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Abstract
Hemoglobin A1c (HbA1c), a long-term, integrated average of tissue exposure to hyperglycemia, is the best 
reflection of average glucose concentrations and the best proven predictor of microvascular complications of 
diabetes mellitus. However, HbA1c fails to capture glycemic variability and the risks associated with extremes of 
hypoglycemia and hyperglycemia.

These risks are the primary barrier to achieving the level of average glucose control that will minimize both 
the microvascular and the long-term macrovascular complications of type 1 diabetes. High blood glucose levels 
largely due to prandial excursions produce oxidative and inflammatory stress with potential acceleration of 
preexisting atherosclerosis and increased cardiovascular risk. Moreover, some temporal aspects of glycemic 
variation, including the rates of rise and fall of glucose, are associated with adverse cognitive and mood 
symptoms in those with diabetes.

Methods to quantify the risk of glycemic extremes, both high and low, and the variability including its temporal 
aspects are now more precise than ever. These important endpoints should be included for use in clinical trials 
as useful metrics and recognized by regulatory agencies, which has not been the case in the past. Precise 
evaluation of glycemic variability and its attendant risks are essential in the design of optimal therapies; 
for these reasons, inclusion of these metrics and the pulsatile hormone patterns in mathematical models may be 
essential. For the clinician, the incursion of mathematical models that simulate normal and pathophysiological 
mechanisms of glycemic control is a reality and should be also gradually incorporated into clinical practice.
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Introduction

The Gaussian or bell-shaped curve is used by 
mathematicians and researchers to describe the normal 
distribution of events and to predict and detect  
significant differences between groups. Comparisons are 
based on mean or median values and their distribution 
of variability around them; median values are abstraction, 
while variability is the day-to-day reality according 
a famous essay by Stephen Gould. This emphasis on 
variability aptly applies to the many patients with 
insulin-deficient diabetes mellitus and highlights their  
struggle to achieve good glycemic control safely and that of 
clinicians trying to help them.

The Importance of Glycemic Variability
The variability of glycemia in diabetes is typically at the 
root of the inability of clinicians working with diabetic 
patients to safely achieve near-normal average glycemia, 
reflected by the hemoglobin A1c (HbA1c). Primarily, this 
is because of hypoglycemia, which itself leads to both 
high and low blood glucose (BG) extremes. Target HbA1c 
values of 7% or less (American Diabetes Association 
recommendations) result in the decreased risk of severe 
micro- and macrovascular complications of diabetes 
mellitus. Hypoglycemia extremes are critical for safety, 
however, and represent the largest barrier to safe control 
of hyperglycemia.1,2 One critical question is how to 
best quantify the risk associated with hypoglycemia. 
In clinical studies, the rates of severe and moderate 
hypoglycemia are usually given. In theory, a cumulative 
distribution or probability distribution function curve 
would best quantify risk. For clinical applicability, 
however, it would help patients and physicians to have  
an analysis of glycemic patterns that will characterize 
their hypoglycemia risk in real time, possibly on their 
meter or continuous glucose monitoring (CGM) system. 
Ideally, it should be based on their glycemia patterns, 
their extent of variability, and its temporal aspects and 
would warn of hypoglycemia events. Such warning  
could thus help avoid moderate lows that precede the 
vicious cycle leading to severe hypoglycemia.

Difficulties with Predicting Hypoglycemia
Unfortunately, the distribution of clinical BG values in 
patients with diabetes mellitus is notoriously asymmetrical 
and commonly has a lognormal distribution. As a result, 
it is unwieldy to predict hypoglycemia. Moreover, the 
predictive values of many standard parameters of central 

tendency (mean, median) poorly reflect the risk of 
extremes, hyper- and hypoglycemia, and the variability  
of glycemia. Hemoglobin A1c, a 3-month integrated 
average of the tissue exposure to hyperglycemia, is 
nonetheless an excellent reflection of average glycemia 
and the best proven predictor of microvascular 
complications of diabetes mellitus. Despite this, HbA1c 
fails to capture glycemic variability and the risks 
associated with extremes of hypo- and hyperglycemia. 
The asymmetry of the glucose scale can, however, be 
mathematically rectified and thereby be used to permit  
its power of analysis and prediction to be restored.

