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Abstract
The need for techniques to facilitate the regeneration of failing or destroyed tissues remains great
with the aging of the worldwide population and the continued incidence of trauma and diseases such
as cancer. A 16-year history in biomaterial scaffold development and tissue engineering is examined,
beginning with the synthesis of novel materials and fabrication of 3D porous scaffolds. Exploring
cell-scaffold interactions and subsequently cellular delivery using biomaterial carriers, we have
developed a variety of techniques for bone and cartilage engineering. In addition to delivering cells,
we have utilized growth factors, DNA, and peptides to improve the in vitro and in vivo regeneration
of tissues. This review covers important developments and discoveries within our laboratory, and
the increasing breadth in the scope of our work within the expanding field of tissue engineering is
presented.
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Introduction
The field of tissue engineering, loosely defined as the use of engineering principles and
technologies to regenerate living tissues, has roots in many branches of science and
engineering. Following its introduction to the broad scientific community over 15 years ago,
1 the field has rapidly expanded and advanced, as evidenced by publication trends.2 Founded
at the intersection of chemistry, materials science, systems level and molecular biology, and
chemical and mechanical engineering,3, 4 the viability of technologies and products emerging
from tissue engineering is apparent,5–11 and with continued expansion, tissue engineering
based therapeutics will play a large role in advancing medicine in the 21st century.
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Most iterations of the traditional tissue engineering paradigm describe the combination of cells,
scaffold materials, and bioactive factors towards the de novo growth or induced regeneration
of living tissues following damage or in conditions under which regeneration would not
normally occur. For the last 16 years, our laboratory has investigated mainly orthopaedic and
dental tissue engineering, focusing primarily on the regeneration of bone and cartilage. In doing
so we have formulated new tissue engineering techniques, investigated key parameters for
tissue growth within synthetic matrices, and developed novel biomaterials for use as tissue
engineering scaffolds and bioactive factor delivery vehicles.

In 2005, over 2,300,000 procedures were performed in U.S. hospitals involving the partial
excision of bone, treatment of fractures, or joint replacement.12 Many of these procedures were
likely necessitated by or will result in a bony defect that will not regenerate. Most commonly
due to trauma or neoplasm, these nonhealing or nonunion bone defects are costly and can
adversely affect patient quality of life. Bone tissue engineering is a potential source of
treatments for these defects. If successfully implemented, bone tissue engineering strategies
will allow for the complete functional and morphological regeneration of healthy bone tissue
without the need for residual or permanently indwelling synthetic materials or large amounts
of donor tissue, the procurement of which typically involves either a risk of transmitted disease
from allo- or xenogeneic tissues13, 14 or the necessity for additional surgeries15 and potential
morbidity at the donor site for autologous tissues.16, 17

Regenerating bone tissue in vivo requires the consideration of a number of critical elements.
First, bone regenerates or heals preferentially when under mechanical stimulation,18–20

possibly due to the differentiation of stem cells in response to their mechanical
microenvironment.21 Thus, in addition to providing a three-dimensional template for tissue
growth, a material used as a scaffold must be able to withstand the mechanical loading
necessary to facilitate bone growth. Second, diffusional limitations on the delivery of oxygen
and nutrients from the blood stream and the removal of waste products affect the size of defects
that can be addressed by tissue engineering.22, 23 Appropriate material porosity and the
allowance or induction of vascular ingrowth can mitigate these limitations.24–27 Finally, for
the regenerated bone to be identical to natural bone, the scaffold material must degrade in
vivo but must do so at a rate so as not to compromise the mechanical stability of the scaffold
prior to sufficient bony ingrowth. Along with these key elements, cyto- and biocompatibility
must obviously be addressed.

The requirements for engineering other tissue types are similarly specific, and thus as the field
of tissue engineering progresses, it is unlikely that a single material will be capable of meeting
the criteria necessary for successful application towards engineering many tissues. There is a
distinct need for biomaterials and combinations of biomaterials, processing techniques,
bioactive factors, and cells tailored for tissue specific applications.28 Early work in tissue
engineering and within our laboratory focused predominantly on applications using the now
FDA-regulated material poly(D,L-lactic-co-glycolic acid) (PLGA); however, as our laboratory
and the field in general have evolved, more experimental work is being performed on novel
biomaterials with parameters rendering them appropriate for specific applications.

Biomaterial and Scaffold Technology Development
Early work

Building upon prior work investigating preparation of polymer scaffolds,29–32 at its inception
our laboratory began studying the interaction between osteoblasts and polymer matrices in
collaboration with Dr. Rena Bizios, now of The University of Texas at San Antonio, first
investigating the effect of varying the comonomer ratio in PLGA films on the expression of
alkaline phosphatase (ALP) and collagen synthesis.33 Similar work investigating polymer
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composition and cell-polymer interactions was performed using poly(L-lactic acid) (PLLA)
and PLGA films to culture human retinal pigment epithelial (RPE) cells.34, 35 The release of
lactic acid from degrading PLLA membranes was modulated by varying the polydispersity of
PLLA blends made from monodisperse PLLA of high and low molecular weights, allowing
for controlled release of acidic degradation products to minimize fluctuations in pH.36

Biodegradable polymer particles fabricated from both PLLA and PLGA on the order of 1 μm
in diameter were found to inhibit cell proliferation and matrix mineralization at high particle
concentrations, possibly due to diffusional limitations imposed by the particles and cell culture;
however, established cell cultures were less effected than cultures exposed to particles on the
first culture day.37

Investigating the effect of pore size on fibrovascular tissue ingrowth, we found that varying
the pore size in a polymer scaffold made of PLLA could drastically affect the rate at which
surrounding tissues invaded the matrix25 and later the rate at which materials degrade both in
vitro and in vivo.38, 39 While rapid tissue ingrowth and vascularization can modulate diffusional
limitations within large scaffolds, the presence of this granulation tissue within the pores of
the scaffold limits space available for guided tissue regeneration and was thus recognized as
being potentially detrimental to success in some applications.

