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Abstract
Pharmacokinetic/pharmacodynamic phenotypes are identified using nonlinear random effects
models with finite mixture structures. A maximum a posteriori probability estimation approach is
presented using an EM algorithm with importance sampling. Parameters for the conjugate prior
densities can be based on prior studies or set to represent vague knowledge about the model
parameters. A detailed simulation study illustrates the feasibility of the approach and evaluates its
performance, including selecting the number of mixture components and proper subject
classification.
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1. Introduction
The use of mathematical modeling is central to the study of the absorption, distribution and
elimination of therapeutic drugs and to understanding how drugs produce their effects. From
its inception the field of pharmacokinetics and pharmacodynamics has incorporated methods
of mathematical modeling, simulation and computation in an effort to better understand and
quantify the processes of uptake, disposition and action of therapeutic drugs. These methods
for pharmacokinetic/pharmacodynamic (PK/PD) systems analysis impact all aspects of drug
development including in vitro, animal and human testing, as well as drug therapy. Modeling
methodologies developed for studying pharmacokinetic/pharmacodynamic processes confront
many challenges related in part to the severe restrictions on the number and type of
measurements that are available from laboratory experiments and clinical trials, as well as the
variability in the experiments and the uncertainty associated with the processes themselves.
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Since their initial application to pharmacokinetics in the 1970’s, Bayesian methods have
provided a framework for PK/PD modeling in drug development that can address some of the
above-mentioned challenges. Sheiner et al. (1975) applied Bayesian estimation (maximum a
posteriori probability estimation, MAP) to combine population information with drug
concentration measurements obtained in an individual, in order to determine a patient-specific
dosage regimen. Katz, Azen and Schumitzky (1981) reported the first efforts to calculate the
complete posterior distribution of model parameters in a nonlinear pharmacokinetic individual
estimation problem, for which they used numerical quadrature methods to perform the needed
multi-dimensional integrations.

The population PK/PD problem has also been cast in a Bayesian framework, initially by
Racine-Poon (1985) using a two-stage approach, and more generally by Wakefield et al.
(1994). Solution to this computationally demanding problem is accomplished through the
application of Markov chain Monte Carlo methods pioneered by Gelfand and Smith (1990)
and now available in general purpose software (see Lunn et al., 2002 for discuss relevant to
PK/PD population modeling).

Population PK/PD modeling, including Bayesian approaches, are used in drug development
to identify the influence of measured covariates (e.g., demographic factors and disease status)
on drug kinetics and response. It is now recognized, however, that genetic polymorphisms in
drug metabolism and in the molecular targets of drug therapy can also influence the efficacy
and toxicity of medications (Evans and Relling, 1999). Population modeling approaches that
can identify and model distinct subpopulations not related to available measured covariates
may, therefore, help determine otherwise unknown genetic and other determinants of observed
pharmacokinetic/pharmacodynamic phenotypes.

We have previously reported on a maximum likelihood approach using finite mixture models
to identify subpopulations with distinct pharmacokinetic/pharmacodynamic properties (Wang
et al., 2007). Wakefield and Walker (1997) and Rosner and Mueller (1997) have introduced
Bayesian approaches to address this problem within a nonparametric mixture model
framework. In this paper a computationally practical maximum a posteriori probability
estimation (MAP) approach is proposed using finite mixture models. Section 2 of this paper
describes the finite mixture model within a nonlinear random effects framework and defines
the MAP estimation problem. A solution via the EM algorithm is presented in Section 3. Subject
classification and model selection issues are discussed in Section 4. An example and detailed
simulation study are presented in Section 5 and Section 6 contains a discussion. The Appendix
discusses important asymptotic properties of the MAP estimator, further motivating its use,
and derives the formulas for the asymptotic covariance.

2. Nonlinear Random Effects Finite Mixture Model and MAP Estimation
Problem

A two-stage nonlinear random effects model that incorporates a finite mixture model is given
by

(1)

and
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(2)

where i =1, …, n indexes the individuals and k =1, …, K indexes the mixing components. The
alternate problem formulation presented in Cruz-Mesía et al. (2008) and in Pauler and Laird
(2000), also results in the solution outlined below.

At the first stage represented by (1), Yi = (y1i, …, ymii)
T is the observation vector for the ith

individual (Yi ∈Rmi); hi(θi) is the function defining the pharmacokinetic/pharmacodynamic
(PK/PD) model, including subject specific variables (e.g., drug doses); θi is the vector of model
parameters (random effects) (θi ∈ Rp); and Gi(θi, β) is a positive definite covariance matrix
(Gi ∈ Rmi×mi) that may depend upon θi as well as on other parameters β (fixed effects) (β ∈
Rq).

