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Abstract
Tomographic imaging and computer simulations are increasingly yielding massive datasets.
Interactive and exploratory visualizations have rapidly become indispensable tools to study large
volumetric imaging and simulation data. Our scalable isosurface visualization framework on
commodity off-the-shelf clusters is an end-to-end parallel and progressive platform, from initial data
access to the final display. Interactive browsing of extracted isosurfaces is made possible by using
parallel isosurface extraction, and rendering in conjunction with a new specialized piece of image
compositing hardware called Metabuffer. In this paper, we focus on the back end scalability by
introducing a fully parallel and out-of-core isosurface extraction algorithm. It achieves scalability
by using both parallel and out-of-core processing and parallel disks. It statically partitions the volume
data to parallel disks with a balanced workload spectrum, and builds I/O-optimal external interval
trees to minimize the number of I/O operations of loading large data from disk. We also describe an
isosurface compression scheme that is efficient for progress extraction, transmission and storage of
isosurfaces.
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1. Introduction
Tomographic imaging and computer simulations are increasingly yielding massive datasets.
Interactive and exploratory visualizations have rapidly become indispensable tools to
determine and browse regions of interest within volumetric imaging data, and verify and
validate the results of computer simulations. One paradigm of exploratory visualization is to
extract multiple 2-dimensional surfaces satisfying w(x) = const from a given scalar field w(x),
x ∈ R3, and render it at interactive frame rate (~30 Hz). This interactive and exploratory
visualization technique is popularly known as isocontour visualization.

Isocontour visualization for extremely large datasets poses challenging problems for both
computation and rendering with guaranteed frame rates. First, large isosurfaces are to be
extracted in a time-critical manner from those large datasets, whose sizes are from multi-
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gigabytes to terabytes. As the size of the input data increases, isocontouring algorithms
necessarily need to be executed out-of-core and/or on parallel machines for both efficiency
and data accessibility. Second, the interactive aspect of the isocontour visualization demands
that the scene is rendered quickly in order to provide responsive feedback to the user. In some
cases, the detail allowed by a single high performance monitor may not be adequate for the
resolution required. An even more common problem is that the dataset itself may be too large
to store and render on a single machine. Third, the extracted isosurface may need to be
transmitted from the computational servers to the rendering servers via the network, if the
computational and rendering servers do not coexist on the same machines. It may also need to
be saved on disk for future studies. Compact representation of the isosurfaces are thus used in
order to meet the time limit of data transmission and save disk space.

We can think of the process of scalable time-critical isosurface visualization of massive data
as a parallel and progressive stream from back to front as shown in Fig. 1 [61]. Due to the large
size of the massive datasets, it is extremely time-consuming or even impossible to do isosurface
extraction on a single processor. In order to scale to very large datasets, we use a computational
back end consisting of both parallel processors and parallel disks. Large datasets are partitioned
among the parallel processors in a load-balanced way and stored hierarchically on disks for
efficient I/O access. Triangle streams of the isosurfaces are extracted at the back-end nodes
progressively, which may be in compressed format, and sent to and rendered by the parallel
rendering servers. All rendered images are then composited to display on a large multi-tiled
screen.

Main results
Combining parallel and out-of-core computation, isosurface compression, and parallel
rendering and compositing, we describe and implement a fully scalable system for interactive
isosurface visualization across multiple isovalues and from different viewpoints. In this paper
we highlight this framework, as shown in Fig. 2, and focus on the algorithms for back end
parallel and out-of-core isosurface extraction and compression.

The rest of our paper is organized as follows: Section 2 discusses some background and related
work; Section 3 describes the architecture of our framework for scalable isosurface
visualization; Section 4.1 gives the details of our parallel and out-of-core isocontouring
algorithm; Section 4.2 provides the details of our isosurface compression method and compares
its results to that of another surface compression algorithm; Section 5 presents the performance
of our parallel implementation on a COTS (Commodity Of The Shelf) cluster.

2. Related work
Parallel isocontouring

As the size of input data increases, isocontouring algorithms have to be extended to parallel
machines for higher computational power and larger data addressability. Hansen and Hinker
describe parallel methods for isosurface extraction on SIMD machines [25]. Ellsiepen
describes a parallel isosurfacing method for FEM data by dynamically distributing working
blocks to a number of connected workstations [20]. Shen, Hansen, Livnat and Johnson
implement a parallel algorithm by partitioning load in the span space [51]. Parker et al. present
a parallel isosurface rendering algorithm using ray tracing [44]. Walt et al. recently
demonstrated interactive isosurface ray tracing on commodity desktop PCs by using advanced
real-time ray tracing techniques to improve isosurface ray tracing performance [58]. Chiang
and Silva give an implementation of out of-core isocontouring using the I/O optimal external
interval tree on a single processor [11,12]. Bajaj et al. use range partition to reduce the size of
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data that are loaded for given isocontour queries and balance the load within a range partition
[5].

A very important issue of parallel computation is load balancing [17] that can be achieved
mostly with two fundamental approaches: (i) static balancing, where the data is partitioned a
priori with criteria that achieve load balancing at runtime [35], or (ii) dynamic balancing, where
processors are given small chunks of data as they become available at run-time [20]. The
partitions can take the shape of slices, shafts, or slabs [42]. A dynamic partitioning usually
requires data redistribution at run time or data replication, which are expensive for massive
datasets. The major concern about a static partitioning is that load balance may not always be
good enough for the entire parameter space, i.e. the range of all possible isovalues in the case
of isocontour visualization. Our results will show that balanced static data partitioning accrosss
the entire parameter space is possible for large datasets.

Out-of-core isocontouring
Out-of-core computation becomes necessary as the data size exceeds the size of primary
memory. The time of I/O operations may become the predominant factor in out-of-core
isosurface extraction because of the large gap between memory and disk access speed. A simple
sweep through all cells on a disk for each isocontour query is not a viable solution. We have
to use external-memory search data structures that allow for loading only cells that intersect
the isosurface. Finding all cell intervals whose ranges contain a query value ν in external
memory is called the stab query problem, which is fundamental for out-of-core isocontouring.
For a set of range intervals SI = {Ii = [mini maxi]: i = 1, 2 . . .}, a stabbing query algorithm tries
to find the subset SI(ν) = {Ij : Ij ∈ SI, minj ≤ ν ≤ maxj} in the least number of I/O operations
and with linear storage space.