Noting the role pore size, morphology, and interconnectivity would no doubt have in abrogating
diffusional limitations and facilitating tissue regeneration within defects of clinically relevant
size, we developed a novel method of particulate leaching to create PLGA foams around
degradable gelatin microspheres.40 Similar to other work involving fiber bonding29 and phase
separation,41 this technique allowed control over pore sizes and overall porosity but did so
through a process involving no additional organic solvents, making it particularly attractive
for biomedical applications. This particulate leaching method was later employed using salt
crystals as a porogen, and simple leaching of the crystals resulted in PLGA/poly(ethylene
glycol) (PEG) blended scaffolds with varied shear moduli, porosities, and pore diameters.42

Solvent casting, salt leaching, and extrusion were used to create porous PLLA and PLGA
conduits to investigate peripheral nerve regeneration.43–45 Continued work with our
collaborators has applied the particulate leaching technique for bone tissue engineering with
calcium phosphate (CaP) biomaterials.46–48 In addition to expansion into other areas of
scaffold fabrication and tissue engineering, our laboratory and collaborators have continued to
investigate processing techniques for creating scaffold porosity (Figure 1).49–51

Poly(propylene fumarate)
In 1995 we began developing novel biodegradable scaffolds based on poly(propylene
fumarate) (Figure 2), an unsaturated linear polyester based on fumaric acid, a non-toxic
intermediate in the citric acid cycle.52 Early work focused on characterizing PPF both
alone53 and as a composite with the ceramic β-tricalcium phosphate (βTCP)54 and later with
PLGA.55–57 Subsequent refinements in the synthesis of PPF were made,58 resulting in a step
polymerization of diethyl fumarate and propylene glycol in the presence of zinc chloride
(Figure 3).59 This one pot method yielded PPF with molecular weights up to 4600 after 12h.

In addition to optimizing the synthesis of PPF, a series of studies investigating the development
and characterization of cross-linked PPF scaffolds were performed. Using benzoyl peroxide
(BP) as an initiator, cross-linked PPF networks were synthesized using PEG-dimethacrylate
(PEG-DMA)60 or propylene fumarate-diacrylate (PF-DA).61 Using PPF/PF-DA networks as
a model system, later work characterized the participation of acrylate and fumarate groups in
network formation62 and found continual reactivity of unreacted fumarate groups at
physiological temperatures, resulting in an increased compressive modulus after six weeks
incubation.63 This unique process can lead to mechanical reinforcement of scaffolds with
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concurrent degradation, providing a possible mechanism for shape retention and maintained
mechanical support with time.

We also investigated photocross-linking using bis(2,4,6-trimethlybenzoyl) phenylphosphine
oxide (BAPO) to cross-link PPF networks both with64 and without65, 66 the addition of
porogen. Porous and non-porous formulations of photocross-linked PPF maintained their
structure, strength, and porosity as the material degraded, even after 32 weeks and as mass
losses approached 30%.67 A comparison of thermal- and photo-cross-linking of PPF networks
found photocross-linking using BAPO yields a higher cross-linking density and higher double
bond conversion than thermal cross-linking in the presence of BP;68 however, both methods
offer utility in different applications. Networks that undergo thermal cross-linking close to
physiological temperature hold potential as in situ cross-linkable materials for injectable
applications,69, 70 while photocross-linking PPF/PF-DA networks within silicon molds71 or
PPF/diethyl fumarate composites during stereolithography72 was successfully used to fabricate
biodegradable orthopaedic implants (Figure 4). Using a rabbit model, photocross-linked PPF
implants were also found to elicit only a mild inflammatory response 2 weeks after implantation
in both soft and hard tissues, and this inflammatory response was largely resolved with surface
degradation evident by 8 weeks post-implantation.73

Other fumarate based materials
While developing PPF, we also investigated other fumarate-based materials. Poly(propylene
fumarate-co-ethylene glycol) (P(PF-co-EG), Figure 2), a block copolymer hydrogel of PPF
and PEG, was synthesized and found to have tunable mechanical properties controlled by
varying the PPF molecular weight and PEG content.74 In vitro and in vivo degradation studies
of P(PF-co-EG) hydrogels, performed in collaboration with Dr. James M. Anderson of Case
Western Reserve University, determined that increasing the weight percent of PEG decreased
material degradation rates, while changes in PEG molecular weight had only minimal effects
on degradation.75 Similarly, the biocompatibility of the hydrogels increased with increasing
weight percent of PEG,76 and both PEG weight percent and molecular weight influenced
platelet attachment at the material surface.77 The ability to tune the mechanical, degradative,
and biointeractive characteristics of this injectable material make it an attractive substrate for
engineering a variety of tissues. Later work using this copolymer included the introduction of
a novel method for creating in situ crosslinked macroporous hydrogels using generated carbon
dioxide as a porogen.78, 79 Substitution of methoxy poly(ethylene glycol) for PEG yielded
biodegradable copolymers that undergo both physical and chemical gelation,80 a concept that
has continued to be investigated in our laboratory.81

In addition to P(PF-co-EG), hydrogels based on oligo(poly(ethylene glycol) fumarate) (OPF,
Figure 2), a novel oligomer developed by our laboratory,82 were investigated as tissue
engineering and drug delivery substrates. A PEG-based macromer with unsaturated double
bonds along its macromolecular chain, OPF synthesized with PEG of different molecular
weights allows for modulation of tensile mechanical properties, swelling characteristics, mesh
size, and cell attachment.83, 84 Cross-linking of OPF hydrogels using redox radical initiatiors
such as ammonium persulfate (APS) with a reducing agent was found to be a feasible method
for fabricating cross-linked hydrogel networks in the presence of mesenchymal stem cells
(MSCs),85 a subpopulation of bone marrow stromal cells or adherent cells found within the
bone marrow space, these adult progenitor cells hold great promise for tissue engineering and
other medical applications. OPF would later be used for a number of tissue engineering and
drug delivery applications, most notably in the area of cartilage regeneration.
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3D Cell-Scaffold Constructs
Beyond material characterization such as cytotoxicity evaluation, the development of materials
for tissue engineering applications requires application specific investigation of cellular
function on or within the material being developed. As we sought to develop materials for bone
tissue engineering, the function and interaction of osteoblasts and osteoblast progenitors with
the biomaterial scaffold was critical to the success of the material. Our early work found that
osteoblasts proliferated and deposited a mineralized matrix on PLGA foams both in vitro86,
87 and in vivo,88 even when implanted into an ectopic anatomical site (one in which bone growth
does not naturally occur). While this early work found no correlation between scaffold pore
size and mineralized matrix deposition, subsequent work relating matrix deposition and cell
culture period to pore morphology found that highly porous scaffolds seeded with osteoblasts
tended to collapse after only one week in culture.89 This work was important in shaping future
studies, as a balance is needed between highly porous scaffolds that allow rapid tissue ingrowth
and minimize diffusional limitations and less porous materials that retain both construct shape
and the ability to bear mechanical loads in a complex biochemical and mechanical environment.