At the second stage given by (2), a finite mixture model with K multivariate normal components
is used to describe the population distribution. The weights {wk}are nonnegative numbers
summing to one, denoting the relative size of each mixing component (subpopulation), for
which μk (μk ∈ Rp) is the mean vector and Σk (Σk ∈ Rp×p) is the positive definite covariance
matrix.

Letting φ represent the collection of parameters {β, (wk, μk, Σk), k = 1, …, K}, the population
problem involves estimating φ given the observed data{Y1, …, Yn}. If φ is regarded as a random
variable with a known prior distribution p(φ), the maximum a posteriori probability (MAP)
estimate (φMAP) is the mode of the posterior distribution p(φ|Yn):

where Yn={Y1, …, Yn}. The MAP estimator enjoys the same large sample properties as the ML
estimator, namely consistency and asymptotic normality. In addition, the MAP objective
function is a regularization of the likelihood function and as such avoids the well-documented
singularities and degeneracies of mixture models (see, Fraley and Raftery (2005) and Ormoneit
and Tresp(1998)).

For mixture of normal distributions, a multivariate normal prior on the mean for each mixing
component is given by:

(3)

where λk and τ k can be viewed as the mean and shrinkage respectively. An inverse Wishart
prior with degrees of freedom qk and scale matrix Ψk is assigned to each covariance component:

(4)

The mixing weights have a Dirichlet distribution as the prior:
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(5)

We consider the model given by (1) and (2) for the important case Gi(θi, β) = σ2Hi(θi), where
Hi(θi) is a known function and β = σ2. The prior for σ2 is an inverse Gamma distribution:

(6)

These densities are conjugate priors to the multivariate normal mixtures (see appendix for the
parameterizations used).

The hyper-parameters {a, b, (ak,λk,τk,qk,Ψk), k = 1, …, K} can be based on prior studies or set
to represent vague knowledge about the parameters (see below).

3. Solution via the EM Algorithm
The EM algorithm, originally introduced by Dempster, Laird and Rubin (1977), is used to
perform iterative computation of maximum likelihood (ML) estimates. It is applied below to
solve the MAP estimation problem defined in the previous section.

The component label vector zi is introduced as a K dimensional indicator such that zi(k) is one
or zero depending on whether or not the parameter θi arises from the kth mixing component.
Letting φ(r) ={β,(wk

(r), μk
(r), Σk

(r), k = 1, …, K)} represent the parameters at the rth iteration of
the EM algorithm, the E step computes a conditional posterior expectation, given by

where . In the M step, the posterior mode

φ(r+1) is estimated as the optimizer of Q(φ,φ(r)) such that . Under the
prior defined above, the updating process of the M step is:
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and

where  and d = dim(θi).

The E and M steps are repeated until convergence. Discussions on the sufficient conditions for
the convergence can be found at Dempster et al. (1977), Wu (1983) and Tseng (2005). In the
appendix, an error analysis for φMAP is presented.

In order to implement the algorithm, all the integrals in the updating equations must be
evaluated at each iterative step. For the maximum likelihood mixture model problem we have
successfully used importance sampling to calculate the corresponding integrals in the EM
algorithm (see Wang et al. 2007). The same method can be applied here and was used in the
examples presented below. In brief, an envelope function pe(k) is selected for each mixing
component and for each subject, so that a number of individual specific random samples are

taken from . As all the integrals in the algorithm share the form
∫f(θi)gik (θi, φ)dθi, they are approximated as follows:

The envelope distribution is taken to be a multivariate normal density using the subject’s
previously estimated mixing-component specific conditional mean (i.e., ∫θigik (θi, φ)dθi) and
conditional covariance (i.e., ∫(θi − μk)(θi − μk)T gik (θi, φ)dθi) as its mean and covariance. The
number of independent samples (T) depends on the complexity of the model and the required
accuracy in the integral approximations.

4. Subpopulation Classification and Model Selection
Assigning each individual subject to a subpopulation follows the same method as presented in
Wang et al. (2007) for ML estimation. The E-step computes the posterior probability that
subject i belongs to the kth subgroup:
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and each individual is classified to the subpopulation associated with the highest posterior
probability of membership. For example, for each i, (i =1, …, n), set ẑi (k) = 1 if

 or to zero otherwise. No additional computation is required since all the τ i
(k) are evaluated at each EM step.