Several I/O optimal external data structures for the stabbing query problem have been studied
recently. Kanellakis et al. [31] describe a data structure called meta-block tree that is an
external-memory version of the priority search tree, where each interval [min, max] is mapped
to a point (x, y) in the 2D range space with x = min and y = max. The meta-block tree has a
height of O(logBN), uses optimal  disk blocks, and performs a range query in an optimal

number of  I/O operations, where N is the number of intervals and T is the size of
output. Arge and Vitter [1] present an external interval tree data structure that is an external-
memory version of the binary interval tree. Chiang and Silva [13] describe another I/O optimal
external memory version of the interval tree, called binary-blocked I/O interval tree, for out-
of-core isosurface extraction. Each internal node of a binary-blocked I/O interval tree has a

branching factor of Bf = Θ(B) instead of  as in the external I/O interval tree [1]. Chiang
et al. [12] manage to reduce the disk usage of a binary-blocked I/O interval tree, with a two-
level indexing scheme that builds external search structure on clusters of cells, called meta-
cells, instead of indexing directly on each cell. There is a tradeoff between the disk space and
query time by varying the meta-cell size. They apply these external memory search structures
for out-of-core isocontouring [11,12], with results indicating that isocontouring can be
performed on data residing on secondary storage such that the I/O operations are not the limiting
factor of the computation. While these external search structures are used for out-of-core
isosurface extraction, all current methods have only considered the case of a single machine
and a single disk. Single disk I/O would not be fast enough for tera-scale datasets even if an
efficient external search structure is used. In order to achieve scalable performance for
extracting isosurfaces from datasets of ever increasing size, we must combine the techniques
of parallel computation and parallel I/O. While this paper focuses on extracting large
isosurfaces from a single large volumetric data, Waters et al. recently presented an algorithm
for out-of-core time-varying isosurface visualization [59]. This approach utilizes difference-
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based compression techniques to minimize I/O bandwidth requirements for visualizing
isosurfaces of data sets with many time steps.

Parallel graphics architecture
Since isosurfaces generated from large datasets are usually also very large, with hundreds of
millions or even billions of triangles, it is beyond the rendering capability of a single graphics
board. One important way to speed up the rendering process is to also use parallelism in polygon
rendering. In general, most parallel rendering methods can be classified as sort-first, sort-
middle, or sort-last, based on where data is sorted from object-space to image-space [37].

In the sort-first approach, the display space is broken into a number of non-overlapping display
regions, which can vary in size and shape. Mueller [41] examines sort-first parallel rendering
architecture and explores the issue of load balancing. Crocket [17] describes various
considerations when building a parallel graphics library using a sort-first method. To load
balance among rendering processors, small granularity partitions, such as interleaved scan-
lines are used. However, many polygons are rendered multiple times for such small granularity
partitions. Sort-first methods may suffer from load imbalance in both the geometric processing
and rasterization, if polygons are not evenly distributed across the screen partitions, because
polygons are assigned to the rendering process before geometric processing.

The sort-middle approach also partitions screen space among rendering processors, but it
distributes transformed primitives instead of polygons to the rendering processors responsible
for the portion of the screen into which these primitives fall. Since the distribution of polygons
is not constrained by the partition of image-space, the rendering processors are usually well
balanced in geometric processing. But it still suffers from load imbalance during the
rasterization stage if primitives are not evenly distributed across the screen partitions. SGI
Infinity reality graphics engine uses a sort-middle architecture internally in its graphics pipeline
[39]. It uses 2-pixel wide stripes to ensure a good load balance of pixel work. However, it
imposes a high cost in broadcasting transformed primitives among different pipes. Larger tiles
have been used to reduce the broadcast overhead [29] at the cost of large reorder buffers.

The sort-last approach is also known as image composition. Each rendering server performs
both geometric processing and rasterization, independent of other rendering processors. Local
images rendered by the rendering server are blended together to form the final image. The sort-
last method behaves particularly well with respect to load balancing, since polygons can be
evenly distributed to any rendering process without constraint of screen partition. However,
compositing hardware or a high bandwidth network is often needed to combine the output of
the different processors into a single correct picture. Such approaches have been used since
the 1960's in single-display systems [22,36], and more recent work includes [21,26]. Udeshi
and Hansen [55] employ the multi-pipes of a SGI Onyx2 reality monster to render large
isosurfaces in a sort-last fashion. They use a binary-swap method [34] to efficiently composite
the images in log2(P) steps, where P is the number of rendering processors. However, those
custom-built parallel rendering machines are expensive, and do not easily expand as surfaces
get larger.

Commodity parallel rendering
Many research groups recently studied the problem of using programmable PC graphics cards
for parallel rendering [19,26,28,49,50]. Schneider [50] analyzes the suitability of PC
workstations for parallel rendering by studying four different parallel polygon rendering
scenarios: rendering single or multiple frames on a symmetric multiprocessors workstation, or
a cluster of PCs. The Princeton University SHRIMP project [49] uses various load balancing
schemes for a multi-projector rendering system driven by multiple PCs. Their method falls into
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a sort-first category, since they try to break screen space into load-balanced pieces, and ship
tiles of rendered pixels to the right display. Samanta et al. [48] later describe a hybrid sort-first
and sort-last system in which sort-last pixel compositing overheads are significantly reduced
by executing a dynamic sort-first primitive partition for each viewpoint. They further present
a k-way replication approach [47] in which each 3D primitive of a large scene is replicated k
times out of n PCs (k ≪ n), in order to support geometric models larger than the main memory
of any single PC.

Heirich and Moll [26] demonstrate how to build a scalable image composition system using
off-the-shelf components, such as PC graphics cards, Field Programmable Gate Arrays
(FPGAs), and gigabit network interfaces and switches, to composite rendered images from
different machines by user-programmable associative and commutative combining operations.
Lambeyda et al. [32] apply this architecture to interactive volumetric visualization of large
rectilinear scalar fields. Moreland et al. [40] describe an inbox sort-last parallel rendering
system on PC clusters to support a high-resolution display. They discuss techniques and
algorithms to minimize the negative effects of large display resolution while maintaining good
rendering performance on large datasets, by taking advantage of the spatial coherence in the
data.

Our solution to the parallel image compositing problem is the Metabuffer, whose architecture
is shown in Fig. 3. This is a sort-last multi-display image compositing system with several
unique features, such as multi-resolution and antialiasing [8]. A similar project, though
currently without stressing multi-resolution support, exists at Stanford University and is called
Lightning-2 [27,52]. The Metabuffer is a custom hardware that supports a scalable number of
PCs and an independently scalable number of displays—there is no a priori correspondence
between the number of renderers and the number of displays to be used. It also allows any
renderer to be responsible for any axis-aligned rectangular viewport within the global display
space at each frame. Such viewports can be modified on a frame-by-frame basis, can overlap
the boundaries of display tiles and each other arbitrarily, and can vary in size up to the size of
the global display space. Thus each machine in the network is given equal access to all parts
of the display space, and the overall screen is treated as a uniform display space, that is, as
though it were driven via a single, large framebuffer, hence the name Metabuffer. More
recently, Hewlett-Packard developed a parallel compositing library [43], a software API that
facilitates the development of parallel rendering applications on commodity clusters.

