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Abstract
Human psychophysics and monkey physiology studies have shown that attention modulates early
vision – contrast sensitivity and processing. But how can we bridge the effects of attention on
perceptual performance to their neural underpinnings? Here we implement a population-coding
model that estimates attentional effects on population contrast response given psychophysical data.
Model results show that whereas endogenous (sustained, voluntary) attention changes population
contrast-response via contrast gain, exogenous (transient, involuntary) attention changes population
contrast-response via response gain.

Introduction
Covert attention allows us to selectively process information at a given location in our visual
field, in the absence of eye movements (Posner, 1980). Numerous psychophysical and
neurophysiological studies indicate that covert attention influences one of the earliest stages
of visual analysis, contrast processing (Carrasco, 2006; Reynolds & Chelazzi, 2004). But how
can we relate changes in neural activity to behavior? The fundamental problem of linking neural
response to behavior has been approached from a number of angles. One popular approach has
been to predict the behavior of a monkey based on the activity of individual cells, using models
such as choice-probability (e.g. Britten, Shadlen, Newsome & Movshon, 1992; Parker &
Newsome, 1998; Zohary, Shadlen & Newsome, 1994). However, this approach is limited by
the heterogeneity of single-unit responses: whereas the expected performance computed from
some neurons match behavior well, other neurons fail to predict behavior (Britten et al.,
1992; Shadlen, Britten, Newsome & Movshon, 1996). Indeed, single-unit studies of covert
attention have found similar variability in predicted performance (Reynolds, Pasternak &
Desimone, 2000). This approach is further limited by the fact that attentional gain mechanisms
have been shown to be fairly diverse, differing widely from neuron to neuron. Whereas some
neurons exhibit response gain modulation with attention, others show contrast gain, and yet
others show a mixed effect (Williford & Maunsell, 2006).
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Population-coding could be another way to linking neural response with behavior. Due to the
inherently noisy nature of individual neurons, it is likely that our brain analyzes neural
responses by recruiting activity across large cell populations to guide perception and behavior,
rather than only relying on the activity of few cells (Abbott & Dayan, 1999; Pouget, Dayan &
Zemel, 2000, 2003). Assuming that ensembles of neural activity drive behavioral effects, we
investigate how attention might affect the contrast response as coded by a neural population,
that is, the pooled neural response in a given brain area to a stimulus as contributed by neurons
that are optimally and not optimally tuned to the stimulus. Jazayeri and Movshon (2006)
proposed a population-coding model of optimal representation of sensory information in
motion-direction discrimination, which estimates the likelihood of a stimulus given the pooled
neuronal response by calculating the weighted sum of individual sensory-neurons responses.
We extend this model to orientation discrimination, and modulate the model response as
function of stimulus contrast and attentional state to estimate how attention changes the
population contrast-response, given known psychophysical attentional effects with humans.

The present model infers the expected change in contrast response for a population of neurons,
given human performance in psychophysical tasks similar to those used in monkey
neurophysiology (Martinez-Trujillo & Treue, 2002; McAdams & Maunsell, 1999; Reynolds
et al., 2000; Williford & Maunsell, 2006). Two-alternative forced-choice orientation-
discrimination tasks have been used extensively in human psychophysics to address the effects
of attention on contrast sensitivity (Cameron, Tai & Carrasco, 2002; Carrasco, Penpeci-Talgar
& Eckstein, 2000; Ling & Carrasco, 2006a, 2006b; Lu & Dosher, 1998; Lu & Dosher, 2000;
Lu, Lesmes & Dosher, 2002; Pestilli & Carrasco, 2005; Pestilli et al., 2007), as performance
in this task is monotonically contingent on contrast (Nachmias, 1967). Thus, orientation
discrimination is an ideal candidate for direct comparisons of psychophysical and
neurophysiological results. The model derives orientation discrimination performance (d′) by
determining how likely it is that each possible stimulus alternative was presented, given the
population response. To do so, the likelihood of each stimulus is computed as the sum of
individual neurons' responses, weighted by the log of their own tuning function. This weighting
biases the input such that responses are tuned away from the discrimination boundary (vertical
in our case). Theoretically, this is the optimal strategy for decoding orientation from a
population response (Jazayeri & Movshon, 2006). Empirically, there is behavioral evidence in
support of this notion, showing that we tend to overestimate fine orientation differences, i.e.
we misperceive these differences as being broader than they really are (Jazayeri & Movshon,
2007).

