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Abstract
Models of a psychological process can be difficult to discriminate experimentally because it is not
easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus
structure) that will be most informative in differentiating them. Recent developments in sampling-
based search methods in statistics make it possible to determine these values, and thereby identify
an optimal experimental design. After describing the method, it is demonstrated in two content areas
in cognitive psychology in which models are highly competitive: retention (i.e., forgetting) and
categorization. The optimal design is compared with the quality of designs used in the literature. The
findings demonstrate that design optimization has the potential to increase the informativeness of
the experimental method.

Introduction
Experimentation is fundamental to the advancement of psychological science. When
conducting experiments, scientists often have to simplify the situation in which the
phenomenon of interest has been observed so that a degree of association between hypothesized
causal or correlational variables and human behavior can be established. Tools, most notably
computers, assist in this process by providing the control and precision necessary at the many
stages of experimentation (e.g., from stimulus selection or creation, to stimulus delivery and
behavioral measurement) that are required to infer a causal link between the hypothesized
variable and its effect on behavior.

Despite the sophisticated methods and technologies that have been developed and adapted in
the service of understanding behavior, key aspects of experimentation depend on the
knowledge, experience, and creativity of the scientist. Foremost among these, and the focus of
this paper, is experimental design. The choices made in designing an experiment can be critical
in determining the experiments’ contribution to the field. Decisions must be made about which
variables should be manipulated, which stimuli should be used, presentation schedule, and
choice of behavioral measure. Some choices can seem arbitrary (number of stimuli) and others
are influenced by pragmatic considerations, such as the time required to complete the
experiment. In well-established fields, decisions are usually guided by prior research. But even
here, the ramifications of these decisions can be difficult to evaluate, so much so that sometimes
they are the focus of investigations in their own right (e.g., Balota & Chumbley, 1984).

For example, decisions about how to manipulate an independent variable are particularly
crucial because they are most directly tied to the theoretical question of interest. Participants
must be sensitive to different levels of the variable to observe its effect on behavior. Although
piloting is one means of ensuring appropriate levels are chosen, without extensive piloting, it
can be difficult for the researcher to get a sense of whether the choices will be as informative
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as possible. Furthermore, the informativeness of these choices will likely be influenced by
other factors, such as those noted above (e.g., number of stimuli). An optimal design can be
elusive, requiring simultaneous consideration of many variables. To determine the suitability
of an experiment for addressing a theoretical question of interest, it would be ideal if one could
perform a power analysis on the experimental design itself, and thereby improve statistical
inference. In this paper, we introduce a method that is a step toward this goal.

The extent to which an optimal experimental design is necessary for distinguishing contrasting
predictions depends on the granularity of the comparison being made. If models are being
compared that predict qualitatively different patterns of data on the dependent measure, it is
not as crucial to use an optimal design. A case in point is a theory-driven experimental method
known as the systems factorial technology, developed for determining the architecture
underlying perceptual information processing (Townsend & Wenger, 2004). The method
predicts unique inequality patterns of response times for competing architectures. As long as
participants clearly produce one such pattern, the magnitude of the pattern is less important.
The architecture that does not conform to the prediction is inadequate.

Concerns about design optimality are more critical when models make predictions that differ
quantitatively. Such precision is found in formal mathematical models in psychology. In this
circumstance, two models may predict the same qualitative data pattern, but the actual
quantitative values predicted by the two are not identical. The use of what might be seem like
a reasonable design might not be sufficient to yield results that clearly favor one model over
the other. If the optimal design is able to do so, its use could generate much more theoretically
impactful results.

Precisely because mathematical models are quantitative, it is possible to define an optimal
experimental design as an objective utility function to be maximized, in the sense that the
design sought has the greatest likelihood of differentiating the models under consideration. In
this paper, we introduce such a method, specifically one that can identify an experimental
design that is optimal for discriminating among models. Its application is demonstrated in the
context of models of retention and models of categorization.

Design Optimization: A Formal Framework
The optimization of an experimental design has been considered at length in the statistics
community (e.g., Atkinson & Donev, 1992; Chaloner & Verdinelli, 1995; Kiefer, 1959; Box
& Hill, 1967) as well as in other science and engineering disciplines (e.g., El-Gamal & Palfrey,
1996; Bardsley, Wood & Melikhova, 1996; Allen, Yu, & Schmitz, 2003; Kueck, de Freitas &
Doucet, 2006). Among a variety of questions about design optimization (DO) that can be
addressed, the one that has received the most attention is that of identifying an experimental
design that makes the variances of a model’s parameter estimates as small as possible, thereby
allowing the model to make the most accurate predictions. This goal is achieved by what is
known as the D-optimum criterion, under which the design that maximizes the determinant of
the variance-covariance matrix is to be chosen, formally speaking.

Implicit in the D-optimum criterion is the assumption that the model is correct in that it
generated the data. Because this is impossible in most real-world problems, a more realistic
goal of optimization is to discriminate among several models of the same psychological
process. That is, the focus shifts to designs that maximally discriminate between two or more
models. This change in focus led to the so called T-optimum criterion (Atkinson & Donev,
1992, ch. 20; Ponce de Leon & Atkinson, 1991; Ucinski & Bogacka, 2005), which is described
below. Readers who prefer to skip the technicalities of the criterion, and instead concentrate
on its application to models in cognitive psychology, should skip to the next section.
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Suppose that we have two models, A and B, that we wish to discriminate experimentally.
Identification of the optimal design for this purpose requires evaluating the relative
performance of the models over the ranges of their parameters. This is done by fitting each
model to data generated by the other. A good design for discriminating between models is one
that maximizes the degree of model dissimilarity (i.e., distinguishability) in an appropriately
defined sense, operationalized as a badness-of-fit measure between models. Regardless of how
it is conceptualized, the task is nontrivial because of the large number of comparisons involved.
It also means that the optimal design depends on the parameterization of each model and, even
more importantly, on the utility function to be optimized. These issues are formalized below.

The problem of experimental design in model discrimination can be thought of as finding a
design d* that maximizes some utility function U(d) that quantifies the quality of the design
d. Let us assume that for this design d, the experimental outcome (i.e., data) yA = (yA1,...,
yAN) are generated from model A with its parameter vector θA, and further, that model MB is
fitted to the data by minimizing the sum of squares errors

(1)

where uA(·) denotes the minimized sum of squares error and  is the prediction by
model B at its best-fitting parameter vector θ*B given the design d. In designing an experiment,
we have yet to observe an outcome and we do not know the parameter vector θA from which
the outcome will be generated. Therefore, the quality of a given design d is assessed by the
expectation (i.e., mean) of u(d, θA, yA) in the above equation with respect to the sampling
distribution p(yA|θA ,d) and the prior distribution p(θA|d) given as follows

(2)

This equation gives an expression of the expected badness-of-fit of model B conditional on the
data from model A. Similarly, a corresponding expression can be obtained for the expectation
of u(d,θB,yB) by switching the roles of the two models and fitting model A to the data generated
from model B. Since we don’t know which of the two models A and B will generate an
experimental outcome, we combine the resulting two equations to obtain the desired utility
function U(d) to be maximized as

(3)

where p(A) and p(B) are model priors (p(A) + p(B) =1). The resulting utility function U(d) can
be interpreted as a measure of model dissimilarity or distinguishability between two models:
The larger the value of U(d), the less similar the two models are to each other. It is
straightforward to modify the expression in the above equation to accommodate the situation
in which more than two models are to be discriminated. In the remainder of this paper, to avoid
a possible confusion between the two utility functions, U(d) will be called the global utility
function and u(d, θ, y) the local utility function, whenever the context demands it.

As should be clear from equation (3), finding a design d* that maximizes U(d) is a nontrivial
undertaking because of the requirement of high dimensional integration and optimization. To
appreciate this, note that it is generally not possible to obtain an analytic form solution of the
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multiple integral, so the integration must be evaluated numerically for a given choice of d. This
itself is a formidable challenge given the fact that the integration is defined over the data space
and parameter space. The resulting estimate of U(d) must then be maximized over the design
variable d, which is often a multi-dimensional vector. Given these multiple computational
challenges, the use of standard optimization algorithms, such as the Newton-Raphson method
and the Levenverg-Marquardt method, in identifying an optimal design are inadequate. A
solution to the design optimization problem in general settings was not possible until recently.
Because of this, work focused on problems that were sufficiently simple (e.g., linear models
with normal errors) that analytically tractable solutions could be found.

A promising and fully general new approach has been proposed in statistics (Muller, 1999;
Muller, Sanso & De Iorio, 2004; Amzal, Bois, Parent & Robert, 2006). It is a Bayesian
simulation-based approach that includes a computational trick, which allows one to find the
optimal design without having to evaluate the integration and optimization directly. Under the
approach, the design optimization problem is recast as a problem of probability density
simulation in which the optimal design corresponds to the mode of a density. The density is
simulated by Markov chain Monte Carlo (MCMC; Gilks, Richardson & Spiegelhalter, 1996)
and the mode is sought by gradually “sharpening up” the density under a simulated annealing
procedure (Kirkpatrick, Gelatt & Vecchi, 1983). In the present study, we adopted and
implemented this simulation-based approach, with minor modifications, to solve the design
optimization problem for model discrimination in equation (3).

The basic idea of this simulation-based approach is to treat d as a random variable and view
U(d) as a marginal distribution of an artificial distribution defined over the joint space of (d,
yA, θA, yB, θB) as follows

(4)

where α (>0) is the normalizing constant of the artificial distribution and p(yA,θA, yB,θB|d) = p
(yA | θA, d) p(θA) p(yB | θB, d) p(θB). Note that defining the distribution h(·) as above requires
the assumption that both u(d, θA, yA) and u(d, θB, yB) are non-negative and bounded. It can
then be shown that marginalizing h(·) over (yA, θA, yB, θB ) yields

. This relationship provides a key link between
design optimization and density simulation that can be exploited to find an optimal design
through the following steps (A more thorough description of the algorithm is provided in
Appendix A):

Step 1: Generate a sample of draws (d, yA, θA, yB, θB)’s from the artificial distribution h
(·) using a suitable MCMC chain;

Step 2: From the sample of draws, empirically estimate the marginal distribution Û(d), up
to a constant proportionality, by collecting all d’s but disregarding yA’s, θA’s, yB’s, and
θB’s;

Step 3: Identify the mode of Û(d) as an approximate solution to the design optimization
problem.

