ++ nodefactor(“Sex”))R> summary

(model3)...

estimate s.e. p-value MCMC s.e.

edges −5.6784 0.1820 < 1e-04 NA

nodematch.Grade.7 2.7869 0.1981 < 1e-04 NA

nodematch.Grade.8 2.9969 0.2395 < 1e-04 NA

nodematch.Grade.9 2.4074 0.2643 < 1e-04 NA

nodematch.Grade.10 2.6208 0.3744 < 1e-04 NA

nodematch.Grade.11 3.3627 0.2971 < 1e-04 NA

nodematch.Grade.12 3.6628 0.4578 < 1e-04 NA

nodefactor.Sex.M −0.3743 0.1047 0.000351 NA

...

We see that in each grade, students are more likely to make friends with those in their own
grade than those in other grades. Furthermore, girls are more likely than boys to make friends
in this network. These coefficients may be interpreted as described in Section 3.2, and these
interpretations will be familiar to practitioners of logistic regression. For instance, we can say
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that if all other covariate values are the same, then an individual female's odds of forming a tie
with a particular student are exp{0.3743} = 1.454 times those of an individual male, conditional
on the rest of the network. See Goodreau et al. (2008a) for further interpretation of output such
as this.

The output above is not based on a stochastic MCMC algorithm, so the code should always
produce exactly the same values. This is not true of the stochastically obtained summary of
model2 in Section 4.2. Before explaining the difference, we emphasize that a dyad in a network
is the random variable representing the state of the relationship(s) between two given nodes.
In other words, a dyad in an undirected network is simply a single Yij, whereas a dyad in a
directed network is a pair (Yij, Yji). We now articulate the idea of dyadic independence via a
couple of definitions. To understand Definition 1, it may be helpful to review the definition of
the change statistic vector δg(y,X)ij in Section 3.2.

Definition 1 A dyadic independence term is a term in an ERGM for which the corresponding
network change statistic(s) in the δg(y,X)ij vector—or δg(y)ij if there are no covariates—may
always be calculated, regardless of the values of i and j, without knowing anything about y
except possibly (in the case of a directed network) the value of yji.

The table in Appendix A of Morris et al. (2008) indicates which of the terms currently available
in statnet are dyadic independence terms. Examples include each of the terms used in
model2 and model3: edges, receiver, sender, mutual, nodematch. and
nodecov.

Definition 2 A dyadic independence ERGM is an ERGM all of whose terms are dyadic
independence terms.

In the case of dyadic independence models for undirected networks, the conditional probability

 in Equation 3 may be replaced by the unconditional, or marginal,
probability Pδ,Y(Yij = 1). This results in an enormous simplification of the likelihood function,
as described in Section 5.2, allowing the exact calculation of the maximum likelihood
estimator. The output from fitting model3 is a case in point.

The situation is almost this simple for dyadic independence ERGMs for directed networks.
However, a dyad in a directed network consists of two edges, so even in a dyadic independence
model, it is possible that Pθ,Y(Yij = 1) depends on Yji. This is exactly the situation of the p1
model of Section 4.2, which is why ergm employs a stochastic MCMC algorithm in the
model2 example. Currently, there are only two terms in statnet—mutual and asymmetric
—that require a dyadic independence model to use MCMC. See Morris et al. (2008) or type ?
ergm.terms for full descriptions of these terms. Any dyadic independence ERGM for a
directed network not containing either of these two terms exploits the same exact maximum
likelihood calculation used for model3 above.

To conclude this section, we draw an important distinction between dyadic independence and
linear independence. It is always important to ensure that there are no linear dependencies
among the terms in an ERGM, and linear dependencies can arise with either dyadic
independence or dyadic dependence terms. For instance, it was to avoid linear dependence that
the sender1 and receiver1 statistics are eliminated from model2 of Section 4.2, even
though both sender and receiver are dyadic dependence terms, whether or not we include
sender1 and receiver1 statistics in g(y). Many other statnet terms eliminate (or can be made
to eliminate) certain statistics in order to avoid linear dependencies; for examples, see all terms
that use the base argument in the summary table of Appendix A in Morris et al. (2008).
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4.4. Dyadic dependence models
One commonly used class of dyadic dependence models—i.e., models that do not satisfy
Definition 2—exhibit Markov dependence in the sense defined by Frank and Strauss (1986).
For these models, dyads that do not share a node are conditionally independent, an idea
analogous to the nearest neighbor concept in spatial statistics. Sometimes, a homogeneity
condition is also added so that all isomorphic networks have the same probability under the
model. Frank and Strauss (1986) show that homogeneous Markov network models are exactly
those having the triangle parameterization, in which  and

where

and

In this parameterization, Sk(y) counts the so-called k-stars for 1 ≤ k ≤ n − 1 and T1(y) is a count
of triangles (or cyclic triads in the directed case). An equivalent form is the degree distribution
parameterization, in which