Determining the number of mixing components K in a finite mixture model is an important
but difficult problem. To compare two non-nested models, in contrast to likelihood ratio
procedures for comparing nested models, several criteria have been proposed. For example,
Lemenuel-diot et al. (2006) based such model selection on the Kullback-Leibler test, with the
null hypothesis of p0 components versus the alternative hypothesis of p1 components (p1 >
p0). Other criteria are based on a penalized objective function. For two models A and B with
different values of K, say KA and KB, one would compare objective functions QA and QB, and
prefer the model with the larger value. The Akaike Information Criterion (AIC) takes the form
AIC = L − P, where L is the maximized log-likelihood for the model and P is the total number
of estimated parameters. The Bayesian information criterion (BIC) is defined as BIC = L −
1/2P log N, where N is the number of observations in the data set. Fraley and Raftery (2005)
reported using a BIC criterion for mixture model selection. Based on its simplicity and good
behavior, their version of BIC criterion is also adopted here, with L replaced by the log-
likelihood evaluated at φMAP.

5. Example
A one-compartment model with first-order elimination and first-order absorption is used as the
model of the drug’s plasma concentrations yji, where

The model parameters V (L) and Ka (hr−1) were assumed to be independent with
 and . The drug’s clearance CL (L/

hr) was assumed to be a mixture of two lognormal densities:

with mixing weights w1 =0.3 and w2 =0.7. A sparse sampling schedule was used (m=4) with
t1 =2, t2 =8, t3 =12 and t24 = 24 hrs. This is a difficult mixture problem, as is evident from
inspection of the density for CL shown in Fig. 1, and was taken from a study of the kinetics of
the drug metoprolol used by Kaila et al. (2006). The within individual error εji is assumed to
be i.i.d with σ2 =0.12. The number of samples was reduced from the six sample times used by
Kaila et al. (1, 2, 4, 8, 12, 24 hrs) to the four sample times used here in order to provide an
even more challenging test. The number and timing of samples can influence estimation results
and formal approaches to sample schedule design for population studies are available (Mentré
et al., (1997)). A total of 300 population data sets were simulated from this model each
consisting of n =50 subjects.

The MAP estimates were obtained for each of the 300 population data sets using the EM
algorithm with importance sampling as described above (the lognormal kinetic parameters
were transformed). Very dispersed priors were assumed for the transformed parameters as
follows:
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For each of the estimated parametersφ, its percent prediction error was calculated for each
population data set as:

These percent prediction errors were used to calculate the mean prediction error and root mean
square prediction error (RMSE) for each parameter. In addition, the individual subject
classification accuracy was evaluated for each population data set.

Figure 2 plots the estimated parameter population distributions of the 300 simulated data sets,
as well as the true distributions used in the simulation, while Table 1 shows the mean estimates,
estimation biases and root mean square errors (RMSE). The histogram of the percent correct
classification is presented in Figure 3.

The data were also analyzed assuming a single component model for CL (lognormal) as well
as for V and Ka as above. Model selection was based on the Bayesian information criterion
(BIC) to select between a one or two component model for CL in each of the 300 population
data sets. The estimated densities of clearance are displayed in Figure 4, while the detailed
estimation results are given in Table 2. Based on BIC values, the two-component lognormal
model for CL was correctly selected in 198 out of the 300 population trials.

6. Discussion
In this paper, a maximum a posteriori probability estimation approach is presented for
nonlinear random effects finite mixtures models that has application to identifying hidden
subpopulations in pharmacokinetic/pharmacodynamic studies. Previously reported
nonparametric Bayesian approaches to this problem (Wakefield and Walker (1997), Rosner
and Mueller (1997)) have advantages over the MAP estimation approach presented herein,
including calculation of the complete posterior distribution of model parameters including the
number of mixing components. However, the computational challenges associated with the
proper solution to the nonparametric Bayesian mixture problem are considerable, whereas the
MAP estimation approach using the EM algorithm with importance sampling presented here
is straightforward in comparison.

In calculating the MAP estimator, the values of the parameters defining the conjugate prior
densities may be available from previous studies. When no prior information is available, these
parameters can be set to reflect very disperse priors (e.g, τk → 0 and other parameters set as
illustrated in the example presented). For linear mixture models with diffuse priors, as noted
by Fraley and Raftery (2005), it is expected that the MAP results will be similar to the MLE
results when they latter can be calculated. The advantage of the MAP estimator in such cases
is that it avoids the unboundedness that can be associated with maximum likelihood mixture
model problems (Fraley and Raftery (2005), Ormoneit and Tresp (1998)).