The overall population response to the stimulus is scaled as function of contrast, with the
contrast response characterized by a compressive nonlinearity, as shown in single-cell
responses (Albrecht & Hamilton, 1982; Albrecht, Thorell & Hamilton, 1981; Naka & Rushton,
1966). To model the effect of attention, the population contrast response is modulated by two
possible gain mechanisms, contrast- and response-gain, found in single-unit studies (Figure 1a
and 1c; Martinez-Trujillo & Treue, 2002; Reynolds & Chelazzi, 2004; Reynolds et al., 2000;
Williford & Maunsell, 2006). Whereas contrast gain predicts the maximal attentional
modulation at the dynamic range of the contrast response function (Figure 1b), response gain
predicts that attentional modulation increases monotonically as a function of contrast (Figure
1d). Incorporating this compressive nonlinearity allows us to visualize and make quantitative
predictions regarding how the population contrast response function (pCRF) is altered by
attention.

Behaviorally, using a cue to direct observers' covert spatial attention enhances performance
and contrast sensitivity at the attended location and impairs it at unattended locations (Ling &
Carrasco, 2006a, 2006b; Lu & Dosher, 2000; Pestilli & Carrasco, 2005; Pestilli, Viera &
Carrasco; 2007). The magnitude of the attentional modulation depends on the type of attention
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deployed, and the stimulus contrast. Whereas endogenous (voluntary, sustained) attention
alters performance only for stimuli at intermediate contrast levels, reminiscent of a contrast-
gain mechanism (Ling & Carrasco, 2006a), the effects of exogenous (involuntary, transient)
attention primarily increase with contrast, reminiscent of a response-gain mechanism (Ling &
Carrasco, 2006a, Pestilli & Carrasco, 2005, Pestilli et al., 2007).

Model
The model comprises an encoding and a decoding stage; Figure 2 represents the model structure
in a schematic form.

Encoding stage
The model consists of a population of N self-similar neurons uniformly tuned for orientation.
Here we assume a population of 300 detectors. Each neuron's tuning function is approximated
by a circular normal, described by the von Mises function, fi (θ) :

[1]

where κ is the concentration parameter (bandwidth), θ is the stimulus orientation (the studies
we fit to used 4° and 2.5°), and θi is the preferred orientation of the ith neuron.

We assume that when a stimulus is presented, the probability that each neuron fires a certain
number of spikes in an interval of t seconds is well described by a Poisson process:

[2]

where ni is the spike count for the ith neuron, t is the stimulus duration (in seconds), and R is
the contrast-dependent response (in impulses per second). Note that although it is established
that the Poisson-like characteristics of spike variability break down with brief stimulation
durations (Müller, Metha, Krauskopf & Lennie, 2001), for computational simplicity, we
assumed that the responses to short stimuli are Poisson distributed, and that deviations in the
statistical nature of the modeled neural noise would only lead to slight quantitative differences,
rather than qualitative ones.

The relation between contrast and neural response (R) is well-described by a compressive
nonlinearity, the Naka-Rushton function (Albrecht & Hamilton, 1982, Albrecht et al., 1981,
Naka & Rushton, 1966):

[3]

where M is the baseline population response, C is the contrast of the stimulus, Rmax is the
maximum firing rate of the population, β is the slope of the contrast response function, and
C50 is the half-point between baseline and asymptote (threshold). Of key importance are the
parameters a1and a2, which are the attentional parameters for response- and contrast-gain
mechanisms respectively. a1 represents response gain modulation, increasing the response
multiplicatively such that higher contrast levels lead to greater attention modulation. a2
represents contrast gain modulation, re-centering the contrast response function by changing
the contrast level at which 50% of the maximum response is reached.
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The model assumes that neurons' responses are signal-correlated, such that response correlation
varies as a function of tuning similarity (Averbeck, Latham & Pouget, 2006). Thus, responses
of similarly-tuned neurons are facilitated, while the responses of neurons tuned differently are
suppressed. This pair-wise correlation in response is represented as:

[4]

where ρmax is the maximum correlation, δ is the concentration parameter, and θi and θj are the
preferred orientations of the ith and jth neuron.