Compression
Handling very large datasets benefits from, and sometimes even necessitates the use of
compression techniques. We consider two aspects of compression in scientific visualization,
working from compressed input data, and producing compressed output results. There are many
benefits of applying compression techniques to input data: for instance, saving disk space,
reducing data loading time, and satisfying main memory limit. Chen and Reif [10] describe
doing computations directly on a compressed domain to speed up solving image processing
problems, in particular for the splatting algorithm of volume rendering. Ihm et al. [30] give a
wavelet-based 3D mesh compression scheme for volume rendering of visible human data. It
loads the entire compressed volume in main memory and reconstructs voxel values at request
during run-time. The same compression volume can also be used for isocontour visualization.

Isosurfaces extracted from volume datasets are rendered by rendering processors, which may
differ from those computational processors that extract isosurfaces. In a client-server based
data analysis system, it is important to transmit isosurfaces in compressed formats, in order to
avoid the possible bottleneck of network communication. One possible approach to the
isosurface compression problem is to first extract the isosurface into triangular meshes, and
then apply to it one of the surface compression algorithms [7,14,18,24,53,54]. Although it is
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conceptually simple, this method has several disadvantages. First the rendering servers have
to wait until the computational servers finish both isosurface extraction and compression. The
compression of the surface often takes a very long time, especially true for the very large
surfaces extracted from large datasets, which contradicts the goal of using compression for
real-time rendering. Furthermore, isosurfaces have the property that each vertex is an
intersection point with one unique edge of the 3D volume. An algorithm designed specifically
for an isosurface may get a better compression ratio. In this paper we will discuss a novel
compression algorithm for isosurfaces extracted from 3D regular volumes that compresses the
isosurface and allows streaming the compressed data to the rendering servers incrementally.
The algorithm demonstrates a good compression ratio, can run incrementally and in parallel
for large data sets, and may use compressed input volume data.

3. Framework
Fig. 2 illustrates the parallel end-to-end framework for scalable isosurface visualization on a
commodity off-the-shelf cluster. It can be divided into a sequence of Pipelined Stages.

3.0.0.1. Pipelined stages
Triangle streams are generated by the back-end nodes by progressively extracting the
isosurfaces. The triangle stream from the extraction node will be rendered by the middle parallel
rendering servers. All rendered images will then be composited by the Metabuffer to display
on a multi-tiled screen. The process of compositing images from multiple rendering servers to
multiple displays using the Metabuffer is called parallel image composition. Given the required
frame rate, the refresh time between two frames needs to be shared among these three stages:
triangle extraction, rendering and image composition. While the image composition time taken
by the Metabuffer is constant, how much external time left in the frame interval determines
what resolution of triangles will be extracted and rendered.

The parallel back-side provides multi-resolution isosurfaces extracted from the volume
datasets to satisfy the time limit. This stage is governed by the parallel and progressive triangle
extraction algorithms. Producing multi-resolution representation of the data at the back-side is
essential for the time-critical rendering of massive data. When the user changes viewing
parameters frequently, coarser representations of the data are rendered in order to give the user
responsive feedback. Only when the user chooses a certain viewing position and some
interesting isovalue, are the details of the progressive mesh or isocontour streamed for
rendering in order to produce higher resolution images. To reduce the time of data transmission
over the network, the extracted mesh may be communicated to rendering servers in compressed
format. Although the rendering servers might be on the same set of machines as the isocontour
extraction processes, the parallel and progressive triangular mesh extraction process can in
general scale independently of the number of parallel rendering servers. The triangle streams
between the extraction and rendering servers can be transmitted progressively and in a
compressed format.

3.0.0.2. The metabuffer
One novel feature of the framework is the parallel rendering and image composition system
that is able to render the given scene in the least latency. The parallel front-side is built around
the Metabuffer [8], which is custom hardware built from commodity PC components. The
Metabuffer hardware provides several unique advantages to assist in rendering a large surface
in parallel, such as arbitrarily located and overlapped viewports and multi-resolution. Each
rendering server in Fig. 2 is mapped to a viewport on the screen space. A very important
problem in parallel rendering is how to position those viewports and partition the mesh such
that each rendering server has approximately an equal amount of work.
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The Metabuffer allows the number of rendering servers to scale independently from the the
number of display tiles. Since the Metabuffer allows the viewports to be located anywhere
within the total display space and overlap each other, it is possible to achieve a much higher
degree of load balancing. Since the viewports can vary in size, the system supports multi-
resolution rendering, for instance allowing a single machine to render a background at low
resolution, while other machines render foreground objects at much higher resolution.

Given the progressivity from the triangle extraction phase, to the final image composition phase
in the framework, and the fact that each phase is fully parallelizable, we can expect to have a
truly scalable isocontour visualization system for massive datasets.

4. Parallel and out-of-core algorithms
In this section we will discuss in more detail the parallel and out-of-core isocontouring
algorithm and the isosurface compression algorithm mentioned in Section 3 that enables the
framework for scalable time-critical visualization of massive datasets. First we discuss a
distributed memory out-of-core/parallel isocontouring scheme that tries to take full advantage
of the available hardware.

4.1. Scalable isosurface extraction
A scalable data analysis and visualization application must take data processing, I/O, network
and rendering all into consideration. Specifically for the isocontour extraction of large volume
data, it should have load balanced parallel computation for fast surface extraction, out-of-core
computation to scale to datasets bigger than the size of the total main memory, and parallel I/
O to avoid the bottleneck of accessing massive data on disk.

We can model such a system that combines parallel processing and parallel disk access with
a model called the BSP-Disk model. The BSP-Disk model consists of P interconnected
processors, each of which may have a local memory and disk. The BSP-Disk model combines
the features of the BSP parallel computation model [56] and the PDM [57] parallel disk model.
It is a distributed memory parallel computation model, while each processor can access its local
disk in parallel. The BSP-Disk model very closely describes the characteristics of a PC cluster,
where each node has its own CPU, local memory and local disk. The parameters of the BSP-
Disk model are as follows:

• N: Total number of atomic units of the problem.

• M: Total number of atomic units that can fit in the one processor's main memory.

• P: Number of processors.

• D: Number of Disks.

• B: Number of atomic units that fits in one disk block.

• A: Time to read or write one disk block on the local disk.

• L: minimal synchronization time of the BSP model.

• g: gap parameter of the BSP model which characterizes the communication
bandwidth.

In the case of large datasets, we have the design conditions N > P · M and M ≫ B. In contrast
to the PDM model where a single processor has equal access to all parallel disks, the disks in
the BSP-Disk model are associated to different processors as their local disks. One very
important example is that every processor has one associated local disk (P = D), which is often
the case for a PC cluster. More generally  processors can be assigned to every disk. Extra
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communication time is required when one processor needs to access the data on a remote disk.
In the BSP-Disk model one disk block can be loaded from every disk into memory in one
parallel I/O, because each disk can be accessed independently. Thus up to D disk blocks can
be read into main memory in one parallel I/O. In other words, the data access time is shared
among the D disks.