In continuing to investigate interactions between cells and scaffolds, a study of the attachment
and proliferation of bone marrow derived osteoblasts on end-capped and non-end-capped poly
(D,L-lactic acid) (PLA) and a diblock copolymer of PEG-monomethyl ether and PLA found
that cells on PLA adhered and proliferated equally well, while cells on the copolymer did not
proliferate but were more highly differentiated and more metabolically active than cells on
PLA alone.90 This was attributed to decreased protein adsorption on the copolymer and
provided an early example of the influence of material properties on cell differentiation and
activity. Comparing OPF and PPF within a rabbit tooth socket defect, we found that
implantation of the hydrophilic OPF constructs inhibited bone healing as compared to PPF and
control groups.91 Immunohistochemistry during the wound healing process found that the
presence of OPF relative to PPF blunted the response of fibroblast growth factor-2 (FGF-2),
an important factor in bone and wound healing, indicating that the interaction of biomaterials
and growth factor cascades may be critical to wound healing and tissue regeneration.

In addition to OPF and PPF, P(PF-co-EG) was studied as a carrier for endothelial cells. In
situ cross-linking of P(PF-co-EG) did not blunt the wound healing response in vivo and in
vitro cross-linking with encapsulated endothelial cells confirmed the viability of the copolymer
as an injectable cell carrier.92

3D Composite Scaffolds
Building upon the knowledge that bulk material properties and surface characteristics are
critical in biological applications, our laboratory has continually explored various composite
materials as tissue engineering scaffolds. Initial work primarily focused on polymer composites
and polymer-ceramic composites, but as new advances have been made in chemistry and
materials science, we have incorporated new materials into tissue engineering constructs.

Polymer-ceramic composites
As previously described, PPF/βTCP composites were among the earliest materials investigated
in our laboratory. PPF/βTCP composites were found to have increased compressive moduli
and strength compared to PPF alone, and the composites degraded in vivo with a mild
inflammatory response following implantation.93 In collaboration with Dr. Michael J.
Yaszemski of the Mayo Clinic in Rochester, Minnesota, we investigated moldable PPF/βTCP
paste as an alternative to the currently used poly(methyl methacrylate) (PMMA) bone cements.
PPF/βTCP pastes had comparable mechanical properties to PMMA and, in contrast to PMMA,
were biodegradable and cross-linked below 50 °C, well below 94 °C, the potentially toxic
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curing temperature of PMMA.94 Layered composites were also fabricated,95 and adherent
marrow stromal cells attached and proliferated well on the composites.96

Our more recent studies of polymer-ceramic composites have been performed with our
collaborator, Dr. John A. Jansen of Radboud University Nijmegen Medical Center in the
Netherlands. Most of this work has focused on CaP cements augmented with PLGA
microspheres. These materials exhibit excellent biocompatibility, have improved
biodegradability over CaP cements alone, and can be used as injectable materials.48, 97, 98 In
vivo bone regeneration using these materials has been promising,99 and more recently our
laboratories have been investigating both release of the osteogenic growth factor bone
morphogenetic protein 2 (BMP-2) from PLGA microspheres100 as well as the inclusion of
gelatin in CaP cements as porogens or drug delivery vehicles.46, 101 With the importance of
biological interactions at the nanoscale becoming more apparent, we have also developed
methods for the dispersion of calcium phosphate nanocrystals within OPF hydrogels.102

Nanocomposite scaffolds
Commensurate with the need for scaffolds with enhanced compressive mechanical properties,
our laboratory has investigated methods to reinforce polymer scaffolds. Earlier attempts in this
direction used short hydroxyapatite fibers to reinforce PLGA foams and succeeded in
enhancing the compressive yield strength;103 more recent attempts at composite scaffold
reinforcement have focused on nanoscale scaffold reinforcement. A variety of surface modified
carboxylate alumoxane nanoparticles were dispersed within PPF/PF-DA scaffolds and found
to cause a 3-fold increase in flexural modulus over polymer resin reinforced scaffolds.104

Following an accelerated degradation protocol, alumoxane reinforced PPF scaffolds degraded
faster than nonreinforced scaffolds, and the inclusion of alumoxane nanoparticles did not affect
scaffold cytotoxicity or biocompatibility.105 After 12 weeks of in vitro degradation, porous
PPF/alumoxane composites maintained their compressive mechanical properties, pore
morphology, and overall scaffold size despite mass losses of over 5% due to degradation.106

Following 12 weeks implantation within a goat hindlimb condylar defect, PPF/alumoxane
composites were found to degrade and regenerate bone similar to control PPF/PF-DA scaffolds,
indicating that the improved mechanical properties of PPF/alumoxane nanocomposites are
gained without a concomitant decrease in degradation or bone healing in vivo.107 Despite these
positive results, other efforts in our laboratory involving nanoreinforced scaffolds aimed to
achieve superior scaffold mechanical properties with corresponding improvements in in vivo
bone regeneration.

Carbon nanotube composite scaffolds
We have also investigated the incorporation of single-walled carbon nanotubes (SWNTs)
dispersed within PPF scaffolds. With respect to enhancement of mechanical properties, an ideal
concentration of 0.05 wt% resulted in a 74% increase in compressive modulus and a 69%
increase in flexural modulus.108 At higher than 0.05 wt%, nanotube aggregates were observed.
Functionalized SWNTs were synthesized and interacted with PPF chains, increasing cross-
linking densities of PPF networks and facilitating load transfer between the polymer and the
nanotubes thereby resulting in 3-fold increases in compressive and flexural moduli and 2-fold
increases in compressive and flexural strengths over non-reinforced PPF.109 Incorporation of
nanotubes did not increase the cytotoxicity of the material,110 and marrow stromal cells
attached and proliferated on porous scaffolds augmented with ultrashort nanotubes.111

Additionally, these materials have the potential to be used as injectable biomaterials.112 Twelve
weeks following implantation in a rabbit condylar defect, PPF/ultrashort nanotube composites
displayed a 3-fold greater bone tissue ingrowth than control PPF/PF-DA scaffolds, and
additionally, markedly fewer infiltrating inflammatory cells and more highly organized
connective tissue were observed around the nanocomposites (Figure 5).113 Because of their
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greatly increased mechanical properties combined with improved in vivo capacity for bone
regeneration compared to PPF alone, PPF/SWNT composites are a promising material for bone
and other hard tissue engineering applications. Additionally, the development of methods for
functionalization and dispersion of nanotubes within biomaterial matrices could be used to
augment other biomaterials or to make materials with limited mechanical strength appropriate
for new applications within tissue engineering and biology.