(6)

where Dk(y) equals the number of individuals with exactly k relationships, 1 ≤ k ≤ n − 1. The
degree distribution parameterization has the advantage that the degree statistics are directly
interpretable in terms of concurrency of partnerships; i.e., Dm(y) for m > 0 counts the number
of individuals with m concurrent partners.

In practice, these models have often been simplified further, reducing the terms to edges, two-
stars and triangles, and assuming isomorphic homogeneity. Unfortunately, we now know that
such simple Markov models rarely produce reasonable networks. The reason has to do with
the problem of degeneracy (Handcock 2003a,b), which is discussed in the context of the ergm
package by Handcock et al. (2008). For a lengthy case study of degeneracy in a model that
contains the triangle term, see Section 5 of Goodreau et al. (2008a). The shortcomings of
the simplified Markov model may be addressed by allowing for some heterogeneity via the
inclusion of covariate-dependent model terms as described in Subsection 4.3, and by the use
of triad-based curved exponential family terms in place of the triangle count as described below.

4.5. Curved exponential-family models
This section details some of the technical considerations underlying a recently-developed class
of network statistics that has been shown to work well in many social network contexts
(Snijders, Pattison, Robins, and Handcock 2006; Robins, Snijders, Wang, Handcock, and
Pattison 2007b; Goodreau, Kitts, and Morris 2008b). As an example of this type of statistic,
consider the quantity
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(7)

Evidently, u(y; ϕs) is a scalar for a fixed network y and parameter ϕs, obtained by a linear
combination of the degree statistics Di(y) that depends on the tuning parameter ϕs (Hunter
2007). Because of the geometric series used in the linear weights, u(y; ϕs) is referred to as the
geometrically weighted degree (GWD) statistic. If the edges term is also included in g(y), then
u(y; ϕs) may be shown to be equivalent in a certain sense to the alternating k-star statistic of
Snijders et al. (2006).

The ergm package has the capability of fitting models that include the GWD statistic, via the
gwdegree term and several other related terms. In addition, two other geometrically weighted
statistics, the geometrically weighted edgewise shared partner (GWESP) and the geometrically
weighted dyadwise shared partner (GWDSP) statistics, are also supported by ergm. The first
of these, GWESP, is equal to

(8)

where EPi(y) is the number of edges in y between two nodes that share exactly i neighbors in
common, i.e., the number of edges that serve as the common base for exactly i distinct triangles
(Hunter 2007). The GWDSP statistic is similar, except EPi(y) is replaced by DPi(y), which is
the number of pairs (i, j) such that i and j share exactly i neighbors in common, whether or not
yij = 1.

From a modeling perspective, these geometrically weighted terms are useful because they are
not merely counts of local network configurations, like the degree of k-star statistics; instead,
they are particular linear combinations of an entire distribution of degree or shared partner
statistics. These terms appear very effective at overcoming the problems of degeneracy pointed
out for the Markov network models mentioned in Section 4.4. A full discussion of the merits
of these terms is beyond the scope of this article. For information on their purpose, see Snijders
et al. (2006) and Robins et al. (2007b); for case studies that use them, see Goodreau (2007),
Hunter et al. (2008), and Goodreau et al. (2008b); and for a tutorial introduction to their use,
see Section 6 of Goodreau et al. (2008a). Here, we focus solely on the technical difficulties
accompanying their use in ERGMs.

If ϕs in Equation 7 and ϕt in Equation 8 are fixed and known, then u(y; ϕs) and v(y; ϕt) present
no special difficulties; one or both may easily be included as components of g(y). However, if
ϕs or ϕt is an unknown parameter to be estimated via maximum likelihood, then the terms
introduce some formidable technical and computational challenges. In this case, the model
resulting from including u(y; ϕs) or v(y; ϕt) in g(y) is not of the standard ERGM form (1).
However, it may be shown (Hunter and Handcock 2006) that this model is in fact an example
of a curved exponential-family model in the sense of Efron (1975, 1978).