The algorithms designed for the BSP-Disk model would consider all three parts of the time for
a real parallel and out-of-core algorithm, local computation, local disk I/O, and communication.
Therefore the time of the isosurface extraction can be written as

(1)

where Tw is the time for local computation, Tio is the time for local disk access and Tc is the
time for communication. Tw and Tc are to be measured using the BSP model and Tio is measured
as A × Nd, where Nd is the number of parallel I/O operations. The objective of our isocontouring
algorithm for large datasets is to speedup the computation by distributing the load to multiple
processors, minimize the number of parallel I/Os, and minimize inter-processor
communication (such as the remote disk accesses). These factors do not always play together
for each other. We must make tradeoffs according to the real system parameters. To minimize
the number of parallel I/O's, we need to load only those portions of dataset that contribute to
the final result, and distribute data to the disks such that data is loaded evenly from the D local
disks. Minimizing the local computation time requires good load balance among the processors.
Finally minimizing communication means minimal data redistribution, and remote data access
during computation.

An optimal algorithm for the PDM model requires optimal total disk storage space O(N) and

optimal number of parallel I/O operations , where K is the number of disk blocks that
need to be loaded. A scalable algorithm for the BSP-Disk model should also have optimal disk
storage space O(N) because some datasets may have a size much larger than the size of a single
disk. In other words, one cannot afford to replicate the entire datasets on each local disk. Instead,
data assignment of large datasets should have a constant replication factor, which the maximum
number of times that any atomic data element is duplicated on those disks. Our experimental
results will demonstrate that for large datasets, even a distribution of replication factor 1 gives
very good load balance and leaves little space for optimization with larger replication factors.

Isosurface extraction has the property that computation on each sub-volume of a dataset can
progress independently. Thus dynamic load redistribution during the run time would require
the transmission of data blocks from overloaded processors to idle processors, if one uses the
minimum replication factor 1. Large amount of data then have to be communicated. On the
other hand, a PC cluster has relatively low bandwidth and thus a large gap factor g, making
communication the least scalable factor when data size becomes larger. These considerations
lead us to choose the static data partition method for isocontour visualization in the BSP-Disk
model. At the preprocessing stage, we partition the data among multiple computational nodes,
and build the external interval tree as the index structure for the blocks on each disk. Here we
have assumed each node has one processor and an associated local disk.

4.1.1. Data partition methods—In order to achieve good performance for a static workload
allocation method for parallel computation, data must be partitioned carefully such that each
processor has approximately the same amount of work. Furthermore data must be distributed
among the D disks such that the number of parallel I/O is minimal. The work load of
isocontouring computation on a processor is typically proportional to the size of its output.
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In this section we discuss the preprocessing steps to prepare data for parallel and out-of-core
isocontouring. Without loss of generality, we assume the dataset is originally stored on the
D disks in such a way that each disk has an equal size slab of the volume. Because a 3D volume
can be thought as a stack of 2D images, this is a simple and natural distribution. However, this
distribution is far away from good load balancing. For an isocontour query, a big portion of
the isosurface may fall into a single slab of the volume, which in turn causes one processor to
have excessive computations and I/O operations, while others are idle. The data must be
redistributed with replication factor 1 in such a way that each processor has approximately an
equal amount of work for any given set of isocontour queries.

Cell is the minimum unit of the volume dataset. Function values are defined on the vertices of
the cells, and usually tri-linearly interpolated inside cell. Ideally we can use the granularity of
cell for the data partition and build the external interval tree for all the cells. However as shown
in [12], it is very storage inefficient to build an external index data structure using the unit of
cell, because of the high overhead of data duplication among cells. Instead, we use the atomic
unit of block, which is usually a 3D rectangular slab of adjacent cells, as shown in Fig. 4.
Although some extra cells maybe be loaded because of the larger granularity, block provides
the possibility of tradeoff between disk space and I/O efficiency. In our implementation, we
choose the size of block as the disk block size, such that one block can be loaded in one I/O
operation. Since we use a block as the unit of data partition and accessing, it is possible to
extract isosurface progressively at different resolution, to give user the basic shape of the
surface with minimum delay.

The basic idea of balanced data partitioning is to consider a workload diagram as in Fig. 5(a),
where the workload of an algorithm is plotted as a function of the parameter p. From such a
diagram one can estimate the cost of isosurface extraction on the dataset D for different
isovalues of p. The analysis can be performed at the level of single cells of D, so that it is
possible to determine which cells are involved in the evaluation for a given parameter p. It is
more convenient to conduct the analysis on the level of blocks, because blocks are the units of
data distribution. The diagram of D is the sum of the sub-diagrams of its blocks. One key issue
is how to construct a workload diagram. The ideal workload diagram would be the time taken
to extract isosurfaces, which however is difficult to compute and depends highly on the
environment. One can approximate the workload diagram with the contour spectrums [4,5],
for instance the number of triangles in an isosurface or the area of an isosurface, etc. In the
following discussion the workload histogram is approximated by the number of triangles in
the isosurfaces. This is a piece-wise constant function that can be computed in constant time
for each cell. It will be shown in later examples that the contour spectrum of triangle count,
closely matches the diagram of actual isosurface extraction time. Fig. 5(b) shows the histogram
for a real dataset, CT scan of the visible human male.

4.1.1.1. Optimal load balancing: The analysis of the isocontouring workload diagram allows
immediate evaluation of the quality of a data partitioning scheme, in terms of load balancing
during parallel computations. In fact the ideal load balancing for P processors would be
achieved if the workload histogram of the data assigned to each processor is the same-scaled
version (  times) of the global histogram. Fig. 6 shows the ideal partitioning of a dataset D in
the case of two processors where the units b, c, d are assigned to the first processor and the
unit a is assigned to the second processor. In this ideal data partition, each processor does the
same amount of work for every value of the parameter p.

One can evaluate the quality of any given data partitioning scheme by comparing its diagram
with the ideal one. In the following sections we propose a data partition scheme that tries to
stay close to the ideal case for a good load balance.
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In order to minimize disk access at execution of out-of-core isocontouring, one needs to
minimize the number of unused blocks that are loaded into main memory. Ideally, only the
blocks that contribute to the final isosurface of the current value p are loaded from secondary
memory into primary memory. Only the blocks in the shaded area of Fig. 7 intersect the
isosurface of the isovalue p. Ideally, only those blocks should be loaded into main memory for
extracting the isosurface.

Finding the optimized data distribution that minimizes the difference among the workload
histograms of the P processors is a NP-hard problem. This is a stronger version of the optimized
bin-packing problem [15], which is itself NP-hard. Therefore, one has to use an approximation
algorithm for the data distribution of parallel and out-of-core isocontouring. Next we present
both a deterministic greedy algorithm, and a randomized algorithm.