Glycemia and the Prediction of Chronic 
Diabetes Complications

Many studies show mean BG values are the best 
predictors of the chronic microvascular complications of 
diabetes: neuropathy, retinopathy, and nephropathy.3–5  
The mean BG and HbA1c are weaker predictors of 
macrovascular complications such as coronary artery 
disease and stroke, two of the most deadly and costly 
complications of diabetes. Hyperglycemia is associated 
with atherosclerosis with increased risk starting at 
minimally elevated average glucose or A1c values, even 
in the normal range and a shallow rise in risk.4–7 Some 
recent clinical trials suggest that hypoglycemia may also 
be an important predictor of increased mortality from 
vascular disease in type 2 diabetes. Some studies that 
link glycemic extremes to diabetes complications are 
reviewed here.

In type 1 diabetes mellitus, the Diabetes Control and 
Complications Trial (DCCT)3 study showed a nearly 
two point difference in HbA1c and predicted a 39–76% 
reduction in chronic microvascular complications. 
Severe hypoglycemia was increased by approximately 
threefold. The Epidemiology of Diabetes Interventions 
and Complications study8 found that HbA1c retained its 
predictive power for microvascular complications and 
revealed a new reduction (57% in major cardiovascular 
events) to macrovascular complications despite HbA1c 
values in the low 8% range.8 Whether glycemic variability 
is predictive of chronic complications in type 1 diabetes 
remains a disputed concept.6,7

In the United Kingdom Prospective Diabetes Study 
(UKPDS) in type 2 diabetes, median HbA1c over more 
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than 10 years of an ~1% difference between subjects on 
intensive glucose and standard policy9 reduced micro- 
vascular complications by approximately half that in the 
DCCT. A 10-year follow-up of UKPDS has shown that 
microvascular complications remain10 reduced despite 
HbA1c above 8%. Follow-up of UKPDS also found that 
cardio-vascular and mortality benefits were clearly 
significantly benefited by tight glycemia control.10 
Much epidemiological evidence and some clinical trial 
data in type 2 diabetes suggest that hyperglycemic 
excursions, after meals or after glucose challenge,  
predict macrovascular complications in prediabetes 
and type 2 diabetes11–17 to a greater degree than fasting 
glycemia or HbA1c. The contribution of prandial 
hyperglycemia to cardiovascular risk has been thought 
plausible because of a biological relationship to oxidant 
stress or endothelial dysfunction.

New Measures to Help Predict Glycemic 
Extremes

Despite excellent prediction of many chronic diabetes 
complications by HbA1c, the predictive value of HbA1c 
for acute hypoglycemia risk is weak. Approximately 8% 
of the risk of severe hypoglycemia is accounted for by 
the HbA1c.18 An important predictor of hypoglycemia 
is derived from use of a nonlinear transformation of 
the BG scale to restore symmetry to its distribution of 
glucose values.19–21 The concept is illustrated in Figure 1. 
The plots show how the asymmetrical non-Gaussian 
distribution of clinical values within the range typically 
observed in diabetes (upper panel) is transformed by a 
non-linear transformation of the BG scale to a Gaussian 
distribution (lower panel), which is more suitable for risk 
analysis.

The benefit of reshaping the distribution of BG 
concentrations is that predicting the risk of both hyper- 
and hypoglycemia can be dramatically improved as 
compared to HbA1c. Several important parameters 
capture the risk of glycemia extremes and variability. 
The low BG index (LBGI) is a measure of the risk of 
hypoglycemia, and the high BG index (HBGI) is a 
measure of the risk of hyperglycemia.19–21 The BG rate 
of change (ROC) captures the speed at which BG values 
rise and fall. The average daily risk range (ADRR) is 
a composite of risk of high and low extremes and is 
the single best predictor of glucose extremes. These 
measures are derived from self-monitored BG (SMBG) 
concentrations. The LBGI, HGBI, and ROC have been  
adapted for use with CGM systems,22 while ADRR22 is 
used only with SMBG.

The risk function for the LBGI and HBGI is shown 
in Figure 2 (upper panel) and is derived from the 
distribution of the transformed BG levels shown in  
Figure 1 (bottom panel). When this risk function 
is brought back into the original glucose scale, the 
risk values associated with progressive hypoglycemia  
increase much faster than the risk values associated with 
progressive hyperglycemia (Figure 2, lower panel). This 
corresponds to the clinical notion of acutely increasing 
risk related to numerically minor (compared to 
hyperglycemia) glucose excursions in the low BG range.