There may be many locally optimal designs. To overcome the local optimum problem so as to
find the globally optimal solution, the artificial distribution h(·) is augmented in the following
form
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(5)

for a positive integer J and αJ > 0. The marginal distribution of hJ(·) obtained after integrating
out the outcome variable and model parameters yields αJU(d)J. Note that the higher the J value,
the more highly peaked the distribution U(d)J will be around its (global) mode, and therefore
the easier the mode can be identified. This is illustrated in the left three panels of Figure 1for
a hypothetical marginal distribution U(d)J defined over a one-dimensional design variable d.

Along with the augmented distribution hJ(·), the earlier three-step procedure for finding an
optimal design is modified to include a simulated annealing step such that a sequence of
marginal distributions U(d)Jn are approximated by gradually increasing the value of Jn, or
equivalently, by lowering the annealing “temperature” defined as Tn =1/ Jn. Ideally, under a
carefully designed annealing schedule, simulated samples of d’s from U(d)Jn for large Jn will
be tightly concentrated around the global optimal design d*. This is illustrated in the right
panels of Figure 1. Each of these panels represents an empirical estimate Û(d)J of the target
marginal distribution Û(d)J shown on the respective left panel, obtained through a simulated
annealing based MCMC sampling scheme.

Following Amzal et al (2006), we employed a sequential Monte Carlo (SMC) method, also
known as a particle filter, to simulate the artificial distribution hJ. SMC, which is a sequential
analog of MCMC, consists of a population of “parallel-running and interacting” Markov
chains, called particles, that are eliminated or multiplied according to an evolutionary process.
The implementation of SMC does not require one to know the values of the normalizing
constants α and αJ.

SMC has been applied to nonlinear dynamical system modeling problems in engineering and
computing fields such as signal processing, navigation, automatic control, computer vision,
and target tracking (Doucet, de Freitas & Gordon, 2001; Del Moral, Doucet & Jasra, 2006;
SMC homepage at http://www-sigproc.eng.cam.ac.uk/smc/). The specific version of SMC we
implemented in all of the applications discussed in this paper, including the illustrative
examples that begin the next section, is the Resampling-Markov Algorithm (Amzal et al,
2006, p. 776).

Optimal Designs for Discriminating Retention Models
For over one hundred years, psychologists have been interested in how long information is
retained in memory after a brief study period (Ebbinghaus, 1885). This question about memory
is somewhat unique in that not only is there a large empirical literature on the topic (Rubin
Wenzel, 1996; Wickens, 1998) but a fair number of models have been proposed to describe
the form of the retention function (see Navarro, Pitt, & Myung, 2004; Wixted & Ebbesen,
1991). Most models do a good job of capturing the basic pattern in the experimental data, of
memory worsening as the time interval between study and test increases, but they differ in the
exact form of the function and the factors that are thought to influence it.

Design optimization is highly desirable in a situation like this, where there is a crowded field
of models that differ primarily in the precision with which they fit empirical data. Model
mimicry is widespread, making it difficult to identify a design that has the potential to
differentiate the models. In this circumstance, one must identify a design that can exploit what
in all likelihood are small differences between models. In the following simulations, we
demonstrate the ability of design optimization to do this.
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Illustrations of Design Optimization
Before delving into the details of the main demonstrations, we begin with an easy-to-understand
example to illustrate what is being optimized when discriminating retention models. Two
retention models that have been of interest (e.g., Wixted & Ebbesen, 1991; Rubin & Wenzel,
1996) are the power model (POW) and the exponential model (EXP), both of which are defined
in Table 1. Their functions look like those in Figure 2 when their parameters are restricted to
a very narrow range. The thin lighter line represents a set of power curves that are generated
by varying independently each parameter’s values over 0.95 < a < 1 and 1.00 < b < 1.01. The
thick darker line represents the set of exponential curves that are generated by varying each
parameter’s values over 0.95 < a < 1 and 0.16 < b < 0.17. Both models predict that memory
decays monotonically as the time interval between the study phase and the test phase increases,
but as seen in Figure 2 forgetting is predicted to occur much more quickly immediately after
the study phase in the power model than the exponential model.

If a researcher conducts an experiment to compare the predictions of these models, and decides
to probe memory at five time intervals between the range of 0 and 25 seconds1 after study,
then the goal of design optimization is to identify those time intervals that yield the most
differentiating predictions of the two models. Visual inspection of Figure 2 suggests the values
should fall between 1 and 5, where the functions are separated the most. In this region, the
power model predicts performance will be much lower than the exponential model.

We applied design optimization to the two models in Figure 2 using the local utility function
defined in equation (1). In a retention experiment, the outcome variable yi (= 0,1,...,n) in the
utility equation represents the number of correct responses observed out of n independent test
trials or items, and accordingly is binomially distributed with probability pi and binomial
sample size n, formally, yi ∼ Bin(n, pi), i = 1,...,N, where pi denotes a model’s predicted
probability of a correct response on each trial at a given time interval ti. Note that N denotes
the number of time intervals employed in an experiment and n denotes the number of binary
responses (correct or incorrect) collected at each time interval. We ran the DO algorithm
seeking five (N=5) time intervals, (t1, t2, ...,t5), for the same sample size of $n = 10$ for each
time interval under the noninformative Jeffreys (1961) priors for both p(θA) and p(θB) and
under equal model priors (i.e., p(A) = p(B) = 0.5) in equation (3), where A = POW and B =
EXP. Jeffreys’ priors and equal model priors are employed for all simulations reported in this
paper. Justifications for the choice of Jeffreys’ priors are discussed in the General Discussion.

The five points that constitute an optimal design, shown by vertical bars on the x axis in Figure
2, all fall squarely between 1 and 5, confirming intuitions. When the very narrow parameter
ranges of the models used in this example are expanded to more typical ranges, it is no longer
possible to eyeball optimal time intervals by examining plots as in Figure 2, which is why the
design optimization algorithm is necessary.

In addition to identifying an optimal design, one might be interested in the quality of other
experimental designs. Are there designs that are similarly good? What set of time values yield
a bad design? For example, comparison of the two functions in Figure 2 suggests that selection
of five time intervals between 15 and 20 would probably result in a very poor design.

The models in Figure 2 are not suitable to illustrate how design optimization can be used to
evaluate design quality, and thereby answer the preceding questions. We therefore made slight
changes to these two models and the design to create an appropriate example. The parameter
ranges of both models were expanded to those typically used (0 < a <1 and 0 < b < 3). In

1The time scale is arbitrary as it depends upon how the parameters of a retention model are interpreted. For simplicity, we will assume
throughout that time is measured in seconds.
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addition, three time intervals (N = 3) were used instead of five, and the time scale was
discretized into increments of 0.5 in the range of 0.5 < t1 < t2 < t3 < 15. These changes created
an optimization problem in which the total number of designs (4060) was manageable for study.
The global utility values of all designs were calculated individually by a brute force method
without using the design optimization (DO) algorithm, and the relative frequency distribution
of these utilities (transformed into log utility values) is shown in Figure 3.

The frequency distribution provides information about the relative potential of the designs (i.e.,
choice of three time intervals) to discriminate between the two models. This negatively skewed
distribution shows that a large number of designs are fairly comparable in their ability to
distinguish between the models. An example of one of these “average” designs is shown in the
middle box below the graph. The frequency distribution also shows that there are only a small
number of very bad and very good designs. An example of each is provided as well. Comparison
of the time intervals across the three examples reveals what affects design quality. Although
all models share the middle time interval (2.5), they differ in the spacing of the adjacent
intervals. For the worst designs, t1 and t3 are immediately adjacent to t2. Design quality
improves as t1 and t3 move away from t2, toward their boundary values, to the point where the
best designs take advantage of the full range of time values (0.5 and 15).

The three example designs in Figure 3 are not idiosyncratic, but reflect properties that define
design quality in this comparison of the power and exponential models. Shown in Figure 4 are
the time intervals for the ten worst and ten best designs. As in Figure 3, a bad design is one in
which the time intervals are clustered together in the upper half of the time scale. The best
designs include intervals at the endpoints plus a middle value near 3.0.

The fact that there are so many similarly good designs should make it clear that while an optimal
design can be identified, it is probably most useful to think of a region in the space of
experimental designs that contains sets of time intervals that are close to optimal. In this regard,
the goal of design optimization is to identify those regions in which models are most
distinguishable. With more complex designs (and models), there could be more than one region.

Discriminating Retention Models
In this section, we apply the DO algorithm to identify optimal experimental designs for
discriminating the retention models in Table 1. To do so properly, it was necessary to replace
the sum-of-squared- errors local utility function in equation (1), which was used in the
preceding examples to simplify presentation of design optimization. In practice, sum-of-
squared errors, like any other goodness of fit measure (e.g., maximum likelihood, percent
variance accounted for), is a poor choice because it is biased toward the more complex model,
which will generally overfit the data (Myung & Pitt, 1997;Pitt, Myung & Zhang, 2002;Pitt &
Myung, 2002).

To counter this bias, a model selection method must be used that controls for model complexity,
which refers to the ability of a model to fit diverse patterns of data. Various model selection
criteria that incorporate complexity have been proposed in the literature, and the interested
reader is directed to two special issues of the Journal of Mathematical Psychology for
discussion of model selection criteria and their example applications (Myung, Forster &
Browne, 2000; Wagenmakers & Waldorp, 2006). In the current study we employed the Fisher
Information Approximation (FIA: Grunwald, 2000; Myung, Navarro & Pitt, 2006) as a model
selection criterion, the application of which to cognitive modeling has been well demonstrated
(e.g., Lee, 2001; Pitt, Myung & Zhang, 2002; Navarro & Lee, 2004; Grunwald, Myung & Pitt,
2005; Lee & Pope, 2006). FIA is an implementation of the minimum description length
principle (Rissanen, 1996, 2001) and is defined as
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(6)

where ln f(y|θ*) is the natural logarithm of the maximum likelihood, k is the number of
parameters, n is the sample size, and I(θ) is the Fisher information matrix of sample size 1.2
The Fisher information matrix quantifies the amount of information contained in the data about
the parameters, measured by the relative precision of parameter estimates. A smaller value of
the FIA criterion indicates better generalization, and thus, the model that minimizes the
criterion should be selected. FIA was chosen because its complexity measure, represented by
the second and third terms of the criterion equation, is sensitive to the ‘functional form’
dimension of complexity through I(θ) (Pitt, Myung & Zhang, 2002), as well as to the number
of parameters and sample size. As such, the criterion will be particularly useful for the present
problem of discriminating among the six retention models, some of which assume the same
number of parameters but differ in functional form (e.g., POW and EXP). The local utility
function can now be expressed as a measure of model recovery using FIA, with u(d, θA, yA) =
1 if FIAA < FIAB and 0 otherwise, and similarly for u(d, θB, yB). With this change of local
utility function implemented, we applied the DO algorithm and sought designs that optimally
discriminate retention models.