Decoding stage
Given that we now have an estimate of the response and variance across detectors, we can
derive the Likelihood function used to decode the most likely stimulus presented, given the
observed population response. We assume that for fine discriminations, observers are not
actually basing their decoding primarily on the response of the detector tuned for the stimulus,
but rather adopt the optimal strategy (Jazayeri & Movshon, 2006), which is to rely on the
response of more broadly tuned detectors. This idea that observers bias their response towards
flanker detectors for fine discrimination is buttressed by a recently demonstrated illusion
showing that observers tend to exaggerate the direction of fine global-orientation motion
(Jazayeri & Movshon, 2007). Thus, we represent this pooling as the product of each neuron's
tuning function, weighted by its natural log, which in this case is the optimal weighting
function. This weighed pooling is represented as:

[5]

We assume that observers make a comparison of the probability that the response could have
arisen from the two stimulus alternatives, which we can represent as a likelihood ratio. The
likelihood ratio for the case of two stimulus alternatives, θ1 and θ2 (symmetrical around the
vertical), can be derived as the difference between each stimulus' respective log likelihood:

[6]

where Δθ is the difference in orientation between the two stimulus alternatives, and θm is their
mean orientation, or discrimination boundary (0° for a ±4° orientation discrimination task).

The first and second moment of the log likelihood ratio define the mean, μLR, and variance,
 of the log likelihood ratio:

[7]

[8]

Based on the derived mean (μLR) and variance  of the log likelihood ratio, we can predict
performance in an orientation discrimination task. Accuracy in the task is defined as:
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[9]

Finally, accuracy (Pcorrect) is transformed to d ′ by the following equation:

[10]

The d ′ value predicted by the model is then compared to observers' performance in two-
alternative forced-choice orientation-discrimination task, as function of contrast (Nachmias,
1967).

Experimental methods
We fit the model to data from two psychophysical studies, Ling and Carrasco (2006) and
Pestilli et al. (2007), both measuring the influence on attention on contrast psychometric
functions.

Ling and Carrasco (2006) assessed the effect of both endogenous and exogenous attention on
contrast sensitivity. Observers were asked to report the orientation (right or left) of a Gabor
that appeared alone at 1 of 8 possible isoeccentric locations. In a given trial, target Gabors were
preceded by one of three types of precues: an endogenous cue, an exogenous cue, and a neutral
cue. The endogenous cue was a line at fixation that pointed towards the upcoming target
location, directing observers to willfully deploy their endogenous attention to that location.
The exogenous cue was a transient dot that flashed adjacent to the upcoming target location,
reflexively grabbing exogenous attention to that location. The neutral cue was a dot that
appeared at fixation, providing no information as to the location of the upcoming target, serving
as a baseline condition. The three cues conveyed the same information with regard to the
temporal onset of the target. Psychometric functions were measured via the method of constant
stimuli, with the Gabor contrasts ranging from .09 to .62 in 14 log steps.

Pestilli et al. (2007) assessed the effect of exogenous attention at both the attended and the
unattended locations on contrast sensitivity. To do so, we presented two Gabors
simultaneously, one at each side of the fixation point. In each trial, one of the Gabors was
preceded by one of two types of precues: exogenous cue and neutral cue (both as described
above). Following stimulus presentation, observers were asked to report the orientation (right
or left) of the Gabor indicated by a subsequent response cue. The cue was considered Valid
when the location of the precue and the response cue matched (50% of the time), and Invalid
when they did not match (50% of the time). Thus, the cue was uninformative and observers
were explicitly told so. Psychometric functions were measured via the method of constant
stimuli, with the Gabor contrasts ranging from .01 to .8 in 8 steps.

Results
The model comprises a set of parameters that define a population of neurons. For the present
results we used parameters based on those found in V1 (Albrecht & Hamilton, 1982, Kohn &
Smith, 2005). Table 1 shows the actual parameter values used to fit the data. Models were fit
to the accuracy data using non-linear regression, and then transformed to d′. Note that although
the value of the parameters changes the population of interest and the raw quantitative output
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of the model, their choice would not have any qualitative influence on potential differential
attentional effects on the pCRF.