Injectable Carriers for Cellular Delivery
An area of research that holds great promise in biomaterials science and tissue engineering is
the development of injectable materials and systems for clinical applications. Injectable
systems can be delivered to a patient using minimally invasive methods and can fill complex
tissue defects without the need for extensive imaging and prefabrication. Perhaps most
importantly, injectable systems that use water as a solvent can potentially be used to deliver
cells and water soluble growth factors or drugs for therapeutic purposes.114 In biology, cell
based technology is rapidly expanding and cellular therapeutics are moving closer to becoming
clinical reality, making the need for delivery vehicles and injectable matrices increasingly
apparent.

We investigated PPF/gelatin microparticle composites as an injectable system for tissue
engineering. Marrow stromal cells, a subpopulation of which are osteoblastic precursors or
MSCs, maintain their viability and differentiation capacity when encapsulated within gelatin
microparticles.115 This encapsulation process protects MSCs during PPF crosslinking,116,
117 and amelioration of the potentially toxic effects of being exposed to uncross-linked
macromers and initiators renders the system viable for injectable cell delivery.

Cell adhesion to P(PF-co-EG) hydrogels has also been investigated along with cell viability
during in situ cross-linking using the water soluble APS initiator system described previously.
118, 119 Cells adhered to the cross-linked gels and the viability of cells present during cross-
linking was above 30% for some formulations, making cell delivery for in vivo applications
possible.

OPF has been extensively studied as a carrier for cell delivery. OPF incorporating low
molecular weight PEG chains was originally found to elicit a minimal inflammatory response
in vivo120 and had cytotoxicity below 25% after 24 hours exposure in vitro.121 These promising
results led to a series of studies investigating cell encapsulation within OPF hydrogels.

Because of their high water content, hydrogels are often thought of as ideal carriers for cell
encapsulation and delivery; however, a number of parameters must be considered and
optimized to ensure appropriate material properties in combination with maintained cell
viability and differentiation. Our early encapsulation studies focused on identifying radical
initiators and reducing agents as well as proper concentrations of chemicals from both classes
that would achieve ideal gelation kinetics without large fluctuations in pH or decreased
encapsulated cell viability. The effects of two persulfate oxidizing agents and three reducing
agents derived from ascorbic acid were measured with respect to encapsulated rat marrow
stromal cell survival, and initiator concentration and final pH were recognized as key
parameters affecting cell survival.85 Encapsulation of rat marrow stromal cells in the presence
of cell culture media containing osteogenic supplements demonstrated that encapsulated cells
retained the ability to differentiate into osteoblast-like cells,122 and OPF hydrogels with greater
swelling due to incorporation of higher molecular weight PEG support greater osteoblastic
differentiation of encapsulated cells than OPF hydrogels that undergo less swelling.123

Native cartilage consists of a largely acellular matrix composed primarily of water with
interspersed chondrocytes, a structure that is well approximated by encapsulating chondrocytes
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within a hydrogel matrix. OPF hydrogels have been used to deliver encapsulated chondrocytes
and MSCs for cartilage regeneration, although this delivery has typically been in conjunction
with the delivery of growth factors for inducing differentiation of encapsulated cells and
surrounding host cells into chondrocytes.124, 125 This and other examples of biomaterial
facilitated delivery of bioactive molecules has been an expanding focus of our work and has
led to a number of diverse and novel techniques for bioactive factor generation and delivery.

Growth Factor Carriers and Scaffolds
The continued focus and progressive discoveries in areas such as stem cell biology, cell
signaling, and tissue specific microenvironments or niches has led to the identification of a
number of key growth factors necessary for tissue repair or regeneration. In addition to studying
the release of common pharmaceuticals from biomaterial matrices and particles to treat
localized infection or disease,126–130 we along with many other researchers in tissue
engineering have been attempting to mimic natural healing or development by delivering
exogenous growth factors, often simultaneously with the cells upon which they are intended
to act, to speed or enable tissue regeneration.

Transforming growth factor-β1 (TGF-β1) is a 25 kilodalton cytokine that is nearly ubiquitously
expressed by immune cells and likely plays an important role in cell differentiation and wound
healing.131 Consequently, it is frequently investigated in tissue engineering applications. We
have investigated TGF-β1 coating of scaffolds and release from PLGA/PEG microparticles
and found increased osteoblast proliferation and enhanced deposition of osteogenic markers.
132–135 Gelatin microparticles, a popular drug delivery vehicle,136 have also been utilized for
TGF-β1 release from OPF hydrogels137, 138 and injectable calcium phosphate cements.101

We have extensively studied the release of TGF-β1 from OPF hydrogels for cartilage tissue
engineering. Bilayered OPF hydrogels with TGF-β1 loaded into the superficial layer of the gel
were used to repair osteochondral defects in a rabbit model,139 and in vitro studies were
undertaken to investigate the simultaneous delivery of chondrocytes and TGF-β1.124

Following promising early results in these studies, including a noted maintenance of
chondrocytic phenotype for encapsulated cells, we, in collaboration with Dr. Arnold I. Caplan
of Case Western Reserve University, demonstrated that rabbit mesenchymal stem cells
encapsulated in OPF with TGF-β1 loaded gelatin microparticles differentiate into chondrocyte-
like cells with upregulated collagen II and aggrecan expression.125 Expanding on successful
TGF-β1 release systems for cartilage engineering, we explored the tandem release of TGF-β1
and insulin-like growth factor 1 (IGF-1). By varying the cross-linking extent and isoelectric
point of gelatin microparticles, TGF-β1 and IGF-1 release from OPF hydrogels was tailored
to mimic the release profiles found naturally.140 In vitro studies showed that marrow stromal
cells exposed to both TGF-β1 and IGF-1 had significantly upregulated expression of
chondrogenesis-related genes compared to controls (Figure 6).141 In vivo assessment of this
dual release technique showed improved cartilage healing in defects treated with IGF-1
releasing hydrogels; however, this improvement was not observed with scaffolds releasing
both growth factors (Figure 7).142 This surprising result confirmed that a complex interplay
between growth factors and the native healing site is at work, and careful evaluation of delivery
strategies, even those that seemingly approximate a natural healing response, is necessary.