As an example, we fit two different models to the faux.mesa.high dataset, each involving
the edges term, a uniform homophily effect of grade (i.e., an effect of two students being in
the same grade), and a GWESP term. In model4, the ϕt parameter of Equation 8 is assumed
to be fixed at a value of 0.5; this model is therefore a true ERGM of the form (1). The second
model, model4a, is a curved exponential family model in which the ϕt parameter is to be
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estimated (the value 0.5 is used only as an initial value in the numerical estimation procedure).
Note the difference in output for the two models, the key being that one holds the ϕt parameter
fixed at 0.5 and the other estimates it along with the other coefficients. The second model,
model4a, may take a few minutes to run.

R> model4 <- ergm(faux.mesa.high ~ edges + nodematch(“Grade”) ++ gwesp

(0.5, fixed = TRUE), verbose = TRUE, seed = 789)R> summary(model4)...

Monte Carlo MLE
Results:

Estimate Std. Error MCMC s.e. p-value

edges −6.1369 0.2518 0.038 <1e-04 ***

nodematch.Grade 1.8993 0.4140 0.061 <1e-04 ***

gwesp.fixed.0.5 1.2277 0.1837 0.020 <1e-04 ***

...

To fit model4a, in which verbose = TRUE, we will use verbose = FALSE (the default
setting) because verbose = TRUE generates a lot of output in the case of a curved exponential
family like this one. However, interested readers may wish to see what happens with
verbose=TRUE.

R> model4a <- ergm(faux.mesa.high ~ edges + nodematch(“Grade”) ++ 

gwesp(0.5, fixed=FALSE), verbose=FALSE, seed=789)R> summary

(model4a)...

Monte Carlo MLE
Results:

Estimate Std. Error MCMC s.e. p-value

edges −6.3478 0.4467 0.076 < 1e-04 ***

nodematch.Grade 2.0886 0.4845 0.145 < 1e-04 ***

gwesp 1.3703 0.3603 0.061 0.000143 ***

gwesp.alpha 0.2257 0.2044 0.057 0.269438

...

Note: If check.degeneracy is set to TRUE (the default if FALSE), the degeneracy diagnostic
suggests that both model4 and model4a may be degenerate models. These models are given
here only to illustrate the difference between fixed = TRUE and fixed = FALSE, not to
suggest that they fit these data well.

5. Statistical inference for ERGMs
5.1. Approximating an MLE

From Equation 1, we obtain the loglikelihood function
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(9)

where yobs denotes the observed network. It is possible to redefine the g(y) vector by subtracting
from it the constant vector g(yobs), thus simplifying expression (9) without changing the model
at all. Indeed, this simplification is used by the ergm function. However, we will use expression
(9) throughout this article.

Rather than maximize  directly, we will consider instead the log-ratio of likelihood values

(10)

where θ0 is an arbitrarily chosen parameter vector. [Note: Previously in this article, we have
tended to use the term “coefficient” in situations in which either “coefficient” or “parameter”
would technically be correct. To be precise, a coefficient in this context is a specific kind of
parameter, namely, one that is multiplied by a statistic as in this case or in the case of regression
generally. In this section, we may use the terms “parameter” and “coefficient”
interchangeably.]

The approximation of ratios of normalizing constants such as the one in expression (10) is a
difficult but well-studied problem (Meng and Wong 1996; Gelman and Meng 1998). The main
idea we exploit in the ergm function is due to Geyer and Thompson (1992) and may be
described as follows: Starting from Equations 1 and 2, a bit of algebra reveals that

where Eθ0 denotes the expectation assuming that Y has distribution given by Pθ0,Y. Therefore,
we may exploit the law of large numbers and approximate the log-ratio by

(11)

where Y1, . . . , Ym is a random sample from the distribution defined by Pθ0,Y, simulated using
an MCMC routine as described in Section 6.

The stochastic estimation technique described above requires one to select a parameter value
θ0. While the approximation of Equation 11 may in theory be made arbitrarily precise by
choosing the MCMC sample size m to be large enough, in practice it is extremely difficult to
use this approximation technique unless the value θ0 is chosen carefully—namely, θ0 should
be “close enough” to the true maximum likelihood estimator  or Equation 11 will fail.