To reiterate, throughout this paper, optimal designs are defined as the ones that maximize the
proportion of times in which the true, data-generating model is selected under FIA-based model
selection. Obviously, design optimality can also be defined with respect to other methods of
model selection such as the Akaike Information Criterion (AIC: Akaike, 1973) and the Bayes
factor (Kass & Raftery, 1995). We return to this issue in the General Discussion.

Two important decisions that must be made when designing a retention experiment are the
number of time intervals (N) at which memory will be tested and the choice of those time points
(T = (t1, ..., tN)). In the retention literature, N has varied greatly, from a low of three (Slamecka
& McElree, 1983) to a high of 15 (Squire, 1989). Although some studies have used linearly
spaced time intervals (Waugh & Norman, 1965; Wickelgren, 1968), most have used
geometrically spaced intervals such as T = (1, 2, 4, 8, 16), or ones that are close to or include
a geometric progression.

Our investigation explored the impact that choices of N and T have on the ability of a design
to discriminate the power and exponential models of retention. We began by comparing the
two models using the simplest possible design, N = 3. Because POW and EXP have two
parameters, at least three time intervals are needed to make the models identifiable. This
comparison is then extended to N = 5, and the tradeoffs in N and T are examined. N is then
increased to 25 to test a conjecture that a long geometric progression of time intervals can
discriminate the two models. Finally, design optimization is demonstrated with six retention
models.

Before discussing the design optimization results, we describe briefly implementation details
of the DO algorithm. Unless noted otherwise, we ran all computational simulations
implementing the algorithm for the binomial sample size of n = 100 with the time intervals
restricted to the range 0 < ti < 1000, (i = 1,...,N).3 Once a simulation was determined to have
reached an asymptote, usually around 300 - 500 iterations for 50 interacting particles, an

2The Fisher information matrix of sample size 1 is defined as  (e.g., Casela & Berger,
2002).
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optimal design solution was recovered as an arithmetic mean of individual designs, each
associated with a particle. The global utility (i.e., model recovery rate) of the optimal design
was then estimated outside of the algorithm based on a separate sample of 5000 quartets,
(θA, yA, θB, yB)’s generated using the design according to equation (3).

For a given N, the quality of an optimal design was evaluated by comparing its model recovery
rate with that of two typical designs, one in which the time intervals were spaced linearly and
the other in which they were spaced geometrically. For N = 3, model recovery estimates for
all three designs are shown in the top half of Table 2. For both linear and geometric spacing,
the recovery rate hovers near 60%, with a slight edge for geometric spacings. The similarity
of the recovery rates is not surprising given that two of the three time intervals are identical
and the third is very similar. The recovery rate for the optimal design T = (9.53, 26.9, 252) is
vastly superior (86.3%), and the design solution is quite different. In contrast to the linear and
geometric progressions, and many studies in the literature, memory is not probed multiple
times during the first 4 - 5 seconds after the study phase. Rather t1 occurs almost 10 seconds
after study. t2 and t3 are also spread out, with t3 occurring over four minutes after study.

When N is increased from 3 to 5 (bottom half of Table 2), model recovery changes predictably.
The addition of two more time intervals increases the recovery rate for all designs, but much
more so for the geometric than linear spacing (65.3% vs. 76.2%). The optimal design remains
substantially superior, with a recovery rate of 91.5%. Inspection of the time intervals again
shows that the optimal design contains widely spaced intervals. Although their spacing is not
geometric, it is not fixed either. Each successive interval is greater than the preceding one by
a factor of between 2.5 and 5.

Identification of an optimal design makes it possible to evaluate the quality of designs used in
past studies. Wixted and Ebbesen (1991) compared the exponential and power models, along
with others, using a design with N = 5. The model recovery rate for this design, along with its
time intervals, is listed in the last row of Table2. Although Wixted and Ebbesen also used a
geometric progression, their recovery rate is about 3% higher than the other geometric design.
The reason for the improvement must be the wider range of intervals in the Wixted and Ebbesen
design. The difference between the ranges is greater than two-fold (15 vs. 37.5). The fact that
the optimal design also spans a wide range suggests that the range of time intervals is an
important property of a good design.

Additional evidence that widely spaced time intervals are critical for discriminating power and
exponential models is that the recovery rate for the optimal design when N = 3 is higher than
for three of the four designs when N = 5. The optimal placement of a few time intervals over
a wide range can yield a design that is better than one with more intervals that span a shorter
range, even when this shorter range might appear to be satisfactory.

These observations about the effect of interval spacing and range on model discriminability
raise the question of whether a geometric progression that spans a large enough range (e.g.,
extend the Wixted and Ebbesen design to ten intervals) could yield a design that is close to
optimal. We tested this idea by first identifying the optimal design for N = 25. The simulation
details were the same as those used for the comparisons in Table 2. The optimal design yielded
a model recovery rate of 97.3%. The time intervals for this design are graphed in Figure 5 as
a function of the rank order of the interval (x axis) and the interval’s logarithmic value (y axis).
On an logarithmic scale, a geometric progression forms a straight line. The points are close to

3In all simulations with the six retention models reported in this paper, the parameters are restricted to the following ranges: 0 < a < 1,
0 < b < 3 for both POW and EXP; 0 < a < 100, 0 < b < 10 for HYP; 0 < a, c < 1, 0 < a+c < 1, 0 < b < 3 for both POWA and EXPA; 0 <
a, c < 1, 0 < b < 3 for EXPE. The parameter ranges of each model were chosen so as to generate retention curves that are typical of the
curves found in experiments and further, that are mutually comparable to the ones generated by the other models.
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this. How close is indicated by the dashed line, which is the best-fitting linear exponential
function to these points. When the corresponding time intervals on this line are used to
discriminate the power model from the exponential model, the recovery rate is virtually as
good as that for the optimal design (96.4% vs. 97.3%).

Analysis of an optimal design in the context of poorer designs can reveal what makes a design
optimal. With enough time intervals that are geometrically spaced, the design is likely to be
close to optimal for discriminating the power and exponential models. Information like this
can be used as a heuristic in testing these models, not just in the context of forgetting, but also
in other fields were human or animal performance exhibit a similarly shaped function (e.g.,
practice effects; Anderson, Fincham & Douglass, 1999).

The recovery rates in Table 2 are for a binomial sample size of n = 100. Because model
discriminability can vary with sample size, it is useful to know how the results change at smaller
and larger sample sizes. Model recovery tests were therefore performed for all four designs
when the number of time intervals is five (N = 5) at sample sizes ranging from n = 10 to n =
1000 for each time interval. The results are shown in Figure 6, with sample size on the x axis
and recovery rate on the y axis. Note that each data point in the figure was estimated outside
of the DO algorithm based on a sample of 5000 quartets, (θA, yA, θB, yB) generated under the
given design according to equation (3). Because variability decreases as sample size increases,
model recovery rate will increase with any design, so it is not surprising that this trend is present.

Of more interest are the differences across designs. Even with small samples (20, 50), the
optimal design has a sizable recovery advantage over the others, with this advantage being
maintained across sample sizes. To show how profitable the optimal design can be over the
others, suppose that an experimenter wishes to design an experiment with the goal of achieving
a 90\% overall model recovery rate. If the optimal design of T = (2.79, 9.07, 24.1, 58.6, 309)
is used, the desired recovery rate can be achieved with about 100 independent Bernouilli trials
(i.e., sample size n = 100 presentations at each time point) of stimulus presentation in the
experiment. In contrast, use of the Wixted and Ebbesen (1991) design of T = (2.5, 5, 10, 20,
40) or the geometric design of T = (1, 2, 4, 8, 16) would require six or nine times more trials,
respectively, to achieve the same recovery performance. These results clearly demonstrate the
significant and tangible advantages that design optimization can bring about in model
discrimination experiments.

In our last demonstration of design optimization with retention models, we expanded the
comparison to all six models in Table 1. The four additional models were chosen because they
are strong contenders (hyperbolic) or include the power and exponential models as special
cases, making the task of discriminating among them particularly arduous. How good is the
optimal design in this situation?

With six models, the global utility function U(d) in equation (3) consisted of six additive terms,
instead of two, and involves a total of 36 model fitting exercises. Specifically, for a given
design, we generated data from one of the six models, then fitted each of the six models,
including the data generating model, to the data, calculated six FIA values, and identified the
model with the smallest MDL value. If that model happened to be the data generating model,
the local utility u(d, θ, y) was set to 1 and otherwise to 0. This was repeated for the remaining
five models.

The optimal design for the six-model comparison was T = (1.23, 6.50, 24.9, 124,556). The
analyses that yielded the results in Figure 6 were repeated for the six models: Model recovery
rates for the same three fixed designs were compared with the optimal design across sample
sizes. The results are graphed in Figure 7. The most noticeable changes when six models were
compared are that model recovery rate is significantly worse overall and the poorer designs
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are less differentiated. In contrast to the two-model comparison, differences in design quality
do not begin to emerge until sample size reaches 100, and even at this value the differences
are small. One reason for this is that with so many highly competitive models, the sample size
necessary to distinguish them must be considerably larger than with two models. The optimal
design takes advantage of the benefits of a larger sample (e.g., smaller variance), leading to
dramatic improvements in recovery as sample size increases. In contrast, the three other designs
do so less well, and thus show much more modest improvements in recovery at larger sample
sizes. The net result is that the optimal design is considerably superior to the others when six
than two models are compared.

