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Abstract
We show here that a brain-computer interface (BCI) using electrocorticographic activity (ECoG) and
imagined or overt motor tasks enable humans to control a computer cursor in two dimensions. Over
a brief training period of 12-36 min, each of five human subjects acquired substantial control of
particular ECoG features recorded from several locations over the same hemisphere, and achieved
average success rates of 53-73% in a two-dimensional four-target center-out task in which chance
accuracy was 25%. Our results support the expectation that ECoG-based BCIs can combine high
performance with technical and clinical practicality, and also indicate promising directions for further
research.

1. Introduction
Brain-computer interfaces (BCIs) convert brain signals into outputs that communicate a user’s
intent [1]. Because this type of communication does not depend on peripheral nerves and
muscles, it can be used by people who are severely paralyzed to communicate and interact with
their environment. While recent studies have provided encouraging technical demonstrations
of this new communication modality, practical applications of BCI technology are currently
impeded by the limitations and requirements of the prevailing non-invasive and invasive
methods.

Non-invasive BCIs use electroencephalographic activity (EEG) recorded from the scalp [1].
While these BCIs can support higher performance than often assumed, including two-
dimensional control with selection capabilities [2,3], the acquisition of such high levels of
control typically requires extensive user training. Furthermore, EEG has low spatial resolution
and is susceptible to artifacts from other sources. Invasive BCIs use local activity from multiple
neurons recorded within the brain [4,5,6,7,8,9]. Signals recorded within cortex have higher
fidelity and might support BCI systems that require less training than EEG-based systems.
However, clinical implementations of intracortical BCIs are currently impeded mainly by the
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difficulties in maintaining stable long-term recordings [10,11], by the substantial technical
requirements of single-neuron recordings, and by the need for continued intensive expert
oversight.

Electrocorticographic (ECoG) recording from the cortical surface could be a powerful and
practical alternative to current non-invasive and invasive BCI recording methods. ECoG has
higher spatial resolution than EEG (i.e., tenths of millimeters vs. centimeters [12]), broader
bandwidth (i.e., 0-500 Hz [13] vs. 0-50 Hz), higher characteristic amplitude (i.e., 50-100 μV
vs. 10-20 μV), and far less vulnerability to artifacts such as EMG [12] or ambient noise. At the
same time, because ECoG does not require penetration of the cortex, it is likely to have greater
long-term stability [14,15,16,17] and to produce less tissue damage and reaction than
intracortical recordings.

Recent studies have shown that ECoG signals associated with imagery of arbitrary tasks can
provide one-dimensional BCI control with little training [18,19,20,21]. The present study
extends this work to demonstrate that ECoG signals recorded from the same hemisphere can
support multiple degrees of BCI control. Five patients participated (see Table 1 for clinical
profiles). Each had subdural electrode arrays implanted for 7-14 days in preparation for surgery
to remove an epileptic focus. The experimental protocol combined current BCI methodology
[1,22,2] with current understanding of task-related ECoG changes [23,24,25,26,20,27,28].

The results show that people can rapidly achieve two-dimensional movement control using the
ECoG activity associated with imagined or overt motor tasks. Because the acquisition of control
in our study was much faster than previously reported for an EEG-based BCI [2], our results
suggest that an ECoG-based BCI may allow much more rapid acquisition of two-dimensional
control than do EEG-based BCIs. These findings are further evidence that ECoG could be a
robust and practical alternative for clinical application of BCI technology. They also indicate
promising directions for further research.

2. Methods
2.1. Subjects

The five subjects in this study were patients with intractable epilepsy who underwent temporary
placement of intracranial electrodes for localization of seizure foci prior to their surgical
removal (see Fig. 1 and Table 1). All patients gave informed consent. The study was conducted
at Washington University Medical Center in St. Louis and Harborview Hospital at the
University of Washington in Seattle, and was approved independently by the Human Studies
Committees of both institutions. Prior to this study, these patients had not been exposed to a
BCI system. Each patient had 26-64 subdural electrodes (configured in grids or strips) placed
over the fronto-parietal-temporal region, including coverage of sensorimotor cortex, with
variable coverage of other areas. The electrodes had a diameter of 4 mm (2.3 mm exposed)
and an inter-electrode distance of 1 cm center-to-center (Fig. 1). Patient A had bitemporal and
bifrontal strips; patients B and C had electrode grids placed over the right hemisphere; and
patients D and E had grids placed over the left hemisphere (Fig. 2). Grid placements were based
solely on the clinical requirements without any consideration of this study. Following array
placement, each patient had post-operative anterior-posterior and lateral radiographs to verify
their electrode locations.