To see why this is so in a simple example, consider model1 from earlier, in which g(y) is just
the number of edges in y and for the samplike dataset we found . Suppose that
we wanted to use the approximation (11) for , where in this case we take θ0 = 1
for purposes of illustration. [Note: both g(y) and θare scalars in this example, so we do not use
bold type to write them.] Since θ0 = 1 corresponds to a network in which each of the 18 × 17
= 306 possible edges occurs independently with probability exp{1}/(1 + exp{1}) = 0.731, we
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may easily obtain a random sample g(Y1), . . . , g(Ym) by simulating m draws from a binomial
distribution with parameters (306, .731). In this simulation, the probability of obtaining a
network with g(Y) < g(yobs) = 88 is extremely small, roughly 2.3 × 10−59. For all practical
purposes, such an event will never happen in a simulation even for very large m. Yet a simple
derivation shows that the right side of Equation 11 cannot have a maximizer if there is no Yi
with g(Yi) < g(yobs), a fact that also follows from standard exponential-family theory (Barndor-
Nielsen 1978). Therefore, we conclude that the stochastic algorithm for approximating the
MLE will fail if we select θ0 = 1 since g(Yi) < g(yobs) is an extraordinarily rare event in this
case. On the other hand, with θ0 = −1, it is straightforward to obtain an approximate MLE
through simulation. These two cases are illustrated by Figure 2.

5.2. Pseudolikelihood
The default method used by ergm to choose θ0 is pseudolikelihood estimation, originally
motivated by, and developed for, spatial models (Besag 1974). The idea is to use an alternative
local approximation to the likelihood function referred to as the pseudolikelihood. The
pseudolikelihood for model (1) is identical to the likelihood for a logistic regression model in
which the (binary) response data consist of the off-diagonal elements of yobs and the predictor
vectors are given by the change statistics δg(yobs)ij of Equation 3. Indeed, this is exactly the
likelihood that is obtained if one starts with Equation 3 and then assumes in addition that the
Yij are mutually independent, so that

The maximum pseudolikelihood estimator (MPLE) for an ERGM, the maximizer of the
pseudolikelihood, may thus easily be found (at least in principle) by using logistic regression
as a computational device. As the discussion in Section 4.3 shows, when the ERGM is a dyadic
independence model not containing the mutual or asymmetric terms, the true likelihood and
the pseudolikelihood are the same, which is to say that the true maximum likelihood estimator
may be found via an MPLE computation.

When the ERGM in question is not a dyadic independence model, the statistical properties of
pseudolikelihood estimators for social networks are not well understood. Recent work (van
Duijn, Gile, and Handcock 2007) recommends strongly against their use as estimators.
Nonetheless, it is sometimes helpful to be able to check the value of an MPLE. The ergm
function may be used to return an MPLE by setting MPLEonly = TRUE. For instance, we may
check that the MLE for the dyadic independence ERGM called model3 fitted earlier coincides
with its MPLE by verifying that the difference in their coefficient estimates equals the zero
vector:

R> model3a <- ergm(faux.mesa.high ~ edges + nodematch(“Grade”, diff 

= TRUE) ++ nodefactor(“Sex”), MPLEonly = TRUE)R> model3$coef - model3a

$coef

edges nodematch.Grade.7 nodematch.Grade.8

0 0 0

nodematch.Grade.9 nodematch.Grade.10 nodematch.Grade.11

0 0 0

nodematch.Grade.12 nodefactor.Sex.2

0 0

Hunter et al. Page 15

J Stat Softw. Author manuscript; available in PMC 2009 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5.3. Profile likelihood computations
It may sometimes be desirable to fix the values of certain parameters in the model at known
constants and then maximize the likelihood as a function of the remaining parameters. The
resulting maximized value of the likelihood is called the profile likelihood and it is a function
of only the parameters that were fixed. In this way, for instance, it is possible to examine a
profile likelihood surface for one of more of the parameters. Note that maximizing the profile
likelihood function for a subset of the parameters yields the overall MLE.