For determining the number of components in mixture models, several measures have been
suggested, including the BIC criterion used in the example presented in this paper. In addition,
a priori knowledge or assumptions about the biological mechanism for the modeled PK/PD
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polymorphism can also facilitate the model selection procedure, when combined with a model
selection measure. For example, for drugs primarily metabolized by the liver, the information
on hepatic cytochrome P450 family can help to decide a reasonable range for the number of
clearance subgroups (e.g., K=3 accounting for extensive, intermediate, and poor metabolizer
subpopulations) thus limiting the number of competing models to be tested.
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Appendix: Asymptotic Properites
Let  be the posterior mode of φ given Yn. Assuming that there is a “true” parameter φ0
which lies in the interior of the support of p(φ), it can be shown under suitable hypotheses that

 is consistent and asymptotically normal (White, 1994). However, from a Bayesian
perspective, it is more natural to investigate the asymptotic behavior of the conditional density
p(φ|Yn). Under the assumptions stated below, it is found that p(φ|Yn) is asymptotically normal
with mean . This gives another justification for calculating the MAP estimate.

This result is now stated more precisely. Assume that the Hessian matrix

 is invertible at . Then given the regularity conditions of Philppou
and Roussas (1975) and Bernardo and Smith (2001), it can be shown that 
converges in distribution to a standard multivariate normal random variable as n → ∞, where
φn ~ p(φ|Yn) and . It follows that asymptotically,  and Γn are the posterior
mean and posterior covariance of p(φ|Yn). For any component of , the posterior standard
error is the corresponding diagonal element of Γn.

The computation of Γn proceeds as follows:

and

where

It follows that
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Note that in the maximum likelihood setting of Wang et al (2007),

. So the difference between MAP and ML is the term

. As n → ∞, the contribution of this term diminishes.

In this asymptotic analysis the precisions (σ2)−1 and  are considered as primary variables
instead of the variances σ2 and Σk. This is standard practice in the normal, gamma, Wishart

model. Further using  instead of Σk greatly simplifies the second derivative calculations.

We first calculate Vi(φ), i =1, …, n. The formulas below are similar to those given in given in
Wang, et al (2007). The gradient components are calculated using the relation:

We have:

Next using the constraint: wK = 1 – w1 – … – wK−1, we have for k =1, …, K − 1

And for k =1, …, K

so that
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where vech(X) is the vector of the lower triangular components of a symmetric matrix X. Putting
these results together produces the vector

and the formula

All the above computations can be performed during the importance sampler calculation at the
final iteration of the EM algorithm.

It remains to calculate . For this calculation we represent the parameter φ as

. Now supposeθ has p components. Then each

μk has p components and each  has p(p+1)/2 unique components. Therefore  is
an R×R matrix, where R = 1 + (p − 1) + Kp + Kp(p+1)/2. Now

so that  is a block diagonal matrix of the form B =Diag (Bσ−2; Bw; B(μkνk), k =1,

…, K), .

To calculate B the following parameterizations for the prior p(φ) are assumed:

It follows:
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In the above equations, D is the permutation matrix satisfying D vech (X) =vec (X), where
vec (X) is the vector of the stacked columns of the symmetric matrix X, and ⊗ is the Kronecker
product (see Minka (2000)).

Wang et al. Page 12

Comput Stat Data Anal. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Simulated population density of clearance CL
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Fig. 2.
True (bold lines) and estimated (thin lines) population densities of CL (upper panel), V (middle
panel) and Ka (lower panel).
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Fig. 3.
Histogram of percent correct classification.
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Fig. 4.
True (bold lines) and estimated (thin lines) population densities of CL for the single component
analysis
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Table 1

True population values and mean of parameter estimates (300 trials), mean percent prediction error (PE) and root
mean square percent prediction error (RMSE)

Parameter Population Values Mean of Estimates Mean PE (%) RMSE (%)

μCL1 5 5.177 3.541 30.50

μCL2 10 9.709 −2.910 20.55

μV 50 49.09 −1.816 3.374

μka 1 0.986 −1.401 6.287

σCL
2 (cv%) 50 45.21 −18.25 36.79

σV
2 (cv%) 20 19.31 −6.796 22.64

σka
2 (cv%) 20 19.77 −2.270 42.25

w1 0.3 0.4486 49.53 68.44

σ 0.1 0.1094 9.421 15.46
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Table 2

True population values and mean of parameter estimates (300 trials) for the single component model

Parameter Population Values Mean of Estimates

μCL1 5 7.271

μCL2 10 X

μV 50 49.16

μka 1 0.9891

σCL
2 (cv%) 50 56.97

σV
2 (cv%) 20 18.84

σka
2 (cv%) 20 18.30

σ 0.1 0.1163
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