Figure 1. A typical asymmetrical non-Gaussian distribution of BG 
values within the range commonly observed in diabetes (upper 
panel) transformed into a symmetric Gaussian distribution using the 
nonlinear transformation of the BG scale (lower panel).

The formulas for calculating the LBGI and HBGI have 
been described.19–21,23,24 Empirically derived risk categories, 
derived from large numbers of subjects with type 1 and 
type 2 diabetes who provided self-monitored glucose 
data, are as follows for the risk of hypoglycemia and 
hyperglycemia, respectively: LBGI minimal (LBGI ≤ 1.1),  
low (1.1 < LBGI ≤ 2.5), moderate (2.5 < LBGI ≤ 5), and 
high (LBGI > 5.0); and HBGI low (HBGI ≤ 4.5), moderate 
(4.5 < HBGI ≤ 9.0), and high (HBGI > 9.0).
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Low HbA1c is associated with the increased risk of 
hypoglycemia, and the DCCT investigators looked at 
its predictive value. Fewer than 10% of serious events 
were predicted over the next 6 months by HbA1c. By 
comparison, the LBGI can predict up to 40–60% of 
severe hypoglycemic risk within the next few days. Its 
predictive accuracy is dependent on frequency of BG 
self-monitoring. Through monitoring four or more 
times daily, the LBGI can predict more than half of the  
severe hypoglycemia events within the next 48 hours.

Hypoglycemic Extremes Associated 
with Unstable and Rapid Blood Glucose 
Changes
It has also been observed that severe hypoglycemia is 
associated with instability in BG levels. Blood glucose 
levels are more likely to have high and low extreme 
values in diabetes patients about to experience or who 
have recently had a severe hypoglycemic reaction 
(requiring help to recover). A classic example of this 
is a patient seeking islet-cell transplantation who has 
frequent and severe lows and rapid BG ROC,22 which 
islet transplantation reverses. Thus the risks of both 
hyper- and hypoglycemic extremes are increased when 
severe hypoglycemia is recent or impending. Moreover, 
the speed of transitions between high and low values 
is often very rapid. This “roller-coaster effect,” the rapid 
occurrence of frequent extremes of both hyperglycemia  
and hypoglycemia around the time of a severe hypo-
glycemic episode, makes therapy decisions very difficult. 
Patients and physicians may be uncertain about which 
to address first. The instability may be made worse by 
overcorrection of highs and overtreatment of extreme 
lows due to fear of severe loss of control or severe 
hypoglycemia.

Mathematical Methods and Clinical 
Studies
Translation of clinical phenomena into mathematical 
parameters has more power and potential importance 
than many clinicians or those in regulatory agencies 
may realize. For example, a rapid downward BG ROC 
nicely captures what happens in defective insulin 
counterregulation. The power of prediction of hypo-
glycemia remains a clinical and research challenge that 
is incompletely addressed. Many newer pharmaceuticals, 
such as basal and prandial analog insulins, appear in a 
variety of studies to have a reduced risk of hypoglycemia 
compared to older insulins, such as neutral protamine 
Hagedorn and regular insulin,27,28 although their overall 

efficacy gauged by HbA1c lowering is equal. Given the 
importance of hypoglycemia avoidance, particularly in  
type 1 diabetes and arguably also in long-duration 
insulin-treated type 2 diabetes, it is surprising that 
no therapeutics have an indication for avoidance of 
hypoglycemia. Cryer and colleagues1,2 underscore the 
importance of hypoglycemia avoidance for safe control 
of diabetes. It is arguable that precise and validated risk 
category assignment or its lack using conventional 
measures of hypoglycemia is one factor that has limited 
authorities from indicating significant benefit through 
hypoglycemia avoidance. Moreover, even therapies 
intrinsically better for avoiding hypoglycemia risk 
(such as basal insulin) may be nonetheless misused, 
creating severe hypoglycemia risk when prescribers have  
insufficient experience or expertise.