The model was fit with only three free parameters for the neutral condition (Rmax, β, C50) and
one (a1or a2) or two (a1 and a2) free parameters for the attentional conditions (attended-
endogenous or attended-exogenous and unattended-exogenous). Data from the neutral
attention condition was fit first by fixing all the parameters of the model except the three that
define the contrast response function (Eq. 3; Rmax, C50, β). For the neutral condition data sets,
both attentional parameters a1 (response gain) and a2 (contrast gain) were fixed at 1,
designating no attentional gain modulation. After estimating the three pCRF parameters for
the neutral condition data, we treated these estimates as fixed parameters when fitting the
attentional data, now only allowing the attentional gain parameters to vary: a1 (response
gain), a2 (contrast gain) or both of them (mixed model).

We fit the model with data from two studies that have investigated effects of endogenous and
exogenous attention at both attended and unattended locations. Data from Ling and Carrasco
(2006) were used to estimate the change in neural contrast response underlying the behavioral
improvement brought about by endogenous and exogenous attention. Data with exogenous
attention from Pestilli, Viera and Carrasco (2007) were used to estimate changes in contrast
response that underlie the enhancement in sensitivity at attended locations, and the impairment
at unattended locations.

Endogenous attention: Ling & Carrasco (2006)
Figure 3a shows the model fits to the endogenous attention experiment in Ling and Carrasco
(2006). For each observer, an increase in pure contrast gain (a2) led to superior fits over a pure
response gain model (a1). Figure 4 shows the r2 values for each model (contrast gain, response
gain and the mixed model), observer and attentional condition.

To determine which model best accounted for the data, an F-test was performed comparing
the r2 obtained by the model with two parameters (mixed model: a1 and a2) to the one obtained
with only one of the two parameters (a1 or a2). F was computed as:

[11]

where df1 = kfull − kai and df2 = cnum − kfull − 1. kfull is the number of parameters of the full
model (i.e., 2; a1 and a2), kai is the number of parameters of the attentional model (i.e., 1; a1
or a2) and cnum is the number of contrasts (i.e., 8 for Pestilli, Viera & Carrasco, 2007, 14 for
Ling & Carrasco, 2006).

With endogenous attention, the contrast gain model did the best job of accounting for the data.
For all observers, the contrast gain model provided a better fit than the response gain model
(Figure 3a; Table 2), and a nested hypothesis test (F-test; (Lu & Dosher, 1998) revealed that
the mixed model was not statistically superior to the contrast gain model (p-values reported in
Table 2).

Figure 3b shows the estimated pCRF underlying the behavioral performance in the endogenous
attention experiment (Ling & Carrasco, 2006). All observers exhibit a leftward shift in the
estimated pCRF with endogenous attention, indicative of contrast gain modulation. Figure 3c
depicts the attentional modulation as the difference between the neutral and the attended
pCRF's. As predicted for contrast gain, the maximal attentional modulation is clearly within
the dynamic range of the pCRF.
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Exogenous attention: Ling & Carrasco (2006) and Pestilli et al. (2007)
With exogenous attention, the response gain model did the best job of accounting for the data
for both Ling & Carrasco (2006) and Pestilli et al. (2007). For all observers, the response gain
model provided a better fit than the contrast gain model (Figure 4 shows the r2 values for each
model –contrast gain, response gain and the mixed model– observer and attentional condition),
and a nested hypothesis test revealed that the mixed model was not statistically superior to the
response gain model (Figure 5 and 6; p-values reported in Table 2). When exogenous attention
was drawn towards a stimulus, model results from both studies suggest that the behavioral
findings were brought about by an increase in the response gain of the underlying pCRF. When
exogenous attention was drawn away from a stimulus (Pestilli et al., 2007), consistent with a
response gain mechanism, the response gain of the underlying pCRF was attenuated.

Average results
Figure 7 shows the average results. Endogenous attention affects the pCRF strictly via contrast
gain, increasing contrast response solely within the dynamic range of the contrast response
function (top row). Exogenous attention affects the pCRF strictly via response gain, increasing
contrast response progressively across the whole contrast response function at attended
locations (middle and bottom rows) and decreasing it at unattended locations (bottom
row).