To achieve this type of profiling using statnet, use offset in an ergm formula. For example,
suppose we wish to modify model3, seen previously in this section, so that the edges
coefficient is fixed at −6.0 instead of its unconstrained MLE value of −6.248. Then, we would
like to maximize the likelihood (i.e., estimate the other coefficients) subject to this constraint.
Even though model3 is a dyadic independence model, to carry out this constrained
maximization would require a specially modified logistic regression routine that is part of
neither ergm nor R; therefore, we will force the ergm function to generate an approximate
maximum likelihood estimate using an MCMC algorithm, as follows. The idea is to start with
the maximum likelihood found earlier (model3$coef), modify only the “edges” coefficient,
and then hold that coefficient constant at −6.0:

R> theta0 <- model3$coefR> theta0[1] <- −6.0R> model3b <- ergm

(faux.mesa.high ~ offset(edges) ++ nodematch(“Grade”, diff = TRUE) + 

nodefactor(“Sex”),+ theta0 = theta0, control = control.ergm

(force.mcmc = TRUE),+ seed = 456, verbose = TRUE)R> model3b$coef

edges nodematch.Grade.7 nodematch.Grade.8

−6.0000000 3.0389517 3.2183996

nodematch.Grade.9 nodematch.Grade.10 nodematch.Grade.11

2.6489700 2.8761216 3.5878954

nodematch.Grade.12 nodefactor.Sex.M

3.8633896 −0.2854673

Note that we had to explicitly state a starting θ0 value, theta0, for the entire parameter vector
(not merely the edges term). Also, the force.mcmc = TRUE option to the control.ergm
function is used to force ergm to use a stochastic approximation algorithm to find the MLE,
even in the case of a dyadic independence model.

6. Simulating random networks from an ERGM
The form of model (1) allows networks to be generated from it using Markov Chain Monte
Carlo (MCMC) algorithms. MCMC algorithms have been much studied and are a natural way
to simulate social networks (Gilks, Richardson, and Spiegelhalter 1996; Newman and Barkema
1999). The goal is to construct a Markov Chain on Y with Pθ0,Y(Y = y) as the equilibrium
distribution. This is operationalized by starting from a network in y and then making a large
number of appropriately sampled Markov transitions until approximate convergence to
Pθ0,Y(Y = y) is reached. Subsequent transitions are sampled and form a (sequentially dependent)
sample from the desired model. For details on the general MCMC approach, see the extensive
literature cited in the above books.
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Many chains of networks are possible for a given ERGM, with vastly different mixing
properties. However, convergence is ensured under fairly mild conditions (irreducibility and
aperiodicity) on the Markov Chain in the limit as the number of transitions approaches infinity.
For the social network representation (1), this process has been studied by Crouch, Wasserman,
and Trachtenberg (1998), Corander, Dahmström, and Dahmström (1998), and Snijders
(2002).

6.1. Different types of Markov chains
A full-conditional MCMC method has a simple form: At each iteration, for some choice of (i,

j), Yij is set to zero or one according to the conditional probabilities  and

 implied by Equation 3. This so-called “Gibbs sampling” or “heat bath”
algorithm chooses the pairs (i, j) uniformly at random, sequentially, or using some mixture of
the two. Each update requires the change statistics δg(y)ij of Equation 3 to be determined. The
speed of the calculation of δg(y)ij (or δg(y,X)ij if covariates are involved) is an important factor
in the computational quality of the algorithm (i.e., speed of convergence to equilibrium).

As an alternative to Gibbs sampling, Metropolis algorithms propose transitions from ycurrent
to yproposed, where at each step of the chain, the algorithm makes a random choice of whether
to remain at ycurrent for an additional step or change to yproposed, the latter choice occurring
with probability

(12)

Still more general, Metropolis-Hastings algorithms choose yproposed from an auxiliary
distribution dependent on ycurrent and are aimed at either focusing the transitions or spreading
them more broadly throughout Y. Thus, if q(y1,y2) denotes the probability that Yproposed = y1
given that Ycurrent = y2 under this auxiliary distribution, then the probability (12) is replaced
by

(13)

Thus, the Metropolis algorithm of Equation 12 may be viewed as a special case in which the
auxiliary distribution is symmetric in the sense that q(y1,y2) = q(y2,y1).

What makes Metropolis and Metropolis-Hastings algorithms (which include Gibbs sampling
as a special case) so appealing is that the normalizing constants (2) disappear from the ratio of
ERGM probabilities seen in Expressions (12) and (13); indeed, this ratio is simply

(14)

In fact, if yproposed differs from ycurrent by exactly a single edge toggle, replacing yij by 1 −
yij, then g(yproposed) − g(ycurrent) is just ± δg(y)ij. On the other hand, if yproposed differs
substantially from ycurrent for a particular type of Metropolis-Hastings proposal, then the ratio
of Equation 14 can be calculated by considering a sequence of networks, each with one dyad
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different from the last, starting from the current network and ending at the proposed network.
At each step, the ratio is a simple function of the change statistic vector.