The data in Figure 7 clearly show the difficulty of designing an experiment that can differentiate
highly competitive retention models. Even the best design at a large (and unrealistic) sample
size has a success rate of no greater than 0.75, although it is still significantly higher than the
base-rate of choosing among six models (i.e., 1/6 = 0.1667). A design might be optimal, but
this does not necessarily make it satisfactory. If models cannot be discriminated with even an
optimal design, then they are quantitatively indistinguishable. Not until they are modified or
expanded (e.g., adding new parameters) will they be distinguishable. The results in Figure 7
suggest that retention models may exhibit this characteristic of virtual indistinguishability.
Even with a sample size of 100, an optimal design will distinguish between them with a
probability of only 0.49.

Optimal Designs for Discriminating Categorization Models
Identification of optimal designs for discriminating retention models involves optimization
over a design variable that is a continuous dimension, such as time. The DO algorithm can be
applied to discrete variables (e.g., dichotomous stimulus properties) as well, making it quite
versatile in terms of what can be optimized. We demonstrate this in the context of categorization
models.

Categorization, or category learning, is one of the most fundamental behaviors humans and
animals perform, and often serves as a starting point for studying higher-level cognitive
phenomena such as reasoning, language, problem solving, and decision making. There are
currently two dominant theoretical explanations of how we learn to categorize objects into
psychologically equivalent classes. They are the prototype and exemplar theories. According
to the prototype account of category learning, we extract a prototypic representation for each
category from the instances of that category, storing only a summary of the information in
memory, against which new stimuli are compared during categorization (Reed, 1972). In
contrast, exemplar theories prescribe that we encode and store in memory all information about
every encountered instance (Medin & Schaffer, 1978).

The question of which of these two theories better accounts for human categorization
performance has been intensely debated to this day, with the empirical findings often being
mixed (e.g., Smith & Minda, 2000; Nosofsky & Zaki, 2002; Vanpaemel & Storms, 2008). One
reason for the inconclusive results is that the experimental designs might not have been the
most effective for distinguishing models from the two theoretical perspectives. We applied the
DO algorithm to find an optimal design for discriminating two well-studied categorization
models, and then compared the optimal design to the designs that were used in Smith and
Minda (1998).

Multiple prototype and exemplar models have been proposed. We compared the multiplicative
prototype model (PRT; Smith & Minda, 1998) with the generalized context (exemplar) model
(GCM; Nosofsky, 1986). Given two categories, A and B, both models assume that the number
of category A decisions out of n Bernoulli trials given the presentation of an input stimulus
Si follows a binomial distribution with probability P(A|Si) and sample size n, and, further, that
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the probability P(A|Si) is proportional to the similarity between stimulus Si and category A.
The two models differ in how similarity is calculated. In PRT, category similarity is obtained
by calculating a similarity measure between stimulus Si and a category prototype SA. In GCM,
the similarity is calculated by summing across individual similarities. The similarity measure
sij between the i-th and j-th stimuli is assumed to follow an exponentially decaying function
of the city-block distance between the two

(7)

In this equation, xim is the feature value of stimulus Si along dimension m, c (> 0) is the
specificity parameter representing the steepness of the exponential decay, and wm (0 < wm <

1) is the attention parameter applied to the m-th feature dimension satisfying . In
terms of the above similarity measure, the two models define the categorization probability as

(8)

(9)

where C = {A, B}. Note from the above equation that both models assume M parameters
consisting of θ = (w1,...,wM-1, c).

A goal of Smith and Minda (1998) was to determine whether PRT or GCM better reproduces
participants’ categorization performance. In the experiment, participants learned to categorize
nonsense words into one of two categories, with category feedback provided. There were a
total of 14 stimuli to learn, each of which was represented by a six-dimensional (i.e., M = 6)
binary vector, with seven belonging to category A and the other seven belonging to category
B. Each stimulus was presented four times (i.e., n = 4) in each block of 56 trials.

One feature of the experimental design of Smith and Minda (1998) that can be exploited to
improve model discrimination is category structure. There are 64 (= 26) different stimuli that
can be constructed by combining the six binary features. The number of possible partitions of
64 stimuli into two categories, each with seven stimuli, is so daunting (64 C7·57 C7 ≈ 1.64 ×
1017) that it is difficult to know how good one’s choice will be for discriminating models.
Shown in the top half of Table 3 are the category structures that were used in Experiments 1
and 2 of Smith and Minda (1998). Although these two designs might be intuitively appealing
and might even have certain theoretical justification, it is difficult to know how effective the
designs are for discriminating between PRT and GCM. We used the DO algorithm to identify
an optimal design that maximizes model recovery rate.

The application of design optimization to this problem involves searching through the discrete
space of literally billions of different designs. It turns out that for most of these, PRT is
unidentifiable. That is, the model is not sufficiently constrained to yield a unique set of
parameter values given observed data. Identifiability is required for maximum likelihood
estimation and model selection, and therefore for the application of the DO algorithm.
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This problem necessitated a modification to PRT. A quick examination of 500 randomly
selected designs revealed that PRT was unidentifiable for 98% of them.4 To make PRT
identifiable, we modified the model in such a way that its binary feature values were replaced
by continuous ones. Specifically, we substituted each 0 in the 64 six-dimensional binary vectors
by a random number generated on a uniform distribution between 0.0 and 0.1 and similarly,
each 1 by a random number generated on a uniform distribution between 0.9 and 1.0. Appendix
B lists all 64 stimulus vectors created in this way and subsequently used in all simulations.
With this change, the model is now interpreted in terms of low (0.0 - 0.1) or high (0.9 - 1.0)
probability of the presence of a specific feature instead of the absence (0) or presence (1) of
that feature. The modification made PRT identifiable in 97% of a random sample of 500
designs.

We applied design optimization to the two categorization models using the binary local utility
function expressed as model recovery decisions in equation (6). The specificity parameter of
both models was restricted to that typically found (0 < c < 20). The quality of the optimal design
was evaluated by comparing its model recovery rate with that of three comparison designs,
two from Smith and Minda (1998) and a third one labeled ‘simple design,’ in which the feature
values that defined each category are dominated by zeros (category A) or ones (category B).
This third design and the optimal design found by the DO algorithm are shown in the lower
half of Table 3.

The percentages above all four designs (top value) are the estimated model recovery rates. The
optimal design is superior to the three comparison designs (96.3% vs 53.1% - 88.8%).5 It looks
more complex, with items within and between categories never displaying a predictable pattern.
Differences in the quality of the two Smith and Minda designs are also evident, with the
nonlinearly separable design being quite good and significantly better than the linearly
separable design. The quality of the simple design is somewhat surprising. One might think
that it would have made a good design given its simplicity, but it turns out to be worst of all,
barely above the chance level (53.1%). One lesson we can learn from this investigation is that
what might be an intuitively appealing design might not be the most discriminating design,
which can defy easy description. It is in exactly this situation where design optimization is
most helpful.

Recall that the quality of the optimal design, and also the three comparison designs, was
evaluated conditional upon the particular choice of stimulus vectors shown in Appendix B. It
is of interest to examine whether the quality of the four designs depends on the choice of
stimulus vectors. To this end, we generated ten replications of each set of stimulus vectors.
Each set was generated using the same rules used to generate the original set of 64 vectors in
the appendix. The mean and standard deviation of model recovery rates for each design are
shown in parentheses in Table 3. For all four designs, the recovery rates obtained with the
original stimulus set are well within the ranges obtained for different choices of stimulus
vectors.6 These results demonstrate that the conclusions obtained under the particular set of
stimulus vectors are robust and generalizable to other choices of stimulus vectors.

4PRT is identifiable for both of the designs, shown in the top panel of Table 3, that Smith and Minda (1998) used in their study.
Unidentifiability is not a problem for GCM; for the same 500 designs used to assess the identifiability of PRT, GCM was identifiable in
all of them.
5All recovery rates were estimated outside of the DO algorithm based on a sample of 1000 quartets, (θA, yA, θB, yB)’s, generated under
the given design according to equation (3).
6For the optimal design, its recovery rate (96.3%) is a bit higher than the average (93.8%) across the ten replication sets. This is to be
expected because the design was optimized on the original stimulus set.
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General Discussion
A well-designed experiment has qualities of a good work of art: It is creative and elegant. These
qualities come through in the idea motivating the experiment and the choice and manipulation
of variables that test it. Good designs can also be simple, and no matter the outcome, yield data
that are highly informative about the topic under investigation.

But good designs rarely come easy. One reason for this is that the consequences of some design
decisions (e.g., stimulus selection in categorization experiments) are difficult to evaluate.
Design optimization can assist in some of the decision making. We demonstrated its potential
in two areas of cognitive modeling, retention and categorization. In its application to retention
models, the DO algorithm found designs that were far superior to several comparison designs,
including one used in a well-known study in the literature. We also demonstrated the generality
of the method by showing that it scales up well when six rather than two retention models are
compared, and by applying it to a very different type of design problem, defining the stimulus
structure of two categories that will optimally discriminate between two categorization models.
Not only did the algorithm find a superior design, but as in the case of the retention models,
the method can provide information about the quality of past designs.

In the following paragraphs, we discuss the relationship of design optimization to extant
methods of model discrimination, address some practical issues in interpreting design
optimization results, and finally, discuss extensions of the methodology.

Relationship of Design Optimization to Landscaping
Design optimization is related to landscaping, a method of assessing model discriminability
given a fixed experimental design (Navarro et al, 2004; Wagenmakers, Ratcliff, Gomez, &
Iverson, 2004). Landscaping has its roots in the field of model selection. A landscape graph
consists of two frequency distributions of the relative fits of two models. Specifically, to obtain
a landscape, we first generate simulated data sets from one model and then fit both models to
all data sets by computing their log maximum likelihood (LML) values. The resulting LML
differences between the two models are then plotted to yield a frequency distribution. Similarly,
the distribution of the relative fits to data sets generated by the other model is created. The
extent to which the two distributions overlap indicates how easily one model can be
discriminated from the other based on their relative fits: The greater the separation, the easier
it is to discriminate between the models.7

Design optimization can be thought of as a tool that identifies the experimental design that
maximizes the distance between the distributions. A landscape of the power and exponential
models for the comparison design T = (1, 2, 3, 4, 5) in Table 2 is shown in the upper panel of
Figure 8. The solid curve represents the distribution of the relative fits of the models to data
generated by the power model, and the dotted curve represents the relative fits of the two models
to data generated by the exponential model. Note how significantly the two distributions
overlap; the model recovery rate of the two models under FIA is equal to 65.3%. The landscape
for the same two models using the optimal design T = (2.79, 9.07, 24.1, 58.6, 309) is shown
in the lower panel of Figure 8. The separation of the distributions provides visual confirmation
of the superiority of the optimal design. Comparison across graphs shows the extent to which
the optimal design is better.