In most clinical trials the risk of severe hypoglycemia is 
low—those designing the trials would be unwise to make 
it otherwise. Nonetheless, the risks of hypoglycemia 
are on a continuum, and this continuum can be given 

Figure 2. The upper panel presents the risk function used to define 
the LBGI and the HBGI as derived from the distribution of the 
transformed BG levels shown in Figure 1 (lower panel). The lower 
panel shows this risk function brought back into the original glucose 
scale. It is evident that the risk values associated with progressive 
hypoglycemia increase much faster than the risk values associated  
with progressive hyperglycemia.
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precise risk estimation by using tools like the LBGI or 
ADRR. Calculation of the risk for hypoglycemia and the 
amount of time in which study participants are in a 
high-, moderate-, or low-risk state can be estimated using 
such a tool. Indeed, risk-space analysis22–24 can further 
refine the temporal variation in risk to a more precise 
determination of both timing and severity more than 
simply that of mild, moderate, or the rare risk found in 
short-terms studies.

Recent Clinical Studies and Glycemic Extremes
The recent premature termination of the intensive 
glycemic arm of the Action to Control Cardiovascular 
Risk in Diabetes (ACCORD) trial29 brings up this issue 
of hypoglycemic risk as it applies to clinical trials. More 
than 10,000 subjects with longstanding type 2 diabetes 
and with relatively high cardiovascular risk were 
assigned to a control target HbA1c of <6% (achieving 
approximately 6.4%) versus less intensive control aiming 
for 7–7.9% (and achieving 7.5%). An increase in mortality 
of 22% led to the study being stopped by the data 
safety monitoring committee. The increased mortality 
occurred despite a decrease by 24% in risk of nonfatal 
myocardial infarction, which was significant and a trend  
toward benefit in the primary composite cardiovascular 
endpoint. Two hundred fifty-seven patients in the 
intensive therapy group died, and 203 patients in the 
standard therapy group died, resulting in a hazard ratio 
of 1.22 (95% confidence interval; 1.01 to 1.46; p = .04).  
Severe hypoglycemia and weight gain of more than 10 kg 
were more frequent in the intensive treatment group 
(p < .001). Although there was not a clear association 
between severe hypoglycemia and the increased death 
rates primarily from myocardial infarction, there is 
speculation that there may be mechanisms in which 
hypoglycemia could have made a significant role in 
increased mortality risk in the intensive treatment group, 
perhaps with hypoglycemia even converting nonfatal 
myocardial infarctions to cardiovascular deaths in some 
subjects.

It should be noted that the ADVANCE Collaborative 
Group30 and the Veterans Affairs Diabetes Trial (VADT)31 
also did not show a benefit in type 2 diabetes of tight 
glycemia in protecting against cardiovascular disease, 
although these studies did not indicate any aggregate 
increased cardiovascular risk of tight control. Of 
particular interest perhaps is the finding in post hoc 
analysis in the VADT that, in patients with longstanding 
diabetes, hypoglycemia was a powerful predictor of 
cardiovascular mortality. The VADT investigators looked 
at diabetes duration and hazard ratio for cardiovascular 

events in the study subjects and found a nearly linear 
relationship—the shorter the duration, the lower the 
hazard ratio with intensive therapy. Conversely, the 
longer the duration, the higher the hazard ratio with the 
crossover point to an increased risk occurring between a 
12- and 15-year duration. Hypoglycemia that was severe 
anytime within the last 3 months was found to be an 
important predictor of cardiovascular risk and mortality.

It might be instructive to use the highly predictive 
risk analysis approach with these types of trials. A 
risk analysis using known indicators of higher risk of 
intensive glycemic intervention, such as the duration of 
type 2 diabetes mellitus, might allow patient selection 
for clinical intensive control to be refined and at the 
same time avoid the unexpected increased vascular 
disease risk observed in the ACCORD trial and some 
in VADT. It should be possible, for example, to use the 
risk calculation for LBGI or even HBGI and build it 
into a sophisticated BG meter that would then be a risk  
meter as well.

Clinical Translation
The translation of mathematical phenomena into the 
clinical arena could become important if clinicians 
understand how a quantitative approach may help 
patients improve glycemia safely. The LBGI is simply  
the best predictor of hypoglycemic risk and can give a 
rapid risk assessment number (especially for values in 
excess of 5) to a patient and potentially contribute to 
averting a severe hypoglycemic episode. The HBGI, in 
contrast, reflects the relatively acute risk of hyperglycemia. 
Not only clinically important for diabetes patients, the 
HBGI also has clinical correlation with the risk of 
oxidative stress32 that characteristically presents in the 
postprandial period and that a considerable body of 
literature suggests may be correlated with complications.