We have also studied dual growth factor delivery for bone tissue engineering. Using the well
characterized gelatin microparticle system for release of BMP-2 and vascular endothelial
growth factor (VEGF),143, 144 we, in collaboration with Dr. Yasuhiko Tabata of Kyoto
University in Japan, found after 4 weeks implantation within a rat cranial defect, dual release
of VEGF and BMP-2 regenerated significantly more bone tissue than release of either growth
factor alone (Figure 8).27 After 12 weeks scaffolds releasing BMP-2 alone produced similar
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tissue regeneration to dual release scaffolds, indicating that neovascularization can promote
improved bone regeneration early in the healing process. Subsequent studies found that
vascularization as induced by VEGF is insufficient to rescue bone growth in scaffolds releasing
lower doses of BMP-2, illustrating the need for a balanced interplay between angiogenesis and
osteogenesis to yield a therapeutic effect.145 Previous studies have demonstrated the efficacy
of BMP-2 release from different scaffold based systems for bone tissue engineering
applications.146–148

Work in our laboratory elucidating the release of angiogenic and osteogenic growth factors
during bone healing did not begin with the study of VEGF and BMP-2 release. Prior work
studied the release of TP508, an angiogenic and osteogenic 23 amino acid peptide sequence
derived from thrombin.149 TP508 released from PPF-based composite scaffolds enabled
healing of segmental long bone defects in rabbits, and we found that the release kinetics of the
peptide were of critical importance to bone healing, with a burst release of the peptide
facilitating bony bridging in over 80% of the defects after 12 weeks.150 More recent work in
this area in collaboration with Dr. Achim Goepferich of the University of Regensburg in
Germany has studied whether amino acid or bisphosphonate modification can target peptides
selectively to bony sites, possibly decreasing necessary dosing by improving the efficiency of
delivery.151

Biomimetic Hydrogels
Peptide sequences have been utilized in our laboratory for purposes other than controlled
release to stimulate tissue regeneration. Many of our aforementioned studies of material-cell
interactions noted varying levels of cell attachment based on material properties, most notably
decreases in cell attachment as the hydrophilicity of OPF and P(PF-co-EG) hydrogels
increased. In addition to modulating material-cell interactions by varying material
compositions, surface patterning of materials was previously used in our laboratory to regulate
RPE attachment and morphology.152, 153 Cyclic Arg-Gly-Asp (RGD) peptide sequences, long
known to bind surface integrins necessary for cell attachment and migration in vivo, were first
used in our laboratory to block integrin domains to study growth factor stimulated migration.
154 A later series of work built upon our previous work in surface patterning and also the
relationship of RGD to cell attachment by modifying hydrogels with RGD sequences to
promote cell attachment and allow the hydrophilic materials to be more suitable for cell-based
therapies and tissue regeneration.

Using 4-nitrophenyl chloroformate as an activator, OPF surfaces were modified by covalently
attaching Gly-Arg-Gly-Asp (GRGD) peptides.155 Later incorporating a PEG spacer to avoid
steric obscuration of the peptide, we found that marrow stromal cells adhered significantly
better to GRGD-modified OPF hydrogels, and the sequence specific role of GRGD was
confirmed by competitive inhibition of cell attachment following incubation with free GRGD.
156 RGDS modification of P(PF-co-EG) hydrogels found concentration dependent attachment
of marrow derived osteoblasts.157 While other work investigating surface modification of
hydrogels to improve cell attachment using agmatine118, 158, 159 and osteopontin derived
peptides,160 an important discovery that followed our ongoing work in the area of bioreactors
was the role surface peptide sequences played towards influencing cell differentiation. RGD-
modified hydrogels were capable of inducing progenitor cells to differentiate down an
osteoblastic lineage, even in the absence of culture supplements normally required for
differentiation.161, 162
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Generated Matrix with Bioreactors
Flow perfusion bioreactor systems

The seemingly anomalous decrease in bone mineral density found in astronauts returning from
prolonged missions in space163 coupled with the prevention of this bone loss by repeated
mechanical loading164 are indicative of the importance of mechanical stimulation on the
maintenance of healthy bone tissue. Comparing a spinner flask, rotary vessel, and flow
perfusion bioreactor, we began investigating the effects of convection on bone growth within
biomaterial scaffolds, surmising that convection of media could both overcome diffusional
limitations encountered during static culture of large scaffolds and provide a mechanical
stimulus possible of augmenting bone formation.165, 166 Flow perfusion systems were
determined to be the most appropriate method for achieving these effects165 and designed
specifically for bone tissue engineering applications within our laboratory.167

When seeded on titanium fiber mesh scaffolds within a flow perfusion bioreactor, marrow
stromal cells differentiate into osteoblast-like cells and deposit far greater mineralized matrix
than cells in constructs cultured under static conditions (Figure 9).20, 168 Similar results were
observed using PLLA fiber mesh scaffolds,169 starch based scaffolds,170 and CaP scaffolds.
171 Furthermore, by varying the fluid viscosity such that fluid shear stress could be varied but
transport of nutrients and removal of waste remained constant, we found that mineral deposition
increased and extracellular matrix distribution was more even, revealing a dose dependent
relationship between shear stresses and mineralized tissue generation.172 In vivo implantation
of cell-scaffold constructs following culture in a flow perfusion bioreactor showed the
constructs to be osteoinductive and that the in vitro culture period can affect in vivo outcomes
following implantation.173

Continuing work using the flow perfusion bioreactor system determined a time dependent
affect of titanium fiber network mesh size on cell differentiation and matrix deposition,174 and
increasing the overall porosity of degradable starch based scaffolds yielded significantly
greater matrix deposition and cell proliferation when cultured under flow conditions.175 In the
absence of culture in the flow perfusion system, implantation of undifferentiated stromal cells
on titanium fiber meshes led to poor bone regeneration when compared to cells precultured in
dexamethasone, a factor known to induce osteogenic differentiation of MSCs.176 These results
showed that without flow perfusion, culture on titanium fiber meshes, even in the presence of
RGD peptide to facilitate cell attachment, was not sufficient to differentiate cells to an extent
at which bone regeneration in vivo was similar to that of constructs seeded with differentiated
cells.

In vitro generated ECM
The presence of fluid shear stresses within the flow perfusion bioreactor, however, was found
to be sufficient to induce osteoblast-like differentiation of marrow stromal cells in the absence
of dexamethasone.177 While dexamethasone and shear stresses in tandem have a synergistic
effect on cell differentiation, a series of pivotal studies determined the utility of culture within
the flow perfusion bioreactor towards differentiating cells in the absence of media supplements.