The connection between design optimization and landscaping suggests an easy-to-apply, but
crude, method of identifying an optimal design: Landscape the models across multiple designs

7A landscape displays the inherent (theoretically achievable) discriminability of two models. The actual discriminability depends on the
particular quantitative method used to choose between them (e.g., AIC or FIA).
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and use the one that discriminates the models most. If the design space is small, this method
might succeed in identifying an optimal design. Even with a large design space, one could hit
upon an optimal design from trial and error (or by automating landscaping), especially if
constraints could be placed on the design. Minimally, the use of landscaping will aid in
understanding the effects of different designs on model discriminability.

DO can also aid in interpreting landscaping analyses. For example, Navarro et al (2004) used
landscaping to compare highly competitive models of retention using data sets from a large
number of studies. In one analysis, sample size (N) and the number of time intervals (T) were
examined independently and together to determine their contributions to model
discriminability. Surprisingly, both were found to be weak predictors of model
discriminability. The results in Table 2 suggest that what is most important is the spacing of
the points in time at which memory is probed, something Navarro et al did not examine.

Practical Issues in Implementing the DO Algorithm
There are practical issues that the researcher needs to be cognizant of when implementing the
design optimization algorithm and interpreting the ensuing results. Before discussing these, it
is useful to recount the computational steps in the algorithm. The first step in applying design
optimization is to specify the form of the sampling distribution p(y|θ, d) that describes the
probability of observing an outcome y given a parameter θ and a design d for a given model,
and also the form of the prior distribution p(y|d) of the parameter θ in equation (3). The next
step is the specification of the form of the real-valued local utility function u(d, θ, y) that
describes the quality of a design d. Since y, θ and the model are all unknown prior to
experimentation, the function that is actually optimized is the global utility function U(d) in
equation (3) that takes the form of the expected local utility function, averaged over outcomes,
parameters, and models weighted by the respective priors. Finally, the DO algorithm is applied
to find numerically the optimal design d* that maximizes U(d).

One of the limitations of the above formulation is that it is applicable only to quantitative
models with parameterized families of sampling distributions expressed in analytic form. Until
a more generalized form of DO is developed, it will be inapplicable to models without explicit
sampling distributions, such as connectionist models and other simulation-based models
(Anderson & Lebiere, 1998; Busemeyer & Townsend, 1991; Shiffrin & Steyvers, 1997).

Another limitation is the assumption that the set of models under consideration includes the
model that actually generated the data (i.e., the “true” model). This assumption, obviously, is
likely to be violated in reality because our understanding of the topic being modeled is
sufficiently incomplete to make any model only a first-order approximation of the true model.
Ideally, one would like to optimize a design for an infinite set of models representing all
conceivable realities. To our knowledge, no implementable statistical methodology is currently
available to solve a problem of this scope.

The technique is also limited in the range of design variables to which it can be applied. The
design variable $d$ to be optimized can be discrete or continuous and even a vector or matrix,
but what is required is that the effects of the design variable on the sampling distribution, the
prior, or the local utility function must be expressed in explicit functional, or at least
computational, forms so that equation (3) can be evaluated on computer within the DO
algorithm. Optimization is not possible on design variables that cannot be quantified in this
way. Examples include the types of stimuli presented across different retention and
categorization studies (e.g., words, nonsense strings, stick figures), the modality of
presentation, and type of task (recall or recognition). To the extent that these features of the
experiment can be quantified in the model so that they could affect the sampling distribution,
the prior, or local utility function, they could be optimized. In general, the more detailed the
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models (e.g., more parameters linked to mental process) the more ways in which an experiment
can be optimized.

It is important for users of the DO algorithm to give some thought to the choice of the local
utility function u(d, θ, y). One can think of a number of candidate forms to choose from, each
as a measure of model dissimilarity and with its own theoretical justifications. They include
the sum of squares error, model recovery rate under a given model selection method (e.g., FIA,
AIC, Bayes factor), an information theoretic measure such as the Kullback-Leibler distance
(Box & Hill, 1967), and the Hellinger distance (Bingham & Chapman, 2002), to name a few.
The specific choice among such measures would be dependent upon the goals and preference
of the experimenter, its computational feasibility, and interpretability considerations.

Design optimization as formulated in equation (3) requires the specification of the prior
distribution p(θ), from which parameters are to be sampled. We used Jeffreys prior (Jeffreys,
1961) for two reasons: non-informativeness and reparameterization invariance. Jeffreys prior
is non-informative in the sense that it assumes no prior information about the parameter
(Robert, 2001, pp. 127-141). Reparameterization invariance means that the statistical
properties of a model such as its data-fitting ability and model complexity are independent of
how the model is parameterized, as they should be.

To illustrate, the exponential model of retention can be expressed as two different functional
forms, p = ae-bt and p = act, which are related through the reparameterization of c = e-b. With
Jeffreys prior, which is reparameterization-invariant, the solutions to the design optimization
problem remain unchanged under different, but statistically equivalent, formulations of the
model. Unfortunately, the uniform prior defined as p(θ)= co for a fixed constant co, which is
also non-informative, is not reparameterization invariant. As such, one would obtain different
optimal designs under the uniform prior depending on the specific parameterizations of the
model. This situation is obviously troublesome and hard to justify.

One last point to make regarding priors is that one could, of course, use an informative prior,
provided that the prior is either readily available or can be constructed from data sets of
previously published studies using Bayes rule. To elaborate, given observed data, we first
identify and write down the likelihood function (e.g., binomial or normal), expressed as a
function of a model’s parameter, that specifies the likelihood of the parameter given the data.
Next, assuming a non-informative prior (e.g., Jeffreys) for the parameter, the posterior
distribution is sought by applying Bayes rule. This is done either algebraically, if possible, or
numerically using Markov chain Monte Carlo. The resulting posterior distribution is then used
as the prior distribution within the DO algorithm.

The fact that the design optimization problem in equation (3) is being solved numerically using
the DO algorithm has two important implications that the researcher should be mindful of when
implementing the algorithm and interpreting its outputs. First, the algorithm belongs to a class
of MCMC methods developed in statistics for sampling from an arbitrary (target) distribution
(Gilks, Richardson & Spiegelhalter, 1996). Briefly, on each iteration of an MCMC chain, one
first draws a candidate sample from an easy-to-sample-from distribution known as the proposal
distribution (e.g., normal or uniform distribution) and then accepts or rejects the sample
according to a prescribed transition rule, such as Metropolis-Hastings sampling, using
information about the target and proposal distributions. This is repeated over a series of
iterations until the chain becomes stationary, from which point on the collection of all accepted
samples in subsequent iterations follows the target distribution according to the theory of
Markov chain. The target distribution is then estimated based on a large number (e.g., 5000)
of accepted samples after convergence is achieved. Given that the sample is finite, the resulting
estimate represents a numerical approximation to the target distribution. If the samples are
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collected prematurely before the chain has converged, then the estimated distribution would
be biased. In practice, it is often difficult to assess chain convergence, and further, fully general
and easily applicable standards for convergence diagnostics have yet to be developed. In our
implementation of the algorithm, we assessed convergence behavior by the combination of
visual inspection of the chain and multiple runs of the algorithm, as recommended by practicing
statisticians (e.g., Robert & Casella, 2004, chap. 12).

The second implication to consider when using the DO algorithm is that it requires adjusting
what are known as tuning parameters (Gilks, Richardson & Spiegelhalter, 1996; Robert &
Casella, 2004). They include the initial design to begin with on the first iteration of the
algorithm, the shape and variance parameters of the proposal distribution, and the annealing
schedule for increasing J in equation (5). Theoretically, the chain is supposed to converge to
the target distribution independently of the values of the tuning parameters, but this holds only
if the chain is run indefinitely. In practice, the chain has to be terminated after running it over
a finite number of iterations. Consequently, the solution obtained at the end of a finite run of
the algorithm can be suboptimal, reflecting the residual effects of the particular choices of
tuning parameters. It is therefore plausible that the optimal designs we found using the
algorithm for the retention and categorization models could turn out to be suboptimal despite
steps we took to address the issue (e.g., adjusting tuning parameters and performing sensitivity
analyses). What is comforting, however, is that although these designs might not be globally
optimal, they are likely close to it, and all are superior to those used in the literature.

Finally, one obvious limitation in the application of DO to model discrimination in psychology
is the technical sophistication necessary to use the methodology. In particular, knowledge of
density simulation using MCMC is required, which is foreign to many modelers let alone non-
modelers. The additional details on the DO algorithm in Appendix A are a modest attempt to
bridge this gap. Those with some background in statistics and probability theory should be able
to understand the skeleton of the algorithm. Even if this additional information proves
inadequate for the interested reader, we expect the gap to be temporary. New generations of
the algorithm will likely not only be more powerful, being faster and readily applicable to more
complex designs, but they may also overcome many of the technical and implementational
details that must be considered with the current algorithm. Such advances will make DO more
widely accessible.

Multiplicity of Design Solutions
Our experience with the DO algorithm suggests that there are multiple, close-to-optimal
designs for retention models. To give a concrete example, for the five-point optimal designs
Topt = (2.79, 9.07, 24.1, 58.6, 309) in Table 2 with its estimated recovery rate of 91.5%, we
identified two additional designs, T1 = (2.44, 7.73, 20.0, 46.0, 239) and T2 = (3.38, 10.1, 33.4,
93.3, 381), with their estimated recovery rates being virtually identical to that of Topt within
sampling error, that is, 89.9% and 90.9%, respectively. Clearly, one could find many more
designs with recovery performance being close to or nearly identical to that of the optimal
design. This multiplicity of optimal solutions is also evident in the top panel of Figure 4, which
shows the ten best designs and their associated log utility values, which are extremely close to
one another.

What is the reason for the multiplicity of solutions? An explanation can be found by examining
the model equations in Table 1. Consider the two-parameter exponential model (EXP) which
predicts the probability of correct recall as pi = ae-bti for a given design T = (t1, t2, ..., tN) and
a parameter vector θ = (a, b). A simple algebraic manipulation proves that there exists another
design defined as Tα = (αt1, αt2, ...,αtN)$ for any α > 0 that makes exactly the same probability
predictions as the above but with a different parameter θ = (a,b/α). How many such designs
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are there? There are an infinite number of them since the equivalence holds for any choice of
a positive value of α.