Glycemic variability may be more important for prediction 
of macrovascular complications and perhaps complications 
in type 2 diabetes. One analysis suggested that glycemic 
variability may be important in the pathogenesis of 
glycemia-related microvascular complications as well,6 
but this has been recently been disputed based on a 
reanalysis of the data from the DCCT.7

Temporal Variability, Symptoms, and Risk
The BG ROC is the rate in mg/dl (or mmols/liter) per 
minute of either rise or fall of BG; thus it measures 
change in either direction. Rate-of-change data from 
Cox and colleagues25,33,34 suggest that rapid BG ROC is 
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associated with altered mood and dysphoria, whereas 
absolute hyperglycemia exceeding approximately  
250 mg/dl is associated with physical symptoms and 
cognitive dysfunction. Rapid rise in BG often occurs after 
meals with a high glycemic load, and these are sometimes 
referred to a glucose spikes. Pramlintide and incretin 
agonists are newer types of diabetic pharmaceuticals that 
help to blunt these rapid rises, decreasing HBGI and ROC.

Rapid fall in glucose concentrations is found in the patient 
with undiagnosed hypoglycemia and defective glucose 
counterregulation resulting from decreased release of 
glucagon and epinephrine, the two hormones primarily 
responsible for early defense against hypoglycemia. 
The failure of this counterregulation may increase the 
ROC of BG to between 2 and 4 mg/dl/min, which is 
rapid22,26. Patients sometimes refer to this phenomenon 
as the elevator going down too fast. The combination 
of instability in BG patterns with rapid wide swings in 
glucose between high and low is sometimes called the 
roller-coaster effect, and in practice, it looks a bit like an 
oscilloscope that has gone haywire. Figure 3 illustrates 
two patients with type 1 diabetes. The bottom panel 
presents Patient B who has more stable control than 
Patient A who shows more severe extremes with rapid 
transitions between them with increased LBGI, HBGI, 
and a rapid ROC. Both have similar HbA1c values of 
around 8%.

Perhaps the most important message is that reducing 
average glycemia without first reducing variability can 
potentially be dangerous. One may speculate that this 

adverse sequence could have occurred in some patients 
in ACCORD with highly variable glycemia initially, as it 
may do so in clinical practice. Figure 4 illustrates how 
a reduction in average glycemia in the same patient 
without reducing variability first may lead to a serious 
increase in hypoglycemia.

As a single number, melding the power of risk prediction 
for both high and low BG extremes, the ADRR is 
another method for characterizing the instability of 
glycemic control.23 It is the most powerful single statistic  
for capturing glucose variability and is a far superior 
indicator than other methods such as standard deviation or 
mean amplitude of glycemic excursion. It captures highs 
and lows with roughly equal precision and estimates 
risk and is therefore the best available tool for predicting 
patient outcomes.

Data obtained from CGM are now able to be analyzed 
using some of the variability methods described earlier, 
although not the ADRR because of technical analytical 
reasons. It is hoped that the interpretation of the data 
obtained by CGM will help to guide algorithms for 
patient care.

Mathematical Modeling
A few comments about variability and modeling are worth 
noting. The tendency is still prevalent in physiological 
research to exam single hormone control mechanisms 
in the study of glycemic control counterregulation. 
Farhy and colleagues35 published an interdisciplinary 
work studying the control of pulsatile glucagon release 

Figure 3. Blood glucose variability in two patients with type 1 
diabetes. The top panel (Patient A) has more unstable control whereas 
the bottom panel (Patient B) is very stable. Both have similar HbA1c 
values around 8%, but Patient A is at higher risk for both hypoglycemia 
and hyperglycemia.

Figure 4. Reduction in average glycemia (HbA1c) without reducing 
glucose variability is indicated by downward shift of the glucose 
profile from the upper panel to the lower panel, which results in 
increased occurrence and severity of hypoglycemic episodes.
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in response to hypoglycemia using both experimental 
and modeling methods. Pulsatile secretion of hormones 
can now be precisely characterized, and its presence is 
indicative of feedback regulation, which can be detected 
by mathematical methods (such as deconvolution) and  
is yet another approach to analyze variability, although 
in this case, it is hormonal variability not substrate 
(glucose) variability as discussed earlier.