4.1.1.2. Greedy data decomposition algorithm: First we describe a greedy data
decomposition algorithm that achieves reasonably good results in experiments. A triangular
matrix in the range space as shown in Fig. 8 is constructed to help the data redistribution. The
function value range [Vmin, Vmax of a dataset D is divided into n segments [V0,V1], [V1, V2],
…, [Vn-1, Vn] with V0=Vmin,Vn = Vmax. Therefore the triangular range space of D is divided
into a triangular matrix of buckets. Every data block falls into one of the buckets according to
its functional range. For instance, if a block has range [x,y] and the bucket range interval size

is a, the block would belong to the  matrix element.

Blocks falling into the same matrix element have a similar span in the range space. Thus blocks
are categorized according to which triangular matrix element they fall into. Here we focus on
distributing blocks in a matrix element e, and then we apply the same algorithm to blocks in
any other element. Each processor initially has a collection of blocks for every matrix element
before the data redistribution. The greedy algorithm is as follows:

1. Every processor sorts its collection of blocks in an element e by the decreasing order
of range size.

2. Those blocks are then assigned to the P processors in a round-robin fashion. If
processor pi has a sorted list of blocks (b1, b2, . . . , bn) in the matrix element e, b1 is
assigned to processor pi, b2 is assigned to processor pi+1 and bj is assigned to processor
p(i+j-1) mod p.

3. Each processor collects blocks to be sent to other processors and transmits them to
the destinations in rounds.

This greedy algorithm tries to ensure the each processor gets about  of the blocks with similar
range spans and sizes. Thus the number of blocks loaded by each processor is approximately
the same. Experimental results in Section 5 verify this assumption.

4.1.1.3. Randomized data decomposition algorithm: For a large volume dataset, one has a
large number of blocks to distribute among the P processors (N ⪢ P). Suppose each block

bi, 1 ≤ i ≤ N is just randomly assigned to one processor. For i = 1, . . . , N, let  be a binary
random variable which is 1 if the block bi is assigned to the processor pj, 1 ≤ j ≤ P, and be 0

otherwise. Then  is a sequence of independent Bernoulli trials with

. In average every processor pj receives  blocks.
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, where wi is the workload of the block bi for a given isovalue ν. Then

 is the total work of extracting the isosurface of isovalue ν. Let
 be the normalized workload of the block bi Then the weighted sum

of Bernoulli trials  is the normalized workload assigned to the processor pj. The
expected workload assigned to the processor pj is

(2)

The randomized algorithm is rather simple with the following steps:

1. Each processor determines the destination processors of its blocks randomly with an
even probability 1/P.

2. Each processor collects blocks to be sent to other processors and transmits them to
their destinations in rounds.

Let Wj be the workload assigned to the processor pj for a given isovalue ν. It is possible to
show that it is highly unlikely that Wj greatly exceeds the expected value W/P. We apply the
following theorem by Raghavan and Spencer [45], which gives an inequality for the weighted
sum of Bernoulli trials.

Theorem 1 ([45]). Let a1, . . . , aNbe reals in (0, 1]. Let x1, . . . , xN be independent Bernoulli

trials with . If E (ψβ) > 0, then for any υ > 0

(3)

Using the above theorem, we can obtain following result.

Theorem 2. If the total workload W > α P log r for a given isovalue and blocks are randomly
allocated among P processors, any processor has a workload ≤  with high probability ≥

, where  is the maximum workload of a block and α >  is a constant.

Proof This proof is similar to the result in [23] on random emulation of QSM on BSP model.
The following is based on a simple analysis in [46].

In the case of data partitioning for parallel isocontouring, assume the normalized workload

, where  is a constant and r ≥ P. Since N ≫ P, this assumption
usually holds except for isosurfaces that have very few triangles, which are of little interest,
because they can be quickly extracted, regardless of how the dataset is partitioned. Then the
probability of the processor pj, having more than twice the average workload, is

Let d = 4/e > 1, then
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The probability of any processor having more than twice the average workload is

(4)

where ψ = maxP (ψj) is the maximum load of all processors. Therefore, we have shown that
the randomized data partitioning for parallel and out-of-core isocontouring achieves good load
balance for any isovalue with high probability.

After data is partitioned, an I/O-optimal interval tree [1] is built as index structure for the data
on each disk in a way similar to [12]. The external memory interval tree has optimal O(log N
+ K) I/O operations for stabbing queries, where K is the number of active cells. Therefore the
preprocessing steps can be summarized as follows.

1. Break the data into blocks. At the beginning of the data distribution, there is an
initial partition of the volume data among the disks, which is however not load
balanced for isosurface queries. For instance, one can just break the big volume into
slabs, so each disk contains one slab of the data. First we divide the slabs into blocks,
each of which is in the same order as the disk block size. With each block, we store
all the information necessary for performing isocontour extraction on the block,
including the function values on all its vertices and the geometric information such
as the dimensions, origin, and span of the block. We also store the index and range
interval of the block explicitly for later construction of external interval trees.

2. Redistribution of data blocks. For the data block redistribution, every processor runs
the same algorithm to determine to which processors it needs to send blocks. Every
processor pi then in turn communicates to the other processors pj(j ≠ i the number of
blocks to be sent from pi to pj and the actual blocks. A deterministic or random method
can be used to ensure each processor has approximately the same number of blocks
and workload histogram.

3. Build external interval trees as the search data structures. During block redistribution,
every block assigned to a processor is given a unique ID and written to a single file
that contains all the blocks belonging to the processor. Every block is stored starting
from a disk block boundary, and its location is easily decided from its ID. While a
block is written to the block file, its associated range interval and ID are stored in an
intermediate file, which will be processed later to build the external memory search
data structure that points to the data blocks. Since even those index structures may
not fit into main memory as the data size increases, we implement the external interval
tree [1] for the full scalability of our algorithm. An external interval tree is built
independently on each local disk with the intermediate file for blocks assigned to the
disk. The implementation details of building an external interval tree are referred to
[1,11].

4.1.2. Isocontour query processing—When an isovalue query comes in, each processor
independently searches the external interval tree on its local disk to find all blocks whose ranges
intersect the isovalue. Solving this stabbing query problem with an external interval tree
requires optimal O(T/B + logB N) I/O operations [1], where T is the number of active blocks.
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If a block b is found to intersect the isosurface, the processor loads b from its local disk and
extracts polygons from b. The extracted polygons are either written back to the local disk or
rendered by graphics hardware. The pseudo-code for parallel and out-of-core isocontouring is
shown in Fig. 9.

Isosurfaces can be extracted in compressed format, as we will describe in Section 4.2. To give
the user quick responses, the extracted surface is streamed to the parallel rendering servers
which may reside on the same machines. The rendered images from the parallel rendering
engines are then composited by the Metabuffer. Since we use the block as the atomic unit for
data distribution and isosurface extraction, isosurfaces can be extracted and rendered at
different resolutions to meet the time limit. One can get a fast overview of the isosurface shape,
before choosing to extract and render an interesting isosurface in more detail. Fig. 10 shows
an isosurface (isovalue = 1200) of the visible human male MRI data that is extracted and
rendered at three different resolutions.