To determine which parameters of the pCRF were affected on average by attention we used a
bootstrap analysis (Efron & Tibshirani, 1993). For each study, data were combined across
observer, attentional condition and contrast level. The analysis shows the variability of the
estimated model parameters given the variability in the data. We estimated the variability of
the psychometric data at each contrast level in each attentional condition by sampling with
replacement 10,000 times from the combined data set, and fitted the model to each one of these
10,000 samples (by fixing all the model parameters but allowing both Rmax and C50 to vary).
We then defined the 95% confidence intervals (C.I.) on the bootstrapped-data and estimated
parameter distributions. Figure 7a, shows the estimated variability around each individual data
point (vertical error bars, 95% C.I.), and column Figure 7b shows the estimated variability of
the model parameters fitted to the bootstrapped data. The shaded areas for each individual
pCRF envelope the 95% C.I. of the obtained parameters distributions (for Rmax and C50).
Results for endogenous attention show that whereas the 95% C.I. for the Rmax parameter
overlap (shaded areas around each function's asymptote) the 95% C.I. for the C50 do not overlap
(shaded areas around the drop-down vertical lines marking the average C50 value). Results for
exogenous attention show that the 95% C.I. for the C50 parameter overlap, but that the 95%
C.I. for the Rmax do not overlap. These results indicate that whereas endogenous attention
changes contrast-gain without affecting asymptotic response, exogenous attention changes
response-gain without affecting the threshold.

Discussion
We implemented a population-coding model based on Poisson dynamics, which predicts
changes in the contrast response properties of a neural population given psychophysical
performance. We assumed the tuning bandwidth and the correlation parameter values reported
for V1 data (Albrecht & Hamilton, 1982; Kohn & Smith, 2005; see Table 1). With these few
biologically-plausible assumptions, the model properly describes human psychophysical
performance and estimates changes in contrast response in a neural population with only two
free parameters: threshold and asymptote of the contrast response function. Whereas
endogenous attention shifts the pCRF towards lower contrast via contrast-gain (Figure 3, top
row and Figure 4), exogenous attention increases population response multiplicatively with
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stimulus contrast at attended locations and decreases it at unattended locations via response-
gain (Figure 3, middle and bottom rows and Figure 5 and 6).

For endogenous attention, psychophysical studies have shown effects consistent with contrast
gain (Ling & Carrasco, 2006a), response gain (Morrone, Denti & Spinelli, 2002, 2004) or a
hybrid model in which attention first undergoes contrast gain, and at a later stage, response
gain (Huang & Dobkins, 2005). What could explain these discrepant results? There are several
differences in the way attention was manipulated in these studies. Studies supporting a response
gain mechanism (Morrone, Denti & Spinelli, 2002, Morrone, Denti & Spinelli, 2004) used a
concurrent task paradigm in which observers either performed a demanding rapid serial visual
presentation (RSVP) task at fixation along with a peripheral task, or they viewed the RSVP
passively, allowing more attention to be allocated to the peripheral task. Huang and Dobkins
(2005) attribute the difference between their results and those of Morrone et al. to experimental
parameters. They claim that the contrasts they tested capture the entire response functions and
that the dual task used by Morrone et al. was not demanding enough. Ling and Carrasco (2006)
differ from those studies in how attention was deployed and the task performed. Whereas
concurrent tasks draw resources away from the processing of stimuli (e.g. Lee, Itti, Koch &
Braun, 1999), Ling and Carrasco (2006) directed observers' endogenous attention towards a
location in the visual field via spatial cueing. Both the endogenous spatial-cueing manipulation
and the orientation-discrimination task used by Ling and Carrasco (2006) are most similar to
the tasks performed in the relevant monkey neurophysiology studies. Monkeys are trained to
attend to one of several possible stimulus locations and have to detect an orientation change
(target) among a series of vertically oriented distracters (Reynolds et al., 2000; Williford &
Maunsell, 2006; McAdams & Maunsell, 1999) or a change in global motion direction (Treue
& Martinez-Trujillo, 1999).

For exogenous attention, there is scarce psychophysical data, and no neurophysiological data
regarding gain mechanisms. Ling and Carrasco (2006) reported that a mixed model accounted
for the data better than response gain or contrast gain alone. The analysis reported here supports
response gain. The discrepancy is due to the fact that they fitted contrast response functions to
accuracy data. Hence, the expansion of the contrast response function at high contrast was
limited and compressed, and a change in threshold parameter was required to account for the
data. In contrast, our model was fit to d′, which has no theoretical upper bound.