2.2. Data Collection
Each patient sat in a hospital bed about 75 cm from a video screen. In all experiments, we
recorded ECoG from 16-64 electrodes using the general-purpose BCI software system
BCI2000 [22]. All signal recordings were: referenced to an inactive intracranial electrode or
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to the scalp; amplified; bandpass-filtered between 0.1 and 220 Hz and digitized at 500 or 1200
Hz (patients C and E, respectively) or bandpass-filtered between 0.15 and 200 Hz and digitized
at 1000 Hz (patients A, B, and D); and stored. The amount of data obtained and the total time
in the study varied from patient to patient. It was determined primarily by the duration of the
implantation and the subject’s physical state and clinical situation.

2.3. Experimental Protocol
The experimental protocol for achieving two-dimensional cursor control had three stages:
feature identification, one-dimensional BCI control, and two-dimensional BCI control. The
three stages are described here.

In the first stage, we collected data that allowed us to determine which ECoG features could
be used for BCI control. Each subject engaged in several motor or motor imagery tasks [28]
such as opening or closing the hand contralateral to the implant; protruding the tongue; moving
the jaw; saying the word ”move;” shrugging the shoulders; moving the legs; moving individual
fingers, and imagining each of these actions. We selected a set of tasks for each subject
depending on the location of the electrode array. The number of these tasks that the subject
actually performed depended primarily on the subject’s ability to maintain adequate
concentration. The subject was asked to engage in each task during presentation of a visual
cue (2-3 secs), and to rest while the screen was blank (1-3 sec). The different tasks were
interspersed randomly and each task was repeated about 60 times.

We compared ECoG activity for the different tasks to that during rest to determine which
features (i.e., amplitudes at particular locations and frequencies) differed most and thus were
the best candidates for BCI control. To make this comparison, we converted the time-series
ECoG data into the frequency domain using an autoregressive model (i.e., with the maximum
entropy method [30]) of order 25. We derived spectral amplitudes for each 2-Hz bin from 0-200
Hz. The results were consistent with current understanding of the effects of different tasks on
ECoG [23,24,25,31,32,26,27,28]. Specifically, activity in mu and beta bands (i.e., 8-25 Hz)
usually decreased during task execution, whereas activity in the gamma range (i.e., >35 Hz),
and especially above 50 Hz, often increased with task execution. Mu/beta rhythm changes were
typically spatially more widespread, and thus were detected in more electrodes, compared to
gamma activity changes (e.g., Fig. 3 and [28]). These changes were usually found over
anatomically relevant areas (e.g., changes in response to tongue movement occurring over
inferior rolandic cortex). Changes during imagined actions were typically topographically and
spectrally similar but smaller than those during actual actions. This is consistent with our
previous ECoG studies [18,33] and also with corresponding EEG studies [34].

The ECoG features (i.e., amplitudes at particular locations and frequencies) with the largest
task-related amplitude changes were identified as features for online control of a computer
cursor. These amplitude changes were computed by calculating the coeffcient of determination
(r2, [35]) for each feature and between the two distributions of trial-averaged feature values
for task and rest, respectively (i.e., similarly to [2]). This gave a measure for the fraction of the
feature variance that was accounted for by the task, and thus gave an indication of how much
control the subject had over each particular feature. We identified pairs of tasks that were
independent of each other in spatial and spectral distributions and their most salient ECoG
features, and then assigned each of them to control either horizontal or vertical cursor
movement (as described below). While this feature selection and assignment to movement
direction was somewhat arbitrary (see the Discussion for implications of this feature/task
selection methodology), we strove to pick relationships that seemed most intuitive (e.g., using
features that corresponded to movement/imagery of the tongue for vertical control, or features
that corresponded to movement/imagery of the contralateral hand for horizontal control). These
relationships were explained to the subject prior to the experiment.
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In the second stage, we trained each subject first on horizontal and then vertical cursor control.
We assigned one or more of the ECoG features identified above to each dimension of
movement. In each trial, the subject was presented with one of two targets (i.e., on the left or
right edge of the screen for horizontal control, or top or bottom edge of the screen for vertical
control), and movement was restricted to the respective dimension. The cursor started in the
center of the screen. The subject’s task was to modulate the assigned ECoG features so that
the cursor moved to the target. Cursor movement occurred every 26 ms (St. Louis) or 40 ms
(Seattle) and was defined by one of two control signals (i.e., one for horizontal movement and
one for vertical movement). Each of these two control signals was calculated from 1-4 ECoG
features (i.e., amplitudes in particular frequency bands at particular locations) using a weighted,
linear summation. The weights were chosen manually and were usually either +1 or -1 (so as
to assign the increase or decrease of feature change to the desired direction (up or down, left
or right) of cursor movement). In contrast to Wolpaw and McFarland’s recent EEG study [2],
these weights were not automatically adapted over the course of the experimental period. ECoG
features were computed from the previous 280 ms (subjects A-D) or 64 ms (subject E). In
subsequent training sessions, we then trained each subject on each dimension of cursor control
using one or more tasks (e.g., training on vertical control using imagined thumb movement
followed by training on vertical control using imagined shoulder movement). Subjects typically
acquired accurate one-dimensional control rapidly as previously reported [18,19,20,21].