This algorithm provides a load balanced and fully out-of-core method for isocontour extraction,
which would be scalable to arbitrary large datasets. The extracted surfaces are rendered by the
parallel rendering servers, and finally composited by the Metabuffer. Since the data partition
gives approximately equal workload for every processor, each processor generates
approximately an equal number of triangles and thus has a balanced rendering load as well.
The surface extraction process and rending process can be run in parallel. Fig. 11 shows one
isosurface extracted and rendered by eight processors, where data blocks are distributed
randomly among the processors. Depending on the size of the main memory, one can allocate
a portion of main memory as a block cache in order to reduce the number of I/O operations of
loading blocks for different isovalues. When one processor needs to load a block to extract an
isosurface, it first looks it up in the cache. If the block is in the cache, a pointer to the block is
handed to the program and no disk I/O operation will be issued. If one uses the seed propagation
method [3] for isosurface extraction in a block, the seed set and corresponding interval tree are
also cached with the block. If the total cache size is large enough, the algorithm naturally transits
to parallel and in-core computations. While the data size is much greater than the main memory
size, our parallel and out-of-core algorithm is still very efficient with a minimum number of I/
O operations.

4.2. Isosurface compression
In the visualization framework shown in Fig. 2, isosurfaces extracted on the computational
nodes need to be rendered by the rendering servers and composed by the Metabuffer. The
computational processes and rendering processes might not be present on the same machines.
Therefore isosurfaces need to be transmitted from the back-end to rendering processes via the
network. Compact representation of the isosurface should be used in the transmission in order
to meet the time limit. Compact representations of the isosurfaces should be used in order to
meet the time limit of display in a slow network. Furthermore, we often want to store those
large isosurfaces on disk in order to examine them later from different viewing points.
Compressed file format significantly reduces the required disk space for storing those
isosurfaces.

In a real-time visualization environment, we want a compression method that can output a
compressed stream of an isosurface to the rendering processes while the isosurface is being
extracted. The parallelism between the rendering process and the computational process gives
the user faster response time. An isosurface S extracted from regular 3D volume has a special
property that differentiates it from an arbitrary triangular surface. It is embedded in the 3D
mesh. Every vertex of S is an intersection point on an edge of the regular 3D volume. Instead
of directly storing the (x, y, z) coordinates of a vertex, the coordinates can be easily
reconstructed from the edge index and the function values on the two endpoints of the edge.
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Isosurfaces are usually represented as triangular meshes of vertex and face indices. Such
representation ignores the 3D embedding of these isosurfaces and is very inefficient. In this
section we describe an isosurface compression scheme called edge index encoding, which is
easy to compute and has several benefits over general-purpose surface compression algorithms.

Given an isovalue p and a regular 3D volume V in R3, the isosurface can be generated by the
Marching Cubes method [33] that traverses every cell and computes its portion of the
isosurface. According to the function values at the 8 vertices of a cell greater or less than the
isovalue p, the topology of the isosurface inside the cell is determined as one of the 28 = 256
possible configurations, whose number can be further reduced by rotational symmetry and
vertex complement [33,38]. From the index of a cell and its configuration, we can easily derive
what edges of the cell are intersected by the isosurface. A cell intersected by the isosurface is
called a valid cell. The exact coordinates of the intersection point on an edge can be computed
from the edge index, and the function values on the two endpoints of the intersected edge. A
vertex that is one end point of an edge intersected by the isosurface is called a relevant
vertex. Hence the representation of the isosurface can be reduced as encoding the configurations
of valid cells and the function values on the relevant vertices. We further notice that a cell
configuration can be determined, if we know which vertices of its 8 corners are relevant
vertices. Therefore, to reconstruct the isosurface, it is only necessary to have the indices and
function values of the relevant vertices and the indices of the valid cells.

Considering a 3D volume data of dimension n1 × n2 × n3, one can think of it as a stack of n2
slices, without loss of generality. The extraction of isosurface progresses along the layers
between two adjacent slices. Only the data of two adjacent slices is needed in the main memory
at any time, in order to compute the isosurface. Instead of computing the actual triangulation,
we mark the relevant vertices on the slices and the valid cells in the layer. Fig. 12 shows an
example of marked relevant vertices and valid cells for a 2D regular dataset. After a layer is
finished, its first bounding slice is no longer needed, while its second slice becomes the first
bounding slice of the next layer. One now can purge the first slice out of main memory, encode
the relevant vertices of the slice and the valid cells of the layer, and send the encoded data to
the rendering process. As soon as the rendering process receives the data of a layer and its
bounding slices, it can then start to decode the triangulation of the isosurface within the layer
and render them with the graphics pipe.

The steps of the encoding algorithm for isosurface extraction are:

1. Read the first slice into the main memory.

2. For each layer in the volume

• Read the next slice into the main memory as the second slice.

• March through all the cells in the layer. For every vertex on a slice, a bit r
is set to 1 if it is a relevant vertex, r = 0 otherwise. Similarly for each cell in
a layer between two adjacent slices, a bit i is set to 1 if it is a valid cell, i =
0 otherwise.

• Encode the indices of the relevant vertices of the first slice using an entropy
encoding method, such as adaptive run-length coding [9] or arithmetic
coding [60].

• Encode the quantized function values of the relevant vertices on the first
slice with their second-order difference.

• Encode the indices of the valid cells using entropy encoding.

• Output the encoded data.
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• Remove the first slice from the memory and set the second slice as the first.

3. Encode the last slice and output the encoded data.

The steps of the decoding process at the client side are the reverse of the encoding process. As
soon as it receives the data for a layer and its bounding slices, the decoding process decodes
the data and decides triangulations for the valid cells. The steps are as follows:

1. For each layer of the volume

a. Receive the encoded indices of the valid cells in the layer and the encoded
indices and function values of the relevant vertices on its bounding slices.

b. Decode the data.

c. For every valid cell in the layer

• Find its configuration from the 8 vertices.

• Compute the intersection points on its edges with linear
interpolation.

• Get the triangulation inside the cell from the Marching Cubes
table.

d. Render the triangles in the layer.

We tried the adaptive arithmetic coder [60] and adaptive Z-Coder [9] as the encoding method.
In our implementation of isosurface compression, the Z-Coder runs faster than the arithmetic
coder, and achieves similar compression ratios. There are many other entropy coders available.
Any good coder should work as well for our purpose of encoding the indices and function
values.

4.2.0.1. Index coding—Since we mark the relevant vertices on a slice with 1 and non-
relevant vertices with 0, we can treat the slice as a bitmap of 0's and 1's. Similarly a layer can
also be considered as a bitmap. For an ordinary isosurface, majority bits of the bitmaps are 0's.
We encode the bitmap with the arithmetic coder or Z-Coder, to take advantage of the coherent
pattern of relevant vertices and valid cells. There are many ways to convert a 2-dimensional
bitmap into a bit sequence. However, our compression results suggest that the size variations
among different conversion methods are insignificant. Therefore we just choose the simple
scan-line conversion.