Investigating the interaction between the effects of exogenous attention and contrast
adaptation, Pestilli, Viera and Carrasco (2007) measured changes in sensitivity and in
performance for orientation discrimination at attended and unattended locations across the
psychometric function. They reported that the effect of attention increased with stimulus
contrast and also that contrast threshold decreased. However, in that study threshold was
defined as the stimulus contrast necessary to attain 70% accuracy, and such measure does not
imply a change in the C50 parameter of the contrast response function, as modeled in the present
study.

How might attention affect the gain of population contrast response? One proposed mechanism
is firing synchrony (Fries et al., 2001). Indeed, attention-enhanced synchronization could result
in a response gain modulation on the population contrast response (Kim et al., 2007). Although
our model cannot test neural synchronization, both behavioral results and model fits show
contrast gain to be mediating the effects of endogenous attention. Further investigation is
necessary to clarify why different stimulus and task parameters affect the way endogenous
attention change neural gain at the population level and the contrast response behaviorally.
Another possibility put forth is that attention multiplicatively scales the inputs to the
normalization circuit (Reynolds & Chelazzi, 2004). This can in turn result in either a
multiplicative scaling of firing rate (McAdams & Maunsell, 1999; Treue & Martinez-Trujillo,
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1999) or a change in contrast gain (Reynolds, Pasternak & Desimone, 1999), depending on
task and sensory conditions.

Why would different types of attention lead to different gain signatures? Furthermore, why
would different tasks and stimuli lead to different gain signatures? Understanding the
mechanism that underlies neuronal gain changes may offer some insight. Chance, Abbott and
Reyes (2002) showed that response gain modulation is driven by changes in the firing rate of
balanced background synaptic input, where decreasing the amount of background input leads
to increases in response gain, and vice versa. Importantly, they posit that this background noise
modulation can originate from local or distal sources, and that the influence of background
inputs from local cortical connections can have a stronger influence than more distal cortical
inputs. Based on this framework, they speculate that the contrast-gain-like signature some have
observed with endogenous attention (e.g., Reynolds et al., 2000) may arise because the locus
of attentional modulation, where the background input is being attenuated, is distant from the
recording site. A high-contrast stimulus evokes high amounts of local background input, which
wash out the influence of the distal attention-modulated background input. Perhaps by
assessing the gain signature, one can gauge the proximity between a cortical site being probed,
and the true locus of the attentional modulation; the more local the attentional modulation is
relative to the site of interest, the more the modulation signature should resemble response
gain. This framework may shed light on a number of issues.

First, in relation to the present study, we assume that our orientation-discrimination task was
carried out in an early cortical visual area, V1. For endogenous attention we observed contrast-
gain modulation, whereas for exogenous attention we observed response-gain modulation. The
former could be due to attentional modulation from a more distal source, as endogenous
attention is more ‘top-down’ in nature than exogenous attention, and requires feedback from
higher-level cortical areas. Correspondingly, one could conclude that the source of attentional
modulation that leads to a response-gain-like signature with exogenous attention is the result
of local modulation. This would be in line with the notion that exogenous attention is more
bottom-up in nature, and that the source of exogenous attention's modulation is closer to V1.
Indeed, there is evidence that increases in the gain of the local feedforward cholinergic system
produce a response gain-like change in the response of downstream visual neurons (Disney,
Aoki & Hawken, 2007). In addition, the contrast response of thalamic inputs to visual cortex
is modulated by the alertness state of an animal in a way that is consistent with response gain
(Cano, Bezdudnaya, Swadlow and Alonso, 2006). In a way, it could be hypothesized that
exogenous attention has an effect relatively more independent from the task and stimulus nature
than endogenous attention, which can improve performance by adapting to the task at hand
(Yeshurun, Montagna & Carrasco, 2008).

Second, this framework could shed light on the mixed-bag of previous findings for gain
mechanisms of individual neurons and attention, and offers a potential explanation for why
different task types and different stimuli would lead to different attentional gain signatures.
Some have reported that the attention effect is manifested by contrast gain (Reynolds et al.,
2000; Martinez-Trujillo & Treue, 2002), others have reported that the effect is mediated by
response gain (McAdams & Maunsell, 1999), and yet others have reported that some cells are
modulated by contrast gain, some by response gain, and some by increased baseline firing
(Williford & Maunsell, 2006).