Feedback control is typically not the result of a single 
influence, but instead it is the result of a series of 
controlling mechanisms, e.g., as in defective counter-
regulation in type 1 diabetes mellitus. Because the 
hormonal control is very complex, the mechanisms of 
control are manifold. Therefore, it is unlikely that they 
can be understood if its separate elements are studied 
in isolation. This means that most likely the only correct  
way to study such phenomena is by using a network model 
or system analysis. Examples of this approach include 
the already classical minimal model36 suggested as an 
alternative to hyperinsulinemic euglycemic clamping 
for measuring insulin sensitivity in vivo and its numerous 
extensions and applications (e.g., Reference 37).

In the study by Farhy et al.,35 a network model was 
used to explore the unknown mechanisms of glucagon 
counterregulation in rats and its failure related to β-cell 
loss. These studies were extended by Farhy and McCall,38 
where model-based analyses predicted that different 
signals may improve defective glucagon counterregulation 
in β-cell deficiency through different but complementary 
mechanisms. Most importantly, these studies suggest 
strategies to enhance the glucagon response to hypo-
glycemia in type 1 diabetes by manipulation of the 
glucagon control axis and are clinically relevant as 
they could have application to design of an artificial 
pancreas by providing ways to augment glucagon 
counterregulation that would not require glucagon 
infusion. Such modeling is theoretical and must have 
evidence of a direct relevance to experimental data.

On the other hand, no single physiological experiment 
can successfully control or even study the multiple 
confounding variables. Use of a hybrid experimental 
approach, a combination of classic physiological 
mechanisms studied either in vivo or in vitro or both,  
are married with a modeling analysis using a series of 
differential equations to approximate the known and 
putative control mechanisms. By using such an approach, 
one can study these complex control mechanisms in silico 
as well as in vivo and in vitro. This hybrid approach 
is a more sophisticated method for probing these 

complex systems of control. Elucidation of these control 
mechanisms may eventually allow extrapolation and 
incorporation into a control mechanism for artificial 
pancreas.

Advantages and Limits of Modeling

Modeling in this kind of research is used as a tool 
and is never an end unto itself. Modeling, when done 
with precise mathematical constructs that have been 
experimentally validated, does permit physiological 
simulation on computer, which is an advantage of this 
approach. Most physiologists do use models in their 
work, although they are often not explicitly delineated. 
Even the use of standard statistical methods in analyzing 
the influence of one or several aspects of physiological 
control of hormone systems and hormone variability 
does imply some degree of inchoate modeling.

Modeling may be particularly an advantage when it 
is explicitly incorporated into experimental work and 
precisely mathematically defined. Under these conditions, 
modeling may become a more robust hypothesis-
generating tool.26 The importance of modeling as a 
tool is that when it is combined with the physiological 
experimental assessment, the model itself becomes 
refined and extended, adding terms that delineate the 
importance of additional mathematical constructs. This 
can be further used in an iterative manner to refine 
both the experimental work and the model itself for 
subsequent use as a tool to further the systematic 
analysis of complex biological control mechanisms.

Summary

The use of glycemic averages has always been the best 
proven predictor of microvascular complications of 
diabetes mellitus. However, averages and HbA1c fail 
to capture glycemic variability and the attendant risks 
associated with extremes of hypo- and hyperglycemia. 
By employing the methods described here, data and 
analyses from clinical studies would be enhanced 
and would consequently result in more successful 
methods of assessing diabetes control and its risks in 
patient populations. Additionally, use of mathematical 
models in tandem with physiological experimentation 
is a hybrid approach, whereby hormonal variability 
and control mechanisms for feedback regulation and 
pulsatile hormone secretion can be analyzed on a 
network or system control level. Models are tools rather 
than ends. Pairing the two approaches, modeling and 
metabolism physiology experiments, permits more 
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rapid approximation of complex control mechanisms 
analytically and further may allow the establishment 
of computer-based simulation to design repair or 
circumvention of defective physiological control such as 
defective insulin counterregulation.
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