In the third stage of the protocol, we conducted two-dimensional BCI experiments by
combining sets of ECoG features that the subject had previously learned to control
independently. In these experiments, two-dimensional cursor movement was controlled by the
selected sets of horizontal and vertical ECoG features simultaneously. Depending on the
subject’s condition and success with this two-dimensional movement task, we assigned
different sets of the trained tasks/feature sets to the two dimensions of movement. For example,
if a subject learned to control the cursor horizontally using imagined thumb or hand movement,
and vertically using imagined shoulder movement, we could try two-dimensional control using
imagined thumb/imagined shoulder or imagined hand/imagined shoulder movements. These
initial one- and two-dimensional interactions averaged about one hour of task-related activity
per subject and preceded collection of the data presented in this study. The subject’s task was
to move a computer cursor from the center of the screen to a target that appeared in one of four
locations on the periphery of the screen (see Fig. 4 for an example). For subjects A,B,C, and
D, only the current target was displayed; for subject E, all targets were displayed simultaneously
(the desired target was shown in a red color and the others in green). Each trial began with the
appearance of the target. One second later, the cursor appeared in the middle of the screen and
then moved with its vertical and horizontal movements controlled continuously by the patient’s
ECoG features. The patient’s goal was to move the cursor so that it hit the target. The software
restricted cursor movement to the workspace, i.e., the cursor was not allowed to go off the
screen. The trial immediately ended when the cursor hit the area corresponding to one of the
four targets (irrespective of whether the target was actually visible). If the cursor reached the
correct target within a predefined maximum movement time (8-25.6 secs, depending on the
subject), the target flashed as a reward. If it failed to reach a target within that time, the cursor
and target simply disappeared, and the trial was registered as a miss. The number of trials that
timed out was very low for all subjects: 5.7%, 4.8%, 0.0%, 0.9%, and 8.6% for the five subjects
A-E, respectively. Because there were four targets and trials were allowed to time out, the
expected accuracy due to chance alone was at most 25%. Whether the cursor hit one of the
targets or the trial timed out, the screen was then blank for 0.26-1 sec before the next trial
began. The data shown here were collected from each patient for four to twelve 3-min runs,
each comprised of 26-54 trials. The runs were separated by 1-min breaks.
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2.4. 3D Cortical Mapping
We used lateral skull radiographs and the LOC package [37] to identify the stereotactic
coordinates of each grid electrode. This automated procedure replicated the manual procedure
described in [38]. Cortical areas were defined using Talairach’s Co-Planar Stereotaxic Atlas
of the Human Brain [39] and a Talairach transformation
(http://ric.uthscsa.edu/projects/talairachdaemon.html). A template 3D cortical brain model
(subject-specific brain models were not available) was obtained from the AFNI SUMA website
(http://afni.nimh.nih.gov/afni/suma). Each subject’s electrode locations were projected on this
3D brain model (e.g., Fig. 1-D) and activation maps (e.g., Fig. 7) were generated using a custom
Matlab program.

2.5. Additional Offline Analyses
We conducted additional offline analyses in which we determined whether features chosen
offline would provide improved performance compared to the sets of features that were used
online. In these analyses, we utilized the stepwise regression function implemented in Matlab
(executed separately for vertical and horizontal movements) to select those features that were
most predictive of target position. The features for these analyses were amplitudes at all
locations and in four frequency bands: 8-12 Hz, 18-26 Hz, 70-100 Hz, and 110-150 Hz (i.e., a
total of 64-288 features for the five subjects). Each of the 1627-5312 samples in the data sets
was associated with a target value to be predicted. This target value was -1 for bottom targets,
+1 for top targets, -1 for left targets, and +1 for right targets. This procedure determined,
independently for horizontal and vertical movements, a set of features and associated weights.
Similarly to how the manually chosen features and weights were combined to result in the
control signals for online cursor control, we combined the weighted sum of these automatically
determined features to produce optimized control signals offline.