Titanium fiber meshes seeded with marrow stromal cells were cultured for 12 days in the flow
perfusion system to generate bone-like extracellular matrix (ECM), after which the scaffolds
were decellularized using repeated freeze-thaw cycles. Subsequent culture of MSCs in the
absence of dexamethasone on scaffolds with previously deposited ECM showed a 40-fold
increase in mineralization compared with control scaffolds. Similar increases were found
compared to scaffolds with denatured ECM. The presence of dexamethasone further enhanced
matrix deposition; however, this work demonstrated the powerful capacity of flow and in
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vitro generated ECM to guide progenitor cells down an osteogenic lineage (Figure 10).178

Previous work had shown that ECM/titanium composites enhanced differentiation of MSCs
cultured statically,179 but the drastic increases in matrix deposition in the absence of
dexamethasone were most apparent when ECM was combined with mechanical forces
imparted by the flow perfusion system. Localization of growth factors following flow perfusion
on starch-based scaffolds found TGF-β1, fibroblast growth factor, VEGF, and BMP-2
deposited on scaffolds cultured under flow, with increases in deposition area found following
culture at higher flow rates.180 In vivo implantation of ECM/titanium composite scaffolds
revealed an increase in scaffold vascularity corresponding to increases in the amount of
deposited matrix present.181 Marrow stromal cells cultured on matrices with previously
deposited ECM showed significant increases in osteoblast-specific genes, likely due to the
prior deposition of growth factors and matrix molecules by cells during the original perfusion
induced mineralization.182 Using electrospinning, we have also fabricated and characterized
poly(ε-caprolactone) fiber mesh scaffolds with mixed micro- and nanofiber layers to simulate
the scale of the ECM, and this physical mimicry of the ECM facilitated increased cell spreading
compared to scaffolds without the nanofiber domains (Figure 11).51

Injectable Plasmid DNA Carriers
Tuning of material properties, growth factor delivery, culture in supplemented media, and
induction via exposure to generated extracellular matrix have all been demonstrated as viable
methods for influencing cell behavior and specifically for promoting the differentiation of
progenitor cells down tissue specific lineages. All of these approaches have indirect effects
that likely influence or regulate gene transcription and/or expression. More directly towards
this end, we have also investigated material mediated methods for the delivery of plasmid
DNA. Our earliest work related to this area used PLGA microparticles to deliver antisense
oligodeoxy-nucleotides to inhibit smooth muscle cell proliferation and migration, phenomena
which are among the leading causes of restenosis after vascular intervention.183

Poly(ethylenimine)/DNA complexes
Subsequent studies focused on the delivery of plasmid DNA using the polycation poly
(ethylenimine) (PEI) as a delivery vehicle. Modification of standard PEI/DNA complex
delivery ameliorated PEI toxicity and improved packing of PEI around plasmid DNA. The end
result was improvement in PEI transfection efficiency from 37% to 53%.184 PEI size matters
as well; transfection efficiency using green fluorescent protein transfection of human
endothelial cells increased with increasing PEI molecular weight. PEI with molecular weights
of 70,000 Da successfully transfected 25.6% of cells, while PEI with molecular weights under
1,800 Da did not transfect any cells.185 A mechanistic study of PEI transfection revealed the
pathway of transfection from cellular uptake via endocytosis through nuclear localization and
transfection (Figure 12).186 This study also found that PEI, independently of complexation
with DNA, localizes to the nucleus through the same pathway, and a later study determined
that contrary to the commonly held hypothesis that endocytosed PEI merges with lysosomes,
endocytosed PEI enters the nucleus without binding to lysosomes.187 When used to transfect
endothelial cells with genes encoding three naturally expressed gene products, we found a
bimodally distributed pattern of cell death, attributable to death from free PEI and PEI/DNA
complexes, although transfection was successful and translation increased.188 More recently
we have used branched PEI conujugated with hyaluronic acid to improve cell viability and
transfection efficiency over branched PEI alone.189

Gene transfection for tissue engineering applications
In addition to polycationic gene delivery using PEI as a model delivery vehicle, we have also
studied more conventional methods of gene transfection for tissue engineering. In the first
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study comparing transfection vectors for the delivery of osteogenic genes, adenoviral,
retroviral, and cationic lipid vectors were used to transfect rat marrow stromal cells with the
gene encoding human BMP-2. Both in vitro and in vivo, cells transfected with adenoviral
vectors displayed enhanced osteogenic and bone healing potential versus those transfected with
other vectors and controls.190 Culture in dexamethasone led to a 3-fold increase in transgene
expression over culture in nonsupplemented media when using adenoviral vectors but did not
increase transgene expression from other vector types.191

Sustained plasmid DNA release from gelatin microspheres embedded within OPF hydrogels
was studied for use in bone tissue engineering applications. Entrapment within cationized
gelatin microspheres and subsequent embedding within OPF extended DNA bioavailability,
and release was primarily mediated by OPF degradation.192–194 Attempts to regenerate
critical-sized bone defects in vivo using plasmid DNA encoding BMP-2 released from gelatin
microparticles was unsuccessful compared to controls, perhaps due to poor release or most
likely the lack of a vector.195 Future improvements to the scaffold based delivery system, such
as incorporation of adenoviral or PEI based vectors, may improve tissue regeneration; however,
the vector technologies developed hold great potential in future applications.

Enabling Technologies and Translational Approaches
As the fields of tissue engineering and regenerative medicine evolve, need arises for reliable
tools to evaluate emerging technologies. Although reporting of specific combinations of cells,
bioactive factors, and biomaterials as a whole help to advance the field, the emergence of new
techniques in material and scaffold fabrication, drug and cell delivery, and the interaction of
these factors continue to be the driving forces pushing strategies closer to the clinic. While
difficult to specifically categorize, our work in enabling technologies and new approaches to
addressing problems that potentially can be solved by tissue engineering have continued
relevance today. Work in the areas of cell culture techniques196, 197, nanomaterials for high
resolution MRI,198 and evaluation of scaffold and cellular technologies199, 200 have proven
useful for the advancement of the field. Strategies similar to those based on cell lines created
through our collaborations201 have been used to evaluate new strategies in tissue engineering.
202, 203 The development of animal models204–206 and modalities to evaluate tissue
regeneration within those models207 will continue to be necessary as expansion into
engineering a variety of tissues and multiple tissues occurs. Through collaboration with Dr.
Mark Wong of the University of Texas Health Science Center Dental Branch in Houston, we
have recently developed a model to investigate alveolar bone regeneration within a non-healing
defect in the rabbit mandible,204 and through this collaboration we continue to explore further
clinically relevant animal models and tissue engineering strategies. An animal model
developed early in the course of studies in our laboratory represents a different in vivo approach;
rather than the evaluation of tissue engineering strategies, a sheep model for bone flap creation
was developed to provide transplantable vascularized bone flaps.208

The sheep model developed in collaboration with Drs. Michael J. Miller and Alan W. Yasko,
now at The Ohio State University and Northwestern University’s Feinberg School of Medicine
respectively, utilized a seldom used but clinically relevant approach to tissue engineering.208

Rather than the more common approach of regenerating tissues at the site where they are needed
and a defect exists, PMMA chambers filled with morcellized bone graft were implanted
adjacent to the ribs of a sheep, with the chamber open to the rib periosteum. New, well formed
bone penetrated the implants after 6 weeks, and removal of the newly formed bone with an
attached vascular pedicle yielded a vascularized implant that could be used for autologous
tissue augmentation at a distant defect site (Figure 13). PLGA foam filled chambers were also
investigated for use in this technique.209 Recently, Cheng et al. applied a similar technique to
reconstruct the mandible of a patient with a locally invasive squamous cell carcinoma, and
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after one year the implanted bone flap remained viable such that dental implants could be placed
within it, allowing a near complete reconstruction of the patient’s mandible.210 Strategies such
as this may prove useful in treating traumatic injuries where inflammation or localized infection
may require treatment before attempts at tissue reconstruction or regeneration can be made.