4.2.0.2. Function value coding—In addition to the indices of the relevant vertices and
valid cells, we need to encode the function values on the relevant vertices. For the relevant
vertices on each slice, we

• directly encode the value of the first relevant vertex.

• predictively encode the value differences of the rest relevant vertices.

This encoding process includes normalization, quantization, prediction, and entropy coding.
Predictive coding is widely used in the geometry coding of the algorithms for surface
compression [7,16]. A predictor combines the values of previously coded neighboring vertices,
in order to construct a prediction of the current vertex value. The correction, or the difference
between the actual value and its prediction, is usually less varied and more suitable for entropy
encoding.

If the function values are floating point numbers, we first normalize them to the range of [-0.5,
0.5]. For a sequence of floating point values x0, …, xn, the encoding scheme is as follows,
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1. Encode the quantization of the first value x0 and its sign relative to the isovalue p.

x̃0 = the quantized value of x0.

2. For i = 0, …, n - 1

• Encode  using the given quantization bits and the sign of xi+1
relative to the isovalue p.

•  where  is the quantized value of Δi.

Here we use the correction Δi = xi+1 - x̃ instead of xi+1 - xi to prevent the accumulation of
quantization errors [6]. We use an extra bit for every relevant vertex, to indicate the sign of its
function value x relative to the isovalue p because the error introduced in the quantization may
change x from x < p to x̃ > p or from x > p to x̃ < p if x is close enough to p. Such sign flip of
x is very undesirable because it may cause errors in determining the configurations of the valid
cells, thus changing the topology of the decoded isosurface. We pay the extra cost of one sign
bit per value to avoid such topological inconsistency. When the decoder decompresses the
vertex values, it checks if the sign of each value has been changed against the isovalue. If a
value has been flipped, it shifts it by one quantization unit to the left or the right to recover its
correct sign. Although the extra sign bit increases the size of compressed isosurfaces by a small
fraction, it is small compared to the > 10 bits usually used for quantization. It has the advantage
of numerical robustness even if fewer quantization bits are used, as shown in Fig. 13. While
the surface becomes more bumpy with less quantization bits, the connectivity of the isosurface
has been preserved correctly. For fixed-precision data types such as 16-bit short or 8-bit byte,
the function value encoding can be lossless with a better compression ratio than the lossy
general-purpose surface compression algorithms. Fewer quantization bits certainly can also be
applied to the fix precision data types, if a smaller size surface file is required. Lossless
compression is just one more benefit of the edge index encoding method that takes advantage
of the embedding 3D volume.

4.2.0.3. Attribute coding—There is often more than one variable defined on the vertices of
a 3D volume. A very important example is the 3D texture. Another example is simulations of
multiple physical functions on a common 3D grid. It is very instructive to view the distribution
of one function on the isosurfaces of another function [2]. The visualization of attributes on an
isosurface is done by computing the attribute values on the vertices of the isosurface, and
coloring the isosurface with the attribute values. The encoding of such attributes on isosurfaces
is straightforward with our scheme. For the attribute variable, it is still true that only values on
the relevant vertices are necessary to reconstruct the attribute values on the vertices of the
isosurface. Thus we only need to apply the same predictive difference coding method to encode
the attribute values, without adding any cost to encode the indices of intersected edges.

This method has yielded a very good compression ratio to isosurface of regular 3D mesh
compared with the general purpose triangular surface compression algorithms as shown in
Table 1, where the general algorithm is that of [7]. Furthermore, the edge index method has
the advantage of incremental encoding and decoding, because two slices and one layer are
necessary in the main memory at any time for the encoding and decoding processes. Thus both
the compression and decompression of the isosurface using edge index encoding need only a
small amount of main memory, and the reconstruction of the surface can start far before the
whole surface transmission is finished. Furthermore the encoding of indices and function
values is done during isosurface extraction, such that no expensive post-extraction compression
process is necessary.
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5. Implementation and results
In this section we present the implementation details, and some experimental results of our
parallel and out-of-core isocontouring algorithm, and the scalable isocontour visualization
framework. The primary interest in these tests is to show the scalability of our algorithm with
the size of datasets and the number of machines.

Our implementation platform is a commodity off the-shelf PC cluster of Compaq SP750
workstations. Each node has an 800 MHz Pentium III processor with 256 MB of Rambus
memory, a 9 GB system disk and a 18 GB data disk, and an nVdia Geforce II graphics card.
These machines are all connected through a 100 Mb/s ethernet, while portions of the cluster
are also connected by the Servernet II and Gigabit Ethernet. All our tests use the 100 Mb/s
ethernet for inter-processor communication. All nodes run Debian Linux (kernel 2.2.18) as the
operating system, and the disk block size is 4096 bytes. In the following tests, a cluster node
renders its own portion of extracted isosurfaces, without redistribution of isosurfaces across
the network.

We use several datasets of varied size, as shown in Table 2, and on a different number of
machines to test the performance of our parallel and out-of-core isocontouring algorithm.

Those test datasets, whose sizes range from 134 MB to more than 16 GB, are from gas
hydrodynamic simulations and the visible human project from the National Library of
Medicine. Some of those datasets are too large for a single PC to handle in its main memory.
Depending on the data size, the pre-processing step takes time from several minutes to several
hours.

We first test the speedup of the extraction time for the visible human male MRI dataset from
1 processor to 96 processors. In this test we adopt the random block distribution method and
implement it with a random hash function. The ability to run efficiently on a single processor
demonstrates the out-of-core feature of our method. The near ideal speedup to 32 processors
and very good speedup to even 96 processors show the scalability of the algorithm with the
number of processors. Fig. 14 shows the speedup of isosurface extraction time for two typical
isovalues 800 and 1200, corresponding to the skin and bone respectively, for the MRI dataset.
The slopes of the two speedup curves are very similar to each other, and close to the ideal case,
which demonstrates the parallel and out-of-core isocontour extraction algorithm scales equally
well to different isovalues.

Fig. 15 shows the actual extraction and rendering time of each processor for an isosurface
(isovalue = 800) from 1 to 32 processors. The surface extracted by one node is rendered by the
same machine and the images are then composited by the Metabuffer with a small and constant
delay, which is not shown in the figure. Every rendering server in this configuration has the
viewport of the whole display space. In other words, each rendering server renders at the same
resolution. The curves are fairly flat for different number of processors and once again
demonstrate good load balance among the processors.

Next we compare the performance of the deterministic greedy and randomized data distribution
methods. Histograms among 32 processors for the visible human male MRI data are shown in
Fig. 16. The first row of figures show the number ofblocks loaded, number of triangles, and
isosurface extraction time for the deterministic data distribution respectively; the second row
shows the same curves for the randomized distribution. Each curve in the figures shows the
result for an individual processor for the whole range of isovalues. Those figures demonstrate
that both distributions have very good load balance for the whole range of isovalues from 0 to
1900. Furthermore, the curves of triangle count closely resemble the curves of actual extraction
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and rendering time. It justifies our using the number of triangle to represent workload in data
partitioning.

