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The choice of statistical test has a profound impact on the interpretation of data. Understanding
this choice is important for the critical evaluation of the biomedical literature. The question
often arises on whether to use nonparametric or parametric tests. The t-test is the most widely
used statistical test for comparing the means of two independent groups. This parametric test
assumes that the data are distributed Normally, that samples from different groups are
independent and that the variances between the groups are equal. The most commonly used
nonparametric test in this situation is the Wilcoxon Rank Sum Test (WRST) and the closely
related Mann-Whitney U-test. The WRST assumes that observations from the different groups
are random samples (i.e. independent and identically distributed) from their respective
populations and are mutually independent and that the observations are ordinal or continuous
measurements. When there are k groups (treatments), the nonparametric test is Kruskal-Wallis
test (KW), a generalization of the WRST. KW is the nonparametric equivalent to ANOVA.
Using nonparametric tests instead of parametric tests begs two questions: 1) what happens if
the nonparametric test is used when the parametric assumptions are met and 2) what happens
when the parametric assumptions are not met?

To answer these questions one must first discuss the underlying goal of the study. Usually in
biomedical applications one is interested in measures of location such as the mean. One can
test if the treatment (experimental condition) has an effect (location shift) on the population
under study. For example, one may be interested in the effect of treatment(s) on a specific
measurement, say cell count, compared to the control. Data of this nature are often analyzed
with the t-test, or if there are k > 2 groups, ANOVA. In the parametric case one tests for
differences in the means among the groups. In the nonparametric equivalents the location
statistic is the median.

The assumptions for the nonparametric test are weaker than those for the parametric test, and
it has been stated that when the assumptions are not met, it is better to use the nonparametric
test. However, real data are rarely exactly Normal 1–3. Does this mean that one should never
use the t-test? In many datasets seen in the biomedical sciences, there often exist several
observations that differ from the others, the so-called outliers. One must also then consider
what is the best summary statistic for central tendency. That is, there should be some concept
of robustness to assess the properties of the estimators themselves. Robustness, in one sense,
refers to the insensitivity of the estimator to outliers or violations in underlying assumptions.
One concept of robustness is the breakdown point 4. The breakdown point is defined as fraction
of data that can be arbitrary (corrupted) without making the estimator arbitrarily bad. For
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example, the sample mean is defined as: x1+x2+…+xn/n. If we let any one of the observations
(say xn) get arbitrarily large, the mean will become arbitrarily large. This means that even if
an investigator has only one large outlier, the mean is arbitrary. Thus the breakdown point for
the mean is 0. The median, which is commonly used when data are skewed or there exists
outliers, is defined as the central value in a distribution where above and below lie an equal
number of values. Intuitively one can see that if we let a minority of observations go to infinity,
the median will not be arbitrarily bad. The breakdown point of the median is ½, this is the
highest breakdown point. From the point of robustness and breakdown point, the mean is a
good estimator only if the data have zero outliers (no “heavy” tails), no skewness (symmetry
of Normal distribution is kept), and there is unimodality. The median is more insensitive to
these departures from Normality. Nonparametric methods such as the WRST and KW use the
median and are thus robust in this sense.

If there exists departures from normality, it seems prudent, in the sense of robustness, to use
the nonparametric test. However, one must consider the cost, in terms of power, of applying
the nonparametric test when indeed the data are distributed normally and satisfy the other
assumptions of the parametric test. With this comes the notion of Asymptotic Relative
Efficiency (ARE). The ARE, simply defined, is how many more subjects are needed for the
nonparametric test to have equivalent power as the parametric test for a fixed Type I error rate
α. If the ARE=1, then the two tests have equal power for the same number of subjects. AREs
< 1 indicate that the parametric test is more powerful and AREs > 1 indicate that the
nonparametric test has more power. The ARE of the WRST versus the t-test when the
underlying assumptions of the t-test are satisfied is 0.955 5–7. Similarly, KW versus ANOVA
has an ARE of 0.955. However these nonparametric tests are much more powerful than their
parametric counterparts when the underlying distributions are heavy tailed or have extreme
skewness 5, 6, 8–10. In some cases the ARE became infinite. Thus, there is minimal power loss
associated with the nonparametric tests even when the data are distributed normally, while the
power gains of these tests when normality is violated are substantial.

As the sample sizes become infinite, the parametric tests are robust to departures from
Normality. However, because of cost and potential risks to humans and animals, many of the
sample sizes in the biomedical literature are far from infinite. Thus it is prudent to examine the
properties of these estimators when the sample size is small (<25 per group). The small sample
properties of the WRST versus the t-test have been studied extensively 1, 5–9. The WRST has
been shown to be as powerful in small samples as the t-test under the location shift alternatives
and can be much more powerful than the t-test under certain non-normality conditions 5, 6.
Monte Carlo experiments found that for tests of location shift, the WRST was the best test in
almost all cases 8. Further, in some small sample Monte Carlo simulations the WRST was more
powerful than the t-test even when the two samples were independent, identically Normally
distributed8. The WRST had large power advantages over the t-test in small sample sizes for
distributions that possessed extreme asymmetry or where there existed a point mass at 01.
Moreover, under Normality conditions with small samples, ANOVA performed only slightly
better than KW. However when the distributions were mixtures of Normals, exponential, or
double-exponential, KW was substantially more powerful 10.

Data are often non-Normal in the biomedical sciences 1–3, 11 and the sample sizes are often
small. In data where there exists skewness, extreme asymmetries, multimodality, or heavy tails,
nonparametric tests such as WRST and KW offer a very satisfactory alternative to parametric
tests, especially in small samples. Taken together, these results suggest that when the data are
distributed normally and all of the other assumptions are met, there is relatively little loss in
terms of power to use WRST or KW and there can be almost infinite gains when these
assumptions are not met. Because of this, one should consider using the nonparametric test of
location for the primary analysis.
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