A similar equivalence can be shown to hold for three other models of retention: HYP, EXPA
and EXPE. For POW and POWA, it turns out that an equivalence does not hold exactly, but
instead, hold semi-exactly for large time intervals. More generally, for two designs, d1 and
d2, that make the same model prediction with different parameter values, θ1 and θ2,
respectively, by definition, the local utility function will be the same for them as well, u(d1,
θ1, y) = u(d2, θ2, y). Importantly however, the two designs do not necessarily yield the same
value as the global utility function (i.e., U(d1) ≠ U(d2)). This is because U(d) in equation (3)
is obtained by integrating the local utility function weighted by the prior p(θ), the value of
which depends upon the parameter. Therefore, multiple designs that are equivalent at the level
of model prediction do not necessarily translate into equivalent design solutions at the level of
U(d).

It is still, however, possible to observe nearly equivalent design solutions, especially if the
prior is mostly flat or varies slowly over the parameter space. This is apparently the case with
the retention models. What it means is that if we were to plot the global utility function U(d)
over the entire design space, we would not see a lone peak at some d*, but instead, we would
see many peaks that together form a high ridge resembling something like the Rocky Mountains
Range. Given these observations, one should interpret the retention results from this
perspective.

Extensions of Design Optimization
The design optimization framework introduced in this paper is sufficiently general to permit
extensions to more complex optimization problems and other ways of achieving optimization.
Many experiments require numerous decisions be made about the design. An obvious extension
of the current method is to optimize designs with respect to multiple design variables
simultaneously. For instance, in our study of retention models, the choice of time intervals T
= (t1, .., tN) was the sole design variable to be optimized, with the number of time intervals
(N) and the number of binomial samples (n) collected at each time interval both being held
constant. Naturally, one would like to optimize designs with respect to all three variables, with
this super design variable being defined as dsuper = (N, n1, n2, ..., nN, t1, t2, ..., tN). Preliminary
investigation of this possibility has not yet been successful because the problem is
computationally challenging. The super design variable consists of a combination of discrete
(ni) and continuous (ti) variables, and the dimension (N) of the design space itself is a variable
being optimized. The current DO algorithm is not up to this more complex task, and a new,
more powerful algorithm will have to be developed to handle the challenges presented by
simultaneous, multi-variable optimization.

Another way to extend the current design optimization framework is to apply it iteratively over
repetitions of an experiment, usually with a minimal number of observations in each repetition,
rather than only once. One takes advantage of the information gained in one experiment to
improve optimization in the next. Experimental designs are adaptively updated over a series
of multiple stages in which design optimization and experimentation are performed repeatedly
in succession. Sequential design optimization is generally more efficient (i.e., requiring fewer
observations to discriminate models) than non-sequential design optimization, but can be
computationally much more challenging to implement. This is because in sequential design
optimization an optimal design is being sought based on the outcome at the current stage but
also by taking into account the potential for future stages. Despite this challenge, sequential
design optimization, in particular from a Bayesian D-optimum design perspective, has recently
been explored and applied to adaptive parameter estimation problems that arise in
psychophysics (Kujala & Lukka, 2006; Lesmes, Jeon, Lu & Dosher, 2006), neurophysiological
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experiments (Lewi, Butera & Paninski, in press), clinical trials (Muller, Berry, Grieve, Smith
& Krams, 2007), astrophysics (Loredo, 2004), and educational games (Kujala, Richardson &
Lyytinen, in press).

Sequential design optimization can be implemented within the current (non-sequential) design
optimization framework with minor modifications. The process would proceed as follows.
Given initial model and parameter priors, we would seek an optimal design using the DO
algorithm. Using this optimal design, we would conduct an experiment. The data would then
be used to update the model and parameter priors using Bayes rule. With the resulting model
and parameter posteriors, the DO algorithm would again be run to seek another optimal design.
This procedure would be repeated over a series of stages until an appropriate stopping criterion
is met. We are currently exploring the promise of sequential design optimization.

Conclusion
Perusal of the literatures in which models of a cognitive process are compared shows that it is
no easy task to design an experiment that discriminates between them. One reason for this is
uncertainty about the quality of the experimental design in achieving its goal. The design
optimization algorithm can assist in overcoming this problem, and thereby improve the
likelihood of model discrimination. It can also provide information on the quality of past
designs, possibly shedding light on why they did or did not succeed. Its application in
psychology should lead to more informative studies that advance understanding of the
psychological process under investigation as well as the models developed to explain them.
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Appendix

Appendix A
This appendix describes in greater detail the design optimization algorithm. The example
makes use of the two retention models, POW and EXP, under Jeffreys’ priors, discussed in the
General Discussion sectionof the paper. The reader is advised to read it prior to reading this
appendix. An optimal design is defined as the one that maximizes the model recovery rate of
the data-generating model using FIA-based model selection.

First, the global utility function U(d) in equation (3) is defined in terms of the design variable
d, the likelihood function and the prior, which are given by
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where y = (y1, y2,..., yN) with yi = {0, 1, 2,..., n} and θ = (a,b). The binomial probability parameter
pi(θ, ti) in the above equation takes the form of pi(θ, ti) = a(ti+1)-b for POW and pi(θ,ti =
ae-bti for EXP. It is worth noting that the Fisher information matrix generally depends upon
the design as well as the parameters. This is indicated by the subscript d in I(θ).

In order to find an optimal design d* that maximizes U(d), one should be able to sample
(yA1,..., yAJ, θA1,..., θAJ, yB1,..., yBJ, θB1,..., θBJ) from the artificial distribution hJ(·) in equation
(5), where each y.. is a N-dimensional vector and each θ.. is a 2-dimensional vector. In what
follows, we describe how this is performed using a combination of three statistical computing
techniques: maximum likelihood estimation, numerical integration, and density simulation
using Markov chain Monte Carlo.

The simulation results discussed in the present article were obtained by implementing the
Resampling-Markov (R-M) algorithm that employs multiple interacting Markov chains, as
described in Amzal, Bois, Parent and Robert (2006, p. 776). In this appendix, however, for the
purpose of illustration, we describe Muller’s algorithm (Muller, Sanso, De Iorio, 2004,
Algorithm 1, pp. 789-790) instead. This algorithm employs a single Markov chain and therefore
is easier to implement and conceptually simpler to understand. The price to pay for easier
implementation is a loss in efficiency (i.e., slower convergence), although in theory both
algorithms should find an optimal design if run long enough. The steps of the Muller algorithm
are as follows:Muller Algorithm:

1. Initialize iteration t = 1, J(t) and d(t) (e.g., J(1) = 10, d(1) = (4,5,6) for N = 3).

2. Given d(t), obtain the complexity penalty measures for POW and EXP by numerically
integrating the third term of FIA in equation (6) and combining the resulting value
with that of the second term.

3. for j = 1: J(t){

(3.1) Sample θAj(t) from p(θA|d(t)) (e.g., by constructing another separate Markov
chain);

(3.2) Sample yAj(t) from p(yA|θAj(t), d(t));

(3.3) Fit both models, POW and EXP, to data yAj(t), find the maximum likelihood
values (e.g., using the Newton optimization algorithm) and combine them with
the complexity penalty measures according to equation (6) to obtain FIAA and
FIAB;

(3.4) Set u(d(t), θAj(t), yAj(t)) to 1 if FIAA < FIAB and to 0 otherwise;

(3.5) Sample θBj(t) from p(θB|d(t)) (e.g., by constructing another separate Markov
chain);

(3.6) Sample yBj(t) from p(yB|θBj(t), d(t));
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(3.7) Fit both models, POW and EXP, to data yBj(t), find the maximum likelihood
values (e.g., using the Newton optimization algorithm) and combine them with
the complexity penalty measures according to equation (6) to obtain FIAA and
FIAB;

(3.8) Set u(d(t), θBj(t), yBj(t)) to 1 if FIAA > FIAB and to 0 otherwise;

}end.

4.
Evaluate 
(e.g., set p(A) = p(B) = 0.5).

5. Propose a new, candidate design dc from a symmetric proposal distribution q(d|d
(t)) such that q(d1|d2) = q(d2|d1) for all d1 and d2 (e.g., q(d|d(t)) ∼ N(d(t), σ2I)).

6. Given dc, obtain the complexity penalty measures for POW and EXP by numerically
integrating the third term of FIA and combining the resulting value with that of the
second term.

7. for j = 1: J(t){

(7.1) Sample θAj,c from p(θA|dc) (e.g., by constructing another separate Markov
chain);

(7.2) Sample yAj,c from p(yA|θAj,c,dc);

(7.3) Fit both models, POW and EXP, to data yAj,c, find the maximum likelihood
values (e.g., using the Newton optimization algorithm) and combine them with
the complexity penalty measures according to equation (6) to obtain FIAA and
FIAB;

(7.4) Set u(dc, θAj,c, yAj,c) to 1 if FIAA < FIAB and to 0 otherwise;

(7.5) Sample θBj.c from p(θB|dc) (e.g., by constructing another separate Markov
chain);

(7.6) Sample yBj,c from p(yB|θBj,c, dc);

(7.7) Fit both models, POW and EXP, to data yBj,c, find the maximum likelihood
values (e.g., using the Newton optimization algorithm) and combine them with
the complexity penalty measures according to equation (6) to obtain FIAA and
FIAB;

(7.8) Set u(dc, θBj,c, yBj,c) to 1 if FIAA > FIAB and to 0 otherwise;

}end.

8.
Evaluate .

9. Evaluate the acceptance probability defined as

(9.1) Generate a uniform random number r between 0 and 1;

(9.2) If r < AP, accept the candidate design dc and set dnext = dc. Otherwise, leave
dc unchanged so set dnext = d(t).

10. Set t = t+1 and d(t) = dnext. Increase J such that J(t) ≥ J(t-1) following an annealing
schedule (e.g., increase J by 1 every five iterations).
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11. Repeat Steps 2-10 until the chain converges. All accepted d(t) ’s thereafter should
represent an optimal design solution. In practice, one can estimate the optimal solution
as the mean of m such d(t) ’s (e.g., m = 50)

where tc denotes the iteration number at which the chain is judged to have converged.