6.2. Modifying the Metropolis-Hastings algorithm
Metropolis-Hastings algorithms can converge more efficiently than Gibbs sampling to the
target distribution when the proposal density q(·, ·) is well-chosen. The behavior of MCMC
algorithms is also very dependent on the choice of statistics g(y). Snijders (2002) reports on
some odd convergence properties of the MCMC algorithms described here for particular
choices of an ERGM and a parameter vector. In some cases, the sequences of realizations
transition quickly between very different networks after periods of minor variation that can be
extremely long. Other studies using MCMC algorithms to simulate social network models have
reported difficulties in obtaining convergence to realistic distributions (Crouch et al. 1998;
Corander et al. 1998). A typical occurrence in such cases is for the algorithm to produce
networks that are complete, empty, or otherwise extreme in some way. Such behavior is a
byproduct of the models themselves, rather than the MCMC algorithms used to simulate from
them (Handcock 2003a,b).

Corander et al. (1998) considered algorithms that hold the number of edges in the network
fixed, which avoids the problem of full or empty graphs. However, in most circumstances the
density of the network is a product of the social process that produced it and cannot be assumed
to be known in advance. Nonetheless, the ergm package supports many different Metropolis-
Hastings constraints that hold various network statistics, such as the overall density, the degree
distribution, or the degree of each node, constant. These constraints amount to restricting the
class Y of networks that are considered to be possible under model (1). The possible constraints
available in the ergm package, along with a couple examples of their use, are described in
Section 3 of Morris et al. (2008). Possible modifications to the q(y1,y2) proposal distribution
are discussed in Section 4 of Morris et al. (2008).

6.3. Example: Simulating a network using MCMC
Recall that model2 of Section 4.2, based on a simplified version of Equation 5, stipulates that
for an 18-node directed network Y,

Suppose we wish to use an MCMC idea such as the one described above to simulate a random
network according to this model. Here are two equivalent ways to do this using the
simulate command:

R> net1 <- simulate(model2, verbose = TRUE, seed = 678)R> net1 <- 

simulate(samplike ~ edges + sender + receiver + mutual,+ theta0 = 

model2$coef, verbose = TRUE, seed = 678)

Note that the second of these commands, using a formula along with the theta0 argument,
gives quite a bit of flexibility. For instance, one might wish to fit model2 and then examine
the effects of small changes to one of the parameters in the fitted model. To do this, one could
make a copy of these fitted coefficients — say, by typing the command mycopy <-model2
$coef — then make the small changes to this copy and use the altered copy as the parameter
values by substituting theta0 = mycopy into the above expression.
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After simulating net1, we may plot it using a command similar to the one used to produce
Figure 1, but with net1 in place of samplike; see Appendix A for details. The result of one
such experiment is depicted in Figure 3.

Note in particular that the clustering of nodes by (colored) group is no longer evident. This is
due to the fact that the ERGM used to generate this simulated network has no terms that
represent the effects of the nodal “group” covariate. Since group membership was an
endogenous property of the original network, rather than an exogenously defined measure, the
inclusion of such terms would raise some interesting theoretical issues that lie outside the scope
of this paper. While we cannot use this model to try to reproduce the group membership of
specific nodes, we can use it to try to reproduce a network that is isomorphic with respect to
the aggregate pattern of clustering. This structural isomorphism is closely related to the concept
of “regular equivalence” in the social network literature (Borgatti and Everett 1992).

For a quantitative comparison of the structural similarities in the randomly generated network
and the original samplike dataset, we may use the summary.formula capability of ergm,
which provides summary statistics for a network. For example:

R> rbind(summary(samplike ~ edges + mutual + idegree(0:3) + triangle),

+ summary(net1 ~ edges + mutual + idegree(0:3) + triangle))

edges mutual idegree0 idegree1 idegree2 idegree3 triangle

[1,] 88 28 0 0 3 5 193

[2,] 63 20 1 3 2 5 73

The idegree term above refers to in-degree, and in an ergm formula, idegree(0:3) adds
four statistics to the g(y) vector: The number of nodes with 0, 1, 2, and 3 in-edges in y,
respectively. Morris et al. (2008) give a list of the various graph statistics that may be used in
an ergm or summary statement. Furthermore, both Goodreau et al. (2008a) and Morris et al.
(2008) contain additional examples of the simulate function applied to networks.