Future Directions in Biomaterials Science and Tissue Engineering
Within the fields of biomaterials and tissue engineering, a number of emerging and recent
trends will likely shape the future and lead to even greater successes in both the laboratory and
also the clinic. Tissue engineering has always been tied to discoveries in a number of diverse
fields, and this trend will continue.

From biology, greater knowledge about the role stem cells play in tissue regeneration and
healing will play a pivotal role in translating tissue engineering technologies into the clinic.
As we better understand the capabilities and limitations of these progenitor cells, as well as
gain better understanding of the extra- and intracellular pathways that determine their
differentiation in vivo, researchers in biomaterials science and tissue engineering will be able
to fabricate better materials upon which stem cells can proliferate and differentiate, devise
more tailored cell delivery systems, and understand the applications for which these cells are
best suited. Similarly, an increased knowledge of the role more diffuse biological processes,
such as inflammation and development, play in tissue regeneration will allow future work to
focus on crafting materials and identifying bioactive factor delivery regimes to modulate,
recreate, or exploit these natural phenomena.

Materials science and the specific field of biomaterials science will continue to develop under
a reciprocal exchange of ideas and new technologies. As nanotechnology continues to develop
and we better appreciate and understand the importance of nanoscale stimuli and interactions
in biology, biomaterials with tailored nanoscale properties will be fabricated and used to mimic,
stimulate, and augment biological processes. Given the clinical success of many growth factors
and growth factor delivery systems, spatiotemporal control of bioactive molecule release and
the release of multiple factors simultaneously and in series to mimic useful biological cascades
must be explored.

Finally, in the near future we predict advances in two broad areas. The first, as described above,
will be advances in our understanding of natural biological processes critical to tissue
engineering, the integration of this understanding into specific tissue engineering technologies,
and a continued pursuit of new biomaterial technologies integrating advances in chemistry,
biology, and materials science. The second area for major advancement will be in harnessing
existing technologies for clinical use. Motivated by the clinical success of products related to
tissue engineering, clinicians and researchers are now gaining a better understanding of the
toolbox available to them in the form of FDA regulated technologies. Even as better, more
application-specific approaches are being developed and in their early stages, significant
translational advances will come from novel integration of existing technologies. These
advances will be the nidus for bringing new and better technologies in tissue engineering
through the regulatory process and will guarantee a continued commitment to and recognition
of biomaterials and tissue engineering as viable and promising fields with a truly impactful
scope.

Summary
From beginnings involved in the somewhat disparate studies of synthesizing and characterizing
new biomaterials and developing new technologies and techniques for tissue engineering based
on existing materials, work in our laboratory has evolved over the last 16 years to encompass
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scaffold fabrication and tissue regeneration using novel biomaterials, drug, DNA, and growth
factor delivery, bioreactor technology and bioactive ECM generation, and the development of
animal models for the evaluation and development of tissue engineering constructs. During
this time, biomaterials science has similarly expanded to include many sophisticated
technologies and methods from the pure biological sciences as well as the emerging
nanosciences, and advances in tissue engineering have followed progress in these fields.

Our laboratory specifically has developed tissue engineering approaches using fumarate-based
materials. Working with PPF, we have developed a variety of methods towards ex vivo
fabrication of porous hydrophobic scaffolds with properties suitable for bone tissue
engineering. PPF, as well as OPF and P(PF-co-EG), has been used as an injectable, in situ
cross-linkable material, and we continue to investigate injectable materials for tissue
engineering and cell delivery. The model hydrogel OPF has been examined to elucidate the
interplay between hydrophobic and hydrophilic domains and their interaction with cells.
Modification of OPF to mimic naturally occurring substrates encouraged cell attachment, and
cartilage tissue engineering through the incorporation of cells and growth factors in OPF has
been extensively investigated. We continue studying the delivery of growth factors for bone
tissue engineering, building upon the use of flow perfusion generated ECM and gene delivery
strategies for the overexpression of osteogenic factors, and the impact of our early work in
scaffold fabrication and bone flap generation is widely implemented in research throughout
the field and in preliminary clinical applications. Finally, areas for future growth and promising
advances within the field have been described, and we expect continued success for and
realization of the promise of biomaterials and tissue engineering.
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Abbreviations
ALP  

alkaline phosphatase

APS  
ammonium persulfate

BAPO  
bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide

BMP-2  
bone morphogenetic protein-2

BP  
benzoyl peroxide

βTCP  
β-tricalcium phosphate

CaP  
calcium phosphate

Kretlow and Mikos Page 14

AIChE J. Author manuscript; available in PMC 2009 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ECM  
extracellular matrix

FDA  
Food and Drug Administration

FGF-2  
fibroblast growth factor-2

GRGD  
Gly-Arg-Gly-Asp

IGF-1  
insulin-like growth factor-1

MSC  
mesenchymal stem cell

OPF  
oligo(poly(ethylene glycol) fumarate)

PEG  
poly(ethylene glycol)

PEG-DMA  
poly(ethylene glycol)-dimethacrylate

PEI  
poly(ethylenimine)

PF-DA  
propylene fumarate-diacrylate

PLA  
poly(D,L-lactic acid)

PLGA  
poly(D,L-lactic-co-glycolic acid)

PLLA  
poly(L-lactic acid)

PMMA  
poly(methyl methacrylate)

P(PF-co-EG) 
poly(propylene fumarate-co-ethylene glycol)

PPF  
poly(propylene fumarate)

PTFE  
polytetrafluoroethylene

RGD  
Arg-Gly-Asp

RPE  
retinal pigment epithelium
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SWNT  
single-walled carbon nanotube