Appendix B
Appendix B

The tables below shows 64 stimulus vectors created from the corresponding 64
six-dimensional binary vectors by substituting a random number between 0.0 and
0.1 for each “0” and another random number between 0.9 and 1.0 for each “1”,
and subsequently used in design optimization for the two categorization models

Stimulus Feature element

Number 1 2 3 4 5 6

1 0.0223 0.0254 0.0226 0.0342 0.0723 0.0036

2 0.0240 0.0498 0.0615 0.0898 0.0452 0.9643

3 0.0626 0.0312 0.0874 0.0600 0.9810 0.0999

4 0.0343 0.0067 0.0527 0.0306 0.9385 0.9658

5 0.0053 0.0397 0.0742 0.9615 0.0632 0.0987

6 0.0361 0.0036 0.0385 0.9633 0.0993 0.9974

7 0.0107 0.0339 0.0811 0.9053 0.9250 0.0634

8 0.0355 0.0932 0.0917 0.9591 0.9284 0.9240

9 0.0232 0.0561 0.9736 0.0947 0.0655 0.0908

10 0.0840 0.0267 0.9317 0.0765 0.0041 0.9049

11 0.0577 0.0133 0.9567 0.0066 0.9340 0.0682

12 0.0340 0.0608 0.9955 0.0918 0.9943 0.9804

13 0.0578 0.0359 0.9726 0.9094 0.0420 0.0241

14 0.0254 0.0189 0.9417 0.9140 0.0868 0.9543

15 0.0232 0.0168 0.9339 0.9455 0.9808 0.0021

16 0.0713 0.0227 0.9438 0.9084 0.9045 0.9858

17 0.0485 0.9996 0.0116 0.0872 0.0674 0.0763

18 0.0235 0.9190 0.0127 0.0478 0.0329 0.9682

19 0.0099 0.9835 0.0641 0.0714 0.9057 0.0165

20 0.0190 0.9262 0.0784 0.0068 0.9516 0.9709

21 0.0299 0.9836 0.0858 0.9550 0.0289 0.0209

22 0.0936 0.9256 0.0450 0.9809 0.0529 0.9564

23 0.0218 0.9585 0.0673 0.9635 0.9641 0.0804

24 0.0261 0.9040 0.0969 0.9812 0.9077 0.9347

25 0.0918 0.9603 0.9682 0.0225 0.0293 0.0470

26 0.0579 0.9074 0.9738 0.0803 0.0097 0.9801

27 0.0134 0.9016 0.9875 0.0340 0.9155 0.0924
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Stimulus Feature element

Number 1 2 3 4 5 6

28 0.0557 0.9978 0.9978 0.0453 0.9645 0.9825

29 0.0405 0.9124 0.9151 0.9380 0.0742 0.0592

30 0.0682 0.9275 0.9400 0.9505 0.0043 0.9860

31 0.0394 0.9081 0.9820 0.9334 0.9800 0.0386

32 0.0921 0.9613 0.9728 0.9866 0.9277 0.9655

33 0.9615 0.0256 0.0957 0.0653 0.0729 0.0091

34 0.9610 0.0227 0.0763 0.0055 0.0910 0.9057

35 0.9800 0.0604 0.0407 0.0249 0.9113 0.0061

36 0.9230 0.0075 0.0832 0.0354 0.9392 0.9177

37 0.9442 0.0694 0.0115 0.9934 0.0127 0.0140

38 0.9495 0.0427 0.0857 0.9302 0.0989 0.9070

39 0.9158 0.0449 0.0838 0.9978 0.9196 0.0947

40 0.9990 0.0398 0.0211 0.9889 0.9486 0.9459

41 0.9592 0.0594 0.9590 0.0225 0.0039 0.0668

42 0.9022 0.0311 0.9522 0.0502 0.0503 0.9069

43 0.9551 0.0203 0.9287 0.0756 0.9041 0.0237

44 0.9703 0.0903 0.9139 0.0335 0.9539 0.9843

45 0.9163 0.0408 0.9444 0.9542 0.0135 0.0819

46 0.9458 0.0784 0.9596 0.9869 0.0724 0.9205

47 0.9680 0.0405 0.9994 0.9427 0.9523 0.0864

48 0.9255 0.0740 0.9801 0.9763 0.9749 0.9381

49 0.9037 0.9061 0.0795 0.0148 0.0642 0.0054

50 0.9101 0.9570 0.0471 0.0737 0.0963 0.9766

51 0.9073 0.9713 0.0827 0.0049 0.9770 0.0881

52 0.9582 0.9942 0.0909 0.0227 0.9721 0.9899

53 0.9440 0.9099 0.0704 0.9422 0.0656 0.0750

54 0.9484 0.9234 0.0422 0.9046 0.0643 0.9654

55 0.9388 0.9241 0.0455 0.9321 0.9503 0.0658

56 0.9792 0.9265 0.0798 0.9841 0.9365 0.9178

57 0.9154 0.9208 0.9505 0.0944 0.0148 0.0118

58 0.9024 0.9288 0.9828 0.0704 0.0270 0.9164

59 0.9517 0.9641 0.9645 0.0200 0.9251 0.0809

60 0.9513 0.9108 0.9376 0.0763 0.9966 0.9169

61 0.9018 0.9055 0.9452 0.9271 0.0697 0.0259

62 0.9654 0.9328 0.9404 0.9581 0.0068 0.9714

63 0.9058 0.9031 0.9671 0.9913 0.9373 0.0277

64 0.9422 0.9951 0.9118 0.9047 0.9427 0.9384

Myung and Pitt Page 23

Psychol Rev. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
Akaike, H. Information theory and an extension of the maximum likelihood principle. In: Petrox, BN.;

Caski, F., editors. Second International Symposium on Information Theory. Akademia Kiado;
Budapest: 1973. p. 267-281.

Allen TT, Yu L, Schmitz J. An experimental design criterion for minimizing meta-model prediction errors
applied to die casting process design. Appl. Statist 2003;52:103–117.

Amzal B, Bois FY, Parent E, Robert CP. Bayesian-optimal design via interacting particle systems. Journal
of the American Statistical Association 2006;101:773–785.

Anderson, JR.; Lebiere, C. The Atomic Components of Thought. Lawrence Erlbaum Associates;
Maywah, NJ: 1998.

Anderson JR, Fincham JM, Douglass S. Practice and Retention. Journal of Experimental Psychology:
Learning, Memory, and Cognition 1999;25:1120–1136.

Atkinson, AC.; Donev, AN. Optimum Experimental Designs. Oxford University Press; 1992.
Atkinson CV, Fedorov VV. The design of experiments for discriminating between two rival models.

Biometrika 1975;62:57–70.
Balota DA, Chumbley JI. Are lexical decisions a good measure of lexical access? The role of word

frequency in the neglected decision stage. Journal of Experimental Psychology: Human Perception
and Performance 1984;10:340–357. [PubMed: 6242411]

Bardsley WG, Wood RMW, Melikhova EM. Optimal design: A computer program to study the best
possible spacing of design points for model discrimination. Computers Chem 1996;20:145–157.

Bingham, D.; Chipman, H. Optimal design for model selection. University of Michigan; 2002. Technical
Report 388

Box GEB, Hill WJ. Discrimination among mechanistic models. Technometrics 1967;9:57–71.
Busemeyer JR, Townsend JT. Decision field theory: A dynamic-cognitive approach to decision making

in an uncertain environment. Psychological Review 1991;100:432–459. [PubMed: 8356185]
Casella, G.; Berger, RL. Statistical Inference. Vol. second edition. Duxbury; 2002.
Chaloner K, Verdinelli. Bayesian experimental design: A review. Statistical Science 1995;10:274–304.
Del Moral P, Doucet A, Jasra A. Sequential Monte Carlo Samplers. Journal of the Royal Statistical

Society, Series B 2006;68:411–436.
Doucet, A.; de Freitas, N.; Gordon, N. Sequential Monte Carlo Methods in Practice. Springer; 2001.
Ebbinghaus, H. Uber das Gedachtnis. Duncker Humbolt; Leipzig: 1885.
El-Gamal MA, Palfrey TR. Economical experiments: Bayesian efficient experimental design.

International Journal of Game Theory 1996;25:495–517.
Gilks, WR.; Richardson, S.; Spiegelhalter, DJ. Markov Chain Monte Carlo in Practice. Chapman and

Hall; 1996.
Grunwald P. Model selection based on Minimum Description Length. Journal of Mathematical

Psychology 2000;44:133–152. [PubMed: 10733861]
Grunwald, P.; Myung, IJ.; Pitt, MA. Advances in Minimum Description Length: Theory and

Applications. MIT Press; 2005.
Jeffreys, H. Theory of Probability. Vol. 3rd ed.. Oxford University Press; London: 1961.
Kass RE, Raftery AE. Bayes factors. Journal of the American Statistical Association 1995;90:773–795.
Kiefer J. Optimum experimental designs. Journal of the Royal Statistical Society Series B 1959;21:272–

319.
Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science 1983;220:671–680.

[PubMed: 17813860]
Kujala JV, Lukka TJ. Bayesian adaptive estimation: The next dimension. Journal of Mathematical

Psychology 2006;50:369–389.
Kujala JV, Richardson U, Lyytinen H. A Bayesian-optimal principle for a child-friendly adaptation in

learning games. Journal of Mathematical Psychology. in press
Kueck, H.; de Freitas, N.; Doucet, A. SMC samplers for Bayesian optimal nonlinear design; Nonlinear

Statistical Signal Processing Workshop (NSSPW); 2006;

Myung and Pitt Page 24

Psychol Rev. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lee MD. On the complexity of additive clustering models. Journal of Mathematical Psychology
2001;45:131–148. [PubMed: 11178926]

Lee MD, Pope KJ. Model selection for the rate problem: A comparison of significance testing, Bayesian
and minimum description length statistical inference. Journal of Mathematical Psychology
2006;44:190–204.