7. Goodness of fit
Recent work on the quality of certain ERGMs, in particular work on degeneracy in ERGMs
(Handcock 2003a,b) underscores the following fact: A maximum likelihood estimator ,
while providing in some sense the best possible model from the particular class of models
defined by Equation 1 for a particular choice of g(y), does not necessarily result in a particularly
good model in a practical sense. It is possible that the model class itself is simply incapable of
producing a probability distribution on Y such that there is a reasonable probability of obtaining
networks that resemble the data yobs. Yet we must specify what is meant by “resemble” in this
context.

One way in which one network may “resemble” another, particularly in the context of an
ERGM with a particular vector g(y), is that their g(y) vectors may be close together. We know
from the theory of exponential family models (Brown 1986) that a particular ERGM (1), with
θ set equal to the maximum likelihood estimator ,  has the property that

(15)
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so that at least we may be assured that the probability mass of the ERGM is centered at g
(yobs). Yet this is not su cient to imply that a random Y generated from the ERGM will
“resemble” yobs. It is in fact quite possible that Equation 15 could be achieved essentially
because the MLE model places nearly all of the probability mass on nearly-empty or nearly-
full networks, such that the mean, somewhere in between, is exactly g(yobs). A striking example
of this phenomenon is given in Section 3 of Handcock et al. (2008) in this volume; see also
Handcock (2003a).

The intuition of the gof function in the ergm package, illustrated by the cartoon of Figure 4,
is to compare the observed yobs with a set of simulated networks Ỹ1, Ỹ2, . . . based on certain
network statistics — which may or may not overlap those of g(y) itself. For instance, the code
below uses four different sets of statistics, specified by the GOF argument, as a basis for
comparison between the faux.mesa.high dataset and a series of 100 randomly generated
networks obtained from the fitted model3. The interval = 5e+4 argument specifies the
number of MCMC steps (50,000 in scientific notation) between sampled networks. Because
of the large amount of simulation and compilation of network statistics necessary, the gof
function may take several minutes to run.

R> m3gof <- gof(model3, GOF = ~distance + espartners + degree + 

triadcensus,+ verbose = TRUE, interval = 5e+4, seed = 111)

The four sets of statistics used for the comparison are as follows:

• The geodesic distance distribution: The proportion of pairs of nodes whose shortest
connecting path is of length k, for k = 1,2, . . .. Also, pairs of nodes that are not
connected are classified as k = ∞.

• The edgewise shared partner distribution: The statistics EP0,EP1, . . . of Equation
8, divided by the total number of edges.

• The degree distribution: The statistics D0, D1, . . . of Equation 6, divided by n.

• The triad census distribution: The proportion of 3-node sets having 0, 1, 2, or 3
edges among them. Note: For a directed network, the triad census has 16 categories
instead of 4; see the triadcensus term in Section 2.5 of Morris et al. (2008).

The par and plot functions below produce the plot shown in Figure 5.

R> par(mfrow = c(2,2))R> plot(m3gof, cex.lab=1.6, cex.axis=1.6, 

plotlogodds = TRUE)

The upper-right plot of Figure 5 reveals that the ERGM with only an edges term, a differential
homophily term for grade and a main effect for sex does a poor job of capturing the edgewise
shared partner distribution. But considering that model3 is so simplistic, it does a remarkably
good job of producing networks that reflect the degree distribution, the pairwise geodesic
distance distribution, and the triad census of the original faux.mesa.high dataset. A better
model for the faux.mesa.high dataset would include homophily terms and main effects for
grade, sex, and race as well as a GWESP term to capture transitivity. Further details on such
models may be found in Hunter et al. (2008), where they are fit to real data similar to
faux.mesa.high.

8. Discussion
There are many features of the ergm package that it is impossible to document here due to
space limitations, but we hope that this article, together with its companion articles in this
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volume, serves as a useful introduction to the capabilities of the package as well as some of
the theory behind it. Of course, questions will inevitably arise that are not answered here or in
the package documentation. For this reason, we have established a statnet mailing list at
statnet_help@u.washington.edu. To subscribe go to
https://mailman.u.washington.edu/mailman/listinfo/statnet_help. Further details are available
on the statnet project web page at http://statnetproject.org.