The deterministic method loads more balanced numbers of blocks, as expected from its
implementation. The randomized method actually achieves better balance for real extraction
time, especially for large isosurfaces. This verifies the Theorem 2 in Section 4.1. Similar results
for the gas hydrodynamic simulation dataset are shown in Fig. 17.

We further test our implementation on the much larger visible human male cryosection and
visible human female cryosection datasets. Fig. 18(a) shows the isosurface extraction time of
the two datasets for isovalue 13,000. Fig. 18(b) shows the histogram of isosurface extraction
time for the visible male cryosection dataset with 96 processors, where curves for the 96
processors are too close to be clearly distinguished. Similar curves exist for the visible female
cryosection dataset. As the size of datasets gets larger, we achieve even better load balance
among the processors as specified in Theorem 2. The time curves in Fig. 18(a) demonstrate
very good speedup when the number of processors and disks increases. The sharp drop of
computational time from 8 processors to 16 processors for the Male cryosection data and from
16 processors to 32 processors for the Female cryosection data is due to the better operating
system disk performance for smaller partitions.

A very large isosurface (487,635,342 triangles) extracted from the Female cryosection data is
shown in Fig. 19. While the surface is noisy because of the dataset, it demonstrates the
scalability of our system to very large data and very large surfaces.

6. Conclusion
In this paper we propose a scalable time-critical rendering framework of massive datastreams,
based around the Metabuffer image composition hardware. The time-critical rendering process
can be thought of as a pipeline from parallel and progressive mesh generation, parallel
rendering to parallel image composition. We describe in detail a scalable isocontouring
algorithm by taking advantage of parallel processors and parallel disks. It statically partitions
the volume data to balance the workload spectrum, and builds an I/O-optimal external interval
tree to minimize the number of I/O operations of loading large data from disk. We present a
deterministic and a randomized data partition algorithm that is proved to provide a load-
balanced data partition for any isovalue with high probability. Experimental results show that
both achieve very good load balance, while the randomized method outperforms the greedy
algorithm in many cases. We also present an efficient isosurface compression algorithm that
takes advantage of the embeding 3D mesh, compresses isosurface progressively, and can
achieve better compression ratio than a general purpose compression algorithm.

While the algorithms were tested on a dated platform of PC clusters by today's standard, we
were able to achieve a frame-rate of more than 3 frames/s for end-to-end extracting and
visualizing the reasonably large “Male MRI” data on a cluster of 32 nodes. We also
demonstrated the scalability of the algorithms up to the limit of our test platform, 96 nodes.
More computational power is necessary for real interactivity for tera-byte datasets. There are
also the remaining problems of introducing dynamic load balancing, by replicating some data
on different disks, and accessing data from remote disks at runtime. It is an interesting problem
to see how much improvement we can achieve by choosing larger replication factors and data
distribution.
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Fig. 1.
A schematic drawing showing the three stages of scalable isosurface visualization pipeline.
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Fig. 2.
Our system architecture for scalable isosurface visualization. The parallel back-side
accomplishes progressive surface extraction and rendering while the parallel front-side
composites and displays progressively.
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Fig. 3.
The Metabuffer architecture, where A represents a rendering engine, B is an on-board frame
buffer, and C represents a composing unit.
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Fig. 4.
A 3D regular volumetric dataset, its cell, and a processing element of 4×4×4 block.
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Fig. 5.
(a) Workload diagram of isocontouring on a fixed dataset D with respect to the isovalue p
(horizontal axis). The overall diagram is the sum of the diagrams computed for each unit (a,
b, c, d, …). (b) Histogram for a real dataset (CT scan of the visible human male).
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Fig. 6.
Optimal data partition for load-balanced parallel computations (two processors case).
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Fig. 7.
Blocks intersecting the isosurface of the isovalue p are shown in the range space (shaded area).
Vmin and Vmax are the minimum and maximum values of the scalar field respectively.
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Fig. 8.
The triangular matrix for data decomposition. The range space of a dataset is divided into a
triangular matrix (shaded area), where each matrix element spans a single bucket.
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Fig. 9.
Pseudo-code for parallel and out-of-core isosurface extraction.
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Fig. 10.
An isosurface for the Male MRI data (isovalue = 1200) is progressively extracted and rendered
at different resolutions and from various viewpoints. The leftmost isosurface has 24,084
triangles; the center isosurface has 651,234 triangles, and the rightmost isosurface has 6442,810
triangles.
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Fig. 11.
Individual portions of an isosurface (isovalue = 800) extracted from the visible male MRI data
with eight computing processors and rendered by the same set of machines. The full resolution
isosurface has 9,128,798 triangles.
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Fig. 12.
A 2D example of relevant vertices (big red points) and valid cells (shaded in green).

Zhang and Bajaj Page 34

J Parallel Distrib Comput. Author manuscript; available in PMC 2009 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 13.
The edge index encoding of an isosurface keeps the right topology of the surface, even if few
quantization bits are used. This figure shows an isosurface of a black hole simulation encoded
respectively with (a) 14 bits, (b) 10 bits, and (c) 6 bits for the function value quantization.
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Fig. 14.
Speedup of isosurface extraction for two isovalues (800 and 1200) compared to the ideal case.
The dataset used is the visible human male MRI data.
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Fig. 15.
Time of individual processors to extract and render an isosurface (isovalue = 800) from the
visible human male MRI dataset with 1, 8, 16, and 32 processors.
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Fig. 16.
Histograms of block distribution, triangle distribution, and isosurface extraction and rendering
time for the deterministic ((a), (b) and (c)) and random data partitioning method ((d), (e) and
(f)) for the visible human male MRI data among 32 processors.
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Fig. 17.
Histograms of block distribution, triangle distribution, and isosurface extraction and rendering
time for the deterministic ((a), (b) and (c)) and random data partitioning ((d), (e) and (f)) for
the gas hydrodynamic simulation dataset among 32 processors.

Zhang and Bajaj Page 39

J Parallel Distrib Comput. Author manuscript; available in PMC 2009 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 18.
(a) Isosurface extraction time for the visible male cryosection and female cryosection data at
isovalues 13,000. (b) Histogram of isosurface extraction time for the visible male cryosection
data with 96 processors.
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Fig. 19.
Two views of an isosurface (isovalue = 29,000) extracted and rendered from the full resolution
Visible Female cryosection data. The isosurface contains 487,635,342 triangles.
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Table 2
The sizes of our test datasets

Name Dimension Size

Gas density 512 × 512 × 512 134 MB

Male MRI 512 × 512 × 1252 656 MB

Male cryosection 1800 × 1000 × 1878 6.6 GB

Female cryosection 1600 × 1000 × 5186 16.5 GB
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