Lesmes LA, Jeon S-T, Lu Z-L, Dosher BA. Bayesian adaptive estimation of threshold versus contrast
external noise functions: The quick TvC method. Vision Research 2006;46:3160–3176. [PubMed:
16782167]

Lewi J, Butera R, Paninski L. Sequential optimal design of neurophysiology experiment. Neural
Computation. in press

Loredo, TJ. Bayesian adaptive estimation. In: Erickson, G,J.; Zhai, Y., editors. Bayesian Inference and
Maximum Entropy Methods in Science and Engineering. American Institute of Physics; 2004. p.
330-346.Also available as preprint number arXiv:astro-ph/0409386v1 from http://xyz.lanl.gov/

Medin DL, Schaffer MM. Context theory of classification learning. Psychological Review 1978;85:207–
238.

Muller, P. Simulation-based optimal design. In: Bernardo, JM.; Berger, JO.; Dawid, AP.; Smith, AFM.,
editors. Bayesian Statistics. Vol. 6. Oxford University Press; Oxford, UK: 1999. p. 459-474.

Muller P, Berry DA, Grieve AP, Smith M, Krams M. Simulation-based sequential Bayesian design.
Journal of Statistical Planning and Inference 2007;137:3140–3150.

Muller P, Sanso B, De Iorio M. Optimal Bayesian design by inhomogeneous Markov chain simulation.
Journal of the American Statistical Association 2004;99:788–798.

Myung IJ, Forster MR, Browne MW. Guest editors’ introduction, special issue on model selection.
Journal of Mathematical Psychology 2000;44:1–2. [PubMed: 10733854]

Myung JI, Navarro DJ, Pitt MA. Model selection by normalized maximum likelihood. Journal of
Mathematical Psychology 2006;50:167–179.

Myung IJ, Pitt M. Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychonomic
Bulletin Review 1997;4:79–95.

Myung JI, Pitt M, Navarro DJ. Does response scaling cause the generalized context model to mimic a
prototype model? Psychonomic Bulletin Review 2007;14:1043–1050. [PubMed: 18229473]

Navarro DJ, Lee MD. Common and distinctive features in stimulus representation: A modified version
of the contrast model. Psychonomic Bulletin Review 2004;11:961–974. [PubMed: 15875967]

Navarro DJ, Pitt MA, Myung IJ. Assessing the distinguishability of models and the informativeness of
data. Cognitive Psychology 2004;49:47–84. [PubMed: 15193972]

Nosofsky RM. Attention, similarity, and identification-categorization relationship. Journal of
Experimental Psychology: General 1986;115:39–57. [PubMed: 2937873]

Nosofsky RM, Zaki SR. Exemplar and prototype models revisited: Response strategies, selective
attention and stimulus generalization. Journal of Experimental Psychology: Learning, Memory
Cognition 2002;28:924–940.

Pitt MA, Myung IJ. When a good fit can be bad. Trends in Cognitive Sciences 2002;6:421–425. [PubMed:
12413575]

Pitt MA, Myung IJ, Zhang S. Toward a method of selecting among computational models of cognition.
Psychological Review 2002;109:472–491. [PubMed: 12088241]

Ponce de Leon AC, Atkinson AC. Optimum experimental design for discriminating between two rival
models in the presence of prior information. Biometrika 1991;78:601–608.

Read SK. Pattern recognition and categorization. Cognitive Psychology 1972;3:382–407.
Rissanen JJ. Fisher information and stochastic complexity. IEEE Transactions on Information Theory

1996;42:40–47.
Rissanen JJ. Strong optimality of the normalized ML models as universal codes and information in data.

IEEE Transactions on Information Theory 2001;47:1712–1717.
Robert, CP. The Bayesian Choice. Vol. 2nd edition. Springer; NY: 2001.
Robert, CP.; Casella, G. Monte Carlo Methods. Vol. 2nd edition. Springer; NY: 2004.
Rubin DC, Wenzel A. One hundred years of forgetting: A quantitative description of retention.

Psychological Review 1996;103:734–760.

Myung and Pitt Page 25

Psychol Rev. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://xyz.lanl.gov/


Rubin DC, Hinton S, Wenzel A. The precise course of retention. Journal of Experimental Psychology:
Learning memory and Cognition 1999;25:1161–1176.

Shiffrin RM, Steyvers M. A model for recognition memory: REM retrieving effectively from memory.
Psychonomic Bulletin Review 1997;4:145–166.

Slamecka NJ, McElree B. Normal forgetting of verbal lists as a function of their degree of learning.
Journal of Experimental Psychology: Learning, Memory & Cognition 1983;9:384–397.

Smith JD, Minda JP. prototypes in the mist: The early epochs of category learning. Journal of
Experimental Psychology: Learning, Memory Cognition 1998;24:1411–1436.

Squire LR. On the course of forgetting in very long term memory. Journal of Experimental Psychology:
Learning, Memory Cognition 1989;15:241–245.

Townsend JT, Wenger MW. A theory of interactive parallel processing: New capacity measures and
predictions for a response time inequality series. Psychological Review 2004;111:1003–1035.
[PubMed: 15482071]

Ucinski D, Bogacka B. T-optimum design for discrimination between two multiresponse dynamic
models. Journal of the Royal Statistical Society, Series B 2005;67:3–18.

Vanpaemel W, Storms G. In search of abstraction: The varying abstraction model of categorization.
Psychonomic Bulletin Review 2008;15:732–749. [PubMed: 18792499]

Wagenmakers E-J, Ratcliff R, Gomez P, Iverson GJ. Assessing model mimicry using the parametric
bootstrap. Journal of Mathematical Psychology 2004;48:28–50. [PubMed: 16710443]

Wagenmakers E-J, Waldorp L. Editors’ introduction. Journal of Mathematical Psychology 2006;50:99–
100.

Waugh NC, Norman DA. Primary memory. Psychological Review 1965;72:89–104. [PubMed:
14282677]

Wickelgren WA. Sparing of short-term memory in an amnesiac patient: Implications of strength theory
of memory. Neuropsychologica 1968;6:235–244.

Wickens TD. On the form of forgetting function: Comment on Rubin and Wenzel (1996): a quantitative
description of retention. Psychological Review 1998;105:379–86.

Wixted JT, Ebbesen EB. On the form of forgetting. Psychological Science 1991;2:409–415.
Wixted JT, Ebbesen EB. Genuine power curves in forgetting: A quantitative analysis of individual subject

forgetting functions. Memory Cognition 1997;25:731–739. [PubMed: 9337591]

Myung and Pitt Page 26

Psychol Rev. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Illustration of the DO algorithm in estimating marginal distributions. The distributions on the
left show three marginal distributions U(d)J with different J values. Shown on the right are
their respective empirical estimates obtained by applying the algorithm.
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Figure 2.
Sets of power and exponential functions when their parameters are restricted to a vary narrow
range (see text). The five time intervals that optimally discriminate the two models are indicated
by short vertical lines shown on the far left of the horizontal axis.
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Figure 3.
Relative frequency distribution of log global utility values for all possible 3-interval designs
T = (t1, t2, t3) created with an increment of 0.5 across the range 0.5 ≤ t1 ≤ t2 ≤ t3 ≤ 15. Shown
on the vertical axis is the proportion of 4,060 designs that fall in each interval of the log utility
value.
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Figure 4.
Time intervals of the ten best and worst designs from the distribution in Figure 3.
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Figure 5.
Plot of the optimal 25-point design (circles) for discriminating between the power and
exponential models. The dashed line represents the best-fitting geometric design, log10(ti) =
0.014 + (0.100)i, or equivalently, ti = 1.26ti-1 with t0 =1.03, i = 1,..., 25.
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Figure 6.
Estimated model recovery rates as a function of sample size for the four five-point designs in
Table 2, for discriminating between POW and EXP.
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Figure 7.
Estimated model recovery rates as a function of sample size for four designs in discriminating
among the six retention models in Table 1. The optimal design was found by the DO algorithm
as the one that maximally discriminates the six retention models, and the other three designs
are from Table 2.
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Figure 8.
The inherent discriminability of the power and exponential models under two different designs.
Graphed are the differences in log maximum likelihood (LML) of the models. The top panel
shows the distributions obtained using the design T = (1, 2, 3, 4, 5). The bottom panel shows
the distributions obtained using the optimal design solution T = (2.79, 9.07, 24.1, 58.6, 309).
See text for details of the simulations.

Myung and Pitt Page 34

Psychol Rev. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Myung and Pitt Page 35

Table 1
The model equations of the six retention models. In each equation, the symbol p (0 < p < 1) denotes the predicted
probability of correct recall as a function of time interval t with model parameters a, b and c. Note that for the power
model (POW), the decay factor is defined as (t+1) so that the probability remains between 0 and 1 for all positive t
values

Model Equation

Power (POW) p = a(t+1)-b

Exponential (EXP) p = ae-bt

Hyperbolic (HYP) p = a/(a+tb)

Power with asymptote (POWA) p = a(t+1)-b+ c

Exponential with asymptote (EXPA) p = ae-bt+ c

Exponential with exponent (EXPE) p = ae-btc
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Table 2
Model recovery percentages for discriminating between POW and EXP across designs differing in the number of time
intervals (N) and the design (T). W & E(1991) refers to the Wixted and Ebbesen (1991) study

N Type T (design) % Recovery

3

Linear (1, 2, 3) 58.3

Geometric (1, 2, 4) 61.9

Optimal (9.53, 26.9, 252) 86.3

5

Linear (1, 2, 3, 4, 5) 65.3

Geometric (1, 2, 4, 8, 16) 76.2

Optimal (2.79, 9.07, 24.1, 58.6, 309) 91.5

W & E (1991) (2.5, 5, 10, 20, 40) 79.4
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Table 3
The top row contains the category structures used in Smith and Minda (1998, Experiments 1 and 2). The bottom row
contains the category structures of a simple design and the optimal design found by the DO algorithm. The number
above each design is the estimated model recovery rate obtained using the 64 stimulus vectors shown in Appendix B.
The numbers in parentheses are the means and standard deviations of recovery rates based on 10 independently and
randomly generated replications of the set of stimulus vectors

Smith & Minda (1998) experiments

Linearly separable design 72.9% (71.7 ± 1.4%) Nonlinearly separable design 88.8% (89.4 ± 0.6%)

Category A Category B Category A Category B

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1

0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1

1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 1

0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0

0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0

Simple design 53.1% (53.9 ± 1.0%) Optimal design 96.3% (93.8 ± 3.5%)

Category A Category B Category A Category B

0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0

0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0

0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1

0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 0

0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0

0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1

1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0
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