The statnet packages are far from finished. For instance, future versions of the ergm package
will address the question of how to fit ERGMs to network data that evolve in time. In addition,
while the numerical fitting algorithm has come a very long way—and we are nearly at the stage
where a reasonable model can be expected to converge “out of the box”—improving the
algorithm is still a topic of active research.

Acknowledgments
The authors would like to acknowledge members of the statnet team, including Ryan Admiraal, Nicole Bohme, Susan
Cassels, Krista Gile, Deven Hamilton, Aditya Khanna, Pavel Krivitsky, David Lockhart, and James Moody. This work
was funded by two grants from the National Institutes of Health (R01-HD041877, R01-DA012831). DRH received
additional funding from Le Studium, an agency of the Centre National de la Recherche Scientifique of France, and
NIH grant R01-GM083603-01.

Appendix

A. R code for network plots
Here we give code to produce the plots in Figures 1(a) and 1(b). The code for Figure 1(a) may
also be applied to the net1 simulated dataset to obtain a plot similar to Figure 3. Though not
explicit in the code below, the function being called upon to produce the plot is called
plot.network and a user may learn about its numerous control options by typing help
(plot.network). (For those not familiar with the intricacies of the R programming
environment, the plot.network function—called a “method” for the generic function plot
—is automatically invoked below because plot is applied to an object, samplike, of class
“network”.) Because the default method used by plot.network to position the nodes has a
random aspect, we include a set.seed statement to produce exactly the same plot as in Figure
1(a).

R> data(“sampson”)R> gp <- samplike %v% “group”R> gp <- match(gp, 

unique(gp))R> set.seed(321)R> plot(samplike, vertex.cex = 4, 

vertex.col = gp+1,R+ vertex.sides = c(3,4,8)[gp], main = “(a)”, 

cex.main = 3)

The samplike %v% “group” command extracts the nodel covariate called “group” from the
samplike object. In the plot command, the vertex.cex, vertex.col, and
vertex.sides arguments, respectively, make the nodes larger, color them by group, and use
triangles, squares, and octagons to represent them. The main and cex.main arguments add a
title and enlarge it for viewing.

In fact, the code above was actually used to produce a .pdf file for use in this article. This
was achieved by enclosing the code above between the following two lines, which open a .pdf
file for output and then close it, respectively:

R> pdf(“fig1a.pdf”,height = 10,width = 10)...R> dev.off()
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Similarly, the following code was used for Figure 1(b):

R> data(“faux.mesa.high”)R> grd <- faux.mesa.high %v% “Grade”R> sx <- 

faux.mesa.high %v% “Sex”R> vs <- c(4, 12)[match(sx, c(“M”, “F”))]R> 

col <- c(6, 5, 3, 7, 4, 2)R> set.seed(654)R> plot(faux.mesa.high, 

vertex.sides = vs, vertex.rot = 45, vertex.cex = 2.5,R+ vertex.col = 

col[grd - 6], edge.lwd = 2, main = “(b)”, cex.main = 3,R+ 

displayisolates = FALSE)R> legend(“topright”, legend = 7:12, fill = 

col, cex = 2.2)

The only new arguments here to the plot command are vertex.rot, which rotates the nodes
45 degrees so that the squares are not oriented as diamonds, edge.lwd, which makes wider-
than-normal edge lines for viewing, and displayisolates, which leaves out all nodes
without any edges. Finally, the legend command creates a legend showing the grades and
their corresponding colors. For more on the capabilities of plot.network and the network
package in general, see Butts (2008).
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Figure 1.
The (a) samplike and (b) faux.mesa.high networks described in Section 2. The values of
nodal covariates may be indicated using various colors, shapes, and labels of nodes.
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Figure 2.
For a simplistic model with g(y) equal to the number of edges, the dotted curves show

 for two different values of θ0, namely θ0 = 1 (upper curve) and θ0 = −1 (lower
curve). The solid curves are the corresponding approximations using Equation 11. The true
MLE, , is easily derived in this case. Note that θ0 = −1 appears to give a good
approximation to the loglikelihood near , whereas θ0 = 1 gives an approximation that cannot
even be maximized.
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Figure 3.
A randomly generated network according to the ERGM with mutuality and edges terms,
fitted to the samplike dataset.
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Figure 4.
The gof function compares features of the observed network, represented at the left, with the
same features of a set of networks simulated according to the MLE model.
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Figure 5.
The solid line in each plot represents the observes statistics for the faux.mesa.high network,
and the boxplots summarize the statistics for the simulated networks resulting from the MLE.
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