Williford and Maunsell (2006) found that a response gain model provided a marginally better
fit to their data than did a contrast gain model, but both models provided excellent fits to the
data in terms of the percent of variance explained. By examining the key subset of neurons that
had both an attention-modulation and a saturating contrast response functions in the unattended
condition (their Figure 6G, also 6H, 6I) they found a diminished effect of attention from ∼80%
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increase in firing rate at low contrast to ∼20% at high contrast (see their Figure 6G). This is
consistent with the conclusion reached in the present study regarding endogenous attention,
the gain factor diminishes at high contrast.

The tasks and stimuli used in the experiments varied from study-to-study, and as a consequence
the cortical subpopulation s recruited to suit the particular tasks or stimuli probably differ.
Perhaps these disparate results could also be explained within the local/distal connection
framework. It is conceivable that this difference could lead to changes in the cortical distance
between the original source of attentional modulation, and the area being recruited for the task
or stimuli. For instance, it could be possible that the cells that showed response-gain modulation
were from V4 layers that had fewer synaptic steps from the source of attentional modulation,
thus allowing the background input from the attentional source to influence the response of
that cell even at high contrasts. Correspondingly, perhaps cells exhibiting contrast-gain-like
modulation resided in V4 layers that had more synaptic steps from the source of attentional
modulation. Further experiments and modeling could elucidate whether this local/distal
framework for gain modulation applies to attentional modulation.

Conclusion
Whereas individual neurons are variable, the population response needs to be univocal to
reliably guide behavior. Multi-unit recording and neuroimaging techniques (e.g., EEG, fMRI
and Optical Imaging) have potential to measure larger-scale responses, but capturing the vast
scale of population responses remains a methodological challenge, and how attention affects
neural populations remains empirically untested. Psychophysical data (Ling & Carrasco, 2006;
Pestilli et al., 2007) and the estimated parameters of the population-coding model presented
here support the idea that attention acts on population contrast response via different
mechanisms: contrast gain for endogenous attention and response gain for exogenous attention.
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Figure 1. Gain mechanisms of attention in single-cell responses to contrast
The black and red curves represent the contrast response functions of a hypothetical neuron
when attention is directed away from and towards a stimulus, respectively. (a) Contrast gain,
attention shifts the neuron's contrast response function toward lower contrast. (b) The effect
is greater near the middle of the contrast response function than at low and high contrasts. (c)
Response gain, attention multiplies neuron response by a constant factor; (d) the attentional
effect increases with contrast.
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Figure 2. Population-coding model for orientation discrimination with contrast-dependent
responses
The model is composed of an encoding front stage and a decoding back stage. It predicts the
likelihood that a stimulus gives rise to the neural population response by computing the
weighted sum of individual neurons' responses. The encoding stage is a bank of orientation-
tuned neurons, modeled as circular normal (a, equation 2). To generate a population response
(black line), the response of each neuron (black dots), given by the individual tuning curves
(gray lines) is scaled by the population's sensitivity to contrast, as described by a Naka-Rushton
function (b, equation 4). The decoding stage computes the likelihood of each stimulus
alternative and uses their log-likelihood ratio to choose the most likely one. Each neuron's
contribution to the decision is determined by the product of its firing rate (resulting from its
orientation-tuning and contrast-response properties) and the log of its tuning curve (equation
5). Neurons' responses are signal-correlated, such that response correlation varies as a function
of tuning similarity (c, equation 3). Sensitivity (d′) is computed by estimating the most likely
stimulus alternative. The model reaches a decision by computing the mean likelihood-ratio of
the two possible alternatives (+4° and −4°) and the variance around this mean (d, equations
7-10).
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Figure 3. Endogenous attention psychometric functions, data and model predictions from Ling &
Carrasco (2006)
Individual observer data, model fits and attentional effect. Black lines and squares represent
the neutral-attention condition, red lines and triangles represent the endogenous attention
condition. Short-dash lines show the best fit for the mixed model (contrast gain plus response
gain), long-dash lines show the best fit for the response gain model. a) Data and psychometric
functions estimated by the model. b) Estimated contrast response functions. c) Difference in
response between neutral- and endogenous-attention conditions. The best model for
endogenous attention is contrast gain; attention shifts the pCRF horizontally towards lower
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contrast (b) and the difference in population response is highest within the middle of the pCRF
(c).
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Figure 4. Quality of fit for each gain model
Each graph reports r2 values for each model –contrast gain, response gain and the mixed model–
observer and attentional condition). r2 values are higher for contrast gain than for response
gain with endogenous attention (top panel) and higher for response gain than for contrast gain
with exogenous attention (middle and two bottom panels). The mixed model has one more
parameters and overall show higher r2 values; we performed a nested hypothesis test to show
when the increase in r2 due to the additional parameter is significant (see text and Table 2).
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Figure 5. Exogenous attention. Psychometric functions, data and model predictions from Ling &
Carrasco (2006)
Individual observer data, model fits and attentional effect. Black lines and squares represent
the neutral-attention condition, red lines and triangles represent the exogenous attention
condition. Short-dash lines show the best fit for the mixed model (contrast gain plus response
gain), long-dash lines show the best fit for the response gain model. a) Data and psychometric
functions estimated by the model. b) Estimated contrast response functions. c) Difference in
response between neutral- and exogenous-attention conditions. The best model for exogenous
attention is response gain; the effect of attention on the pCRF increases with contrast (b) and
the difference in population response is highest at high contrast (c).
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Figure 6. Exogenous attention. Psychometric functions, data and model predictions from Pestilli,
Viera, & Carrasco (2007)
Individual observer data, model fits and attentional effect. Black lines and squares represent
the neutral-attention condition, red lines and triangles represent the valid-cue exogenous
attention condition. Green lines and circles represent the invalid-cue exogenous attention
condition. Short-dash lines show the best fit for the mixed model (contrast gain plus response
gain), long-dash lines show the best fit for the response gain model. a) Data and psychometric
functions estimated by the model. b) Estimated contrast response functions. c) Difference in
response between neutral- and valid-cues (light blue) and neutral- and invalid-cues (gold)
conditions. A positive or negative value means that there is an increase or decrease in response,