TGF-β1  
transforming growth factor-β1

TP508  
thrombin peptide 508

VEGF  
vascular endothelial growth factor
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Figure 1.
Examples of porous scaffolds. Techinques employing particulate leaching (left), high internal
phase emulsion (middle), and electrospinning (right) have all been used to fabricate porous
biodegradable polymer matrices for use as tissue engineering scaffolds.
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Figure 2.
Structure of fumarate-based polymers, poly(propylene fumarate) (PPF), oligo(poly(ethylene
glycol) fumarate) (OPF), and poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)).
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Figure 3.
Reaction schema showing the synthesis of poly(propylene fumarate) from diethyl fumarate
and propylene glycol.
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Figure 4.
(A) 1.5 mm 8 hole adaption plates manufactured with 70:30 P(L/DL-LA) (left) and PPF/PF-
DA with a double bond ratio of 0.5 (right). The PPF/PF-DA plate was fabricated with a
transparent silicone mold formed with a P(L/DL-LA) master. (B) Plastic model (left) and PPF/
PF-DA with double bond ratio 0.5 replicate (right) of a 5 mm lordotic anterior cervical fusion
spacer. The plastic model has identical geometry as the bone allograft implant and was used
to produce the silicone molds for the PPF/PF-DA device. Reprinted with permission from (71).
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Figure 5.
Representative histological sections of scaffolds implanted in femoral condyle defects: (A) a
PPF/PF-DA scaffold after 12 weeks, and (B) an ultrashort carbon nanotube/PPF scaffold at 12
weeks post-implantation. The images are presented at 1.6× magnification. The PPF scaffold
(P) appears as white areas in all images. The original defect edge (DE) is visible in the low
magnification images. Bone-like tissue appears red; direct bone-implant contact (BIC) and
bony ingrowth occurred with the nanocomposite scaffold 12 weeks after implantation.
Reprinted with permission from (113).
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Figure 6.
2D image (A) and z-axial projection stack image (B) of rabbit marrow MSCs in OPF hydrogel
composites with both IGF-1-loaded MPs and TGF-β1-loaded microparticles at day 14. Samples
were incubated with rhodamine phalloidin solution for 1 h and imaged with confocal
fluorescence microscopy. Scale bar represents 100 μm. Small arrows indicate rabbit marrow
MSCs and large arrows indicate microparticles in hydrogel composites. Reprinted with
permission from (141).
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Figure 7.
Histological section displaying fibrocartilage in-growth near the chondral defect margins and
significant subchondral restoration. The boxed regions in (A) (2× magnification) are shown at
20× magnification to illustrate the spherical shape of cartilage cells in the neo-surface (B) and
small regions of remodeling tissue in subchondral region (C). This defect was treated by IGF-1
delivery. Reprinted with permission from (142).
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Figure 8.
Microcomputed tomography images (maximum intensity projections) of cranial defects taken
at 4 and 12 weeks after implantation. Panels A-D represent scaffolds releasing no growth factor
(control), VEGF, BMP-2, and both VEGF and BMP-2 respectively at 4 weeks prior to
decalcification. Blood vessels were filled with a silicon based radiopaque material so that both
blood vessels and mineralized tissue are visible. Panels E–H represent scaffolds releasing no
growth factor (control), VEGF, BMP-2, and both VEGF and BMP-2 respectively at 12 weeks;
no blood vessels were visible because perfusion with the radiopaque material was not done at
this time point. Bar represents 200 μm for all panels. Scaffolds releasing both growth factors
exhibited significantly greater amounts of bone-like tissue regeneration after 4 weeks but were
not significantly different from scaffolds releasing BMP-2 only after 12 weeks. Reprinted with
permission from (27).
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Figure 9.
SEM images obtained from the cross-sections of 0.8 mm thick constructs cultured in vitro in
a flow-perfusion bioreactor. Each image consists of three panels. (Top) One-hundred
micrometers from the top of the construct. (Middle) The middle of the construct. (Bottom)
One-hundred micrometers from the bottom surface. These images show the plain Ti construct
after 16 days of culture (A), the Ti/ECM construct after 4 days of culture (B), and the Ti/ECM
construct after 16 days of culture (C). (Scale bar, 50 μm for all SEM images.) Reprinted with
permission from (178).
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Figure 10.
The calcium content of Ti and Ti/ECM constructs cultured in the flow-perfusion bioreactor
after 4, 8, and 16 days of culture. The data represent means of four samples, with the error bars
representing the standard deviations. Statistical differences (P < 0.05) between Ti and Ti/ECM
constructs are indicated with an asterisk; # designates a statistical difference (P < 0.05) between
all other data points. Reprinted with permission from (178).
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Figure 11.
Scanning electron micrographs of cross-sections of layered scaffolds generated by sequential
electrospinning. (A) Cross-section illustrating (from top to bottom) a nano-micro-nano-micro-
nano-microfiber layered scaffold. The white boxes correspond to the nanofiber layers and their
respective magnified images shown to the right. (B) Magnification of the nanolayer electrospun
for 5 min. (C) Magnification of the nanolayer electrospun for 90 s. (D) Magnification of the
nanolayer electrospun for 30 s. The scale bar shown for (A) is 100 μm, and for (B–D) it is 25
μm. Microfibers are false colored green while nanofibers are false colored yellow to enhance
contrast. Reprinted with permission from (51). Copyright (2006) American Chemical Society.
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Figure 12.
Tracking of double-labeled PEI/DNA complexes. The fluorescence patterns for single-labeled
complexes are also seen for double-labeled complexes. (a) At 2 hours post-transfection, visible
complexes appear as clumps on the exterior of cells, as indicated by arrows. (b) At 3 hours
post-transfection, both surface aggregation of complexes and endosomal formation (indicated
by an arrow) are visible. The arrow indicates endosomal formation. (c) At 4 hours post-
transfection, endosomes containing both PEI and DNA are visible throughout the cell
cytoplasm. (d) At 4.5 hours post-transfection, fluorescent structures containing both PEI and
DNA inside the cell nucleus are present, as indicated by the arrow. (Bar = 10 μm.) Reprinted
with permission from (186).
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Figure 13.
(A) Molded block of bone harvested after 6 weeks conforming to a 10 × 40 × 10-mm PMMA
chamber and attached to the vascularized periosteal bed. Note the polytetrafluoroethylene
(PTFE) cuff bonded to the perimeter of the chamber, used to sew the implant to the periosteum.
Reprinted with permission from (208). (B) Molded bone flap attached to vascularized pedicle
(artery and vein) removed from a 10 × 40 × 10-mm chamber implanted for 6 weeks. Reprinted
from (211) with permission of John Wiley & Sons, Inc., Copyright © (1998).
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