Pestilli et al. Page 19

Vision Res. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



respectively, when attention is directed to a stimulus, as compared to the neutral cue condition
in which attention is directed to both locations. The best model for exogenous attention is
response gain; the effect of attention on the pCRF increases with contrast (b), response is higher
for attended and lower for unattended stimuli) and the difference in population response is
highest at high contrast for attended stimuli and lowest at high contrast for unattended stimuli
(c).

Pestilli et al. Page 20

Vision Res. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. Average data & model fits
(a) Model fits and averaged psychometric data for attended (red), neutral condition attention
(black) and unattended (green) conditions. (b) Normalized population contrast response
functions (pCRF) for contrast and response gain. The best model for endogenous attention is
contrast gain; attention shifts the pCRF horizontally towards lower contrast. The best model
for exogenous attention is response gain; attention increases pCRF incrementally from low to
high contrast (middle and bottom panels); attention decreases pCRF at unattended locations
(bottom panel). (c) Average difference in responses (from column b): neutral-minus-attended
(blue) and neutral-minus-unattended (gold), across all observers in each study. Errorbars in (a)
are 95% confidence intervals (C.I.), obtained by non-parametric bootstrap. Shaded areas in
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(b) show model parameters' (c50 and Rmax) variability obtained by fitting the model to each
one of the bootstrapped samples within the 95% C.I. in (a).
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Table 1
Model parameters
The first two columns show the values of the parameters used to construct the neural population. The third column
explains the parameters of the contrast response function. The fixed parameter values are based on previous
neurophysiological findings.

κ: Concentration
parameter of the tuning
function (π/4.5).

N : Number of neurons in
the population (300).

M : baseline neural
response (spikes/s).

R : Contrast response
(defined by equation [3]).

f(θi): i
th neuron's tuning

function.
Rmax : Maximum neural
response (spike/s).

θt: Preferred orientation
of ith neuron (4° or 2.5°).

θm : Mean difference in
orientation between the two
stimulus alternatives (0).

C : Stimulus contrast.
C50 : Stimulus contrast at
half maximum response.

t : Stimulus duration (0.1
and 0.03 s for each
respective study).

ρij : Correlation in response
between the ith and jth
neuron (ρmax : .2; δ: .1).

β: Slope of the contrast
response function.

Δθ: Half difference in
orientation between the
two stimulus alternatives
(4° or 2.5°).

Attentional gain parameters:
a1 (Response gain),
a2 (Contrast gain)
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