3. Results
Table 2 shows how each subject used ECoG to control cursor movement. The five subjects
used different actual movements (subjects B, C, and D) or imagined movements (subjects A
and E) to modulate spectral amplitudes at different frequency bands and cortical locations and
to thereby control the cursor. The majority of features were amplitudes of high gamma
frequency (>70 Hz) recorded from electrodes over sensorimotor cortex (Brodmann’s areas
1-6). The average accuracies achieved by the five subjects ranged from 53%-73%. As Fig. 5
shows, the subjects had significant control from the beginning. Three of the five subjects (B,
C, and E) improved rapidly over the short periods of training. The most rapid improvement
(20% on average) was between the first and second 3-min run. To illustrate the actual
trajectories of the cursor movements, Fig. 6 shows the targets and average cursor movement
trajectories for each subject.

Table 3 provides more detailed analyses of the control shown in Table 2 and Fig. 5. It lists the
correlations (given in r2) of the horizontal and vertical control signal with horizontal and
vertical target position, respectively, as well as the correlations of the control signals with the
orthogonal position (e.g., horizontal control signal vs. vertical target position). These values
of r2 were determined similarly to the approach in [2], i.e., they were calculated based on ECoG
trial averages. Thus, they indicate the fraction of the variance of the average control signal that
is related to the target position. In addition, this table also shows the correlation, given as
correlation coeffcient r, between individual values of the horizontal and vertical control signals.
Each of these values is provided for the control signals that were derived online using the ECoG
features that controlled the cursor, and for the control signals that were derived offline using
an optimal set of ECoG features (see Section 2.5). Table 3 also gives the size of the target (in
percent of the workspace) and the median, mean and standard deviation of the movement times.
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The values for movement time were calculated for all trials, i.e., including those that timed
out. (As mentioned above, only very few trials actually timed out.) The values of r2 represent
the proportion of the control signal variance that is due to the task (e.g., movement to top vs.
bottom target). Thus, they are a measure of the subject’s control over that particular ECoG
signal. These correlations are high for the appropriate direction (e.g., between the horizontal
control signal and horizontal target position) and low for the orthogonal direction. For example,
for subject C the correlations for the horizontal and vertical control signals with horizontal and
vertical target position, respectively, were 0.65 and 0.37, whereas the correlations for the
horizontal and vertical control signals with the orthogonal position were only 0.01 and 0.04,
respectively. Thus, these results indicate that the control signals were strongly related to the
desired movement direction, and only minimally related to the opposite direction. At the same
time, the correlation calculated directly between the two control signals used online was not
negligible in all subjects (e.g., subject D’s correlation coeffcient was -0.40). This indicates that
the x and y control signals contained correlated noise in some subjects. However, the use of
the optimized set of ECoG features derived offline (see Section 2.5) typically substantially
increased the correlations of the control signals with target position in the respective dimension
and substantially decreased the correlations between control signals. For example, Subject B’s
r2 correlations for the horizontal and vertical control signal with horizontal and vertical target
position were 0.21 and 0.25, respectively, whereas the correlations determined offline using
an optimized set of ECoG features were 0.88 and 0.92, respectively. Subject D’s correlation
r between the control signals online was -0.40, whereas the correlation derived offline using
optimized features was -0.08. This indicates that all subjects had substantial and practically
completely independent control over different sets of ECoG features, but that the translation
of these features into control signals online was not optimal. Thus, these results suggest that
control may be further optimized by improving the initial selection and possibly also by
continually updating this selection (see Discussion).

The topographic interpolations of r2 values in Fig. 7 show the spatial distribution of control
signals for subjects D and E. Subject D employed tongue and hand movements for vertical and
horizontal control, respectively, whereas subject E employed imagined movements of the same
kind. (Subject E used different frequencies derived from three locations for horizontal cursor
movement. The right-most topography shows the topography for the set of frequencies used
at one of these three locations.) The locations used online are marked with stars. The traces
below each topography show the r2 values as a function of frequency for these locations (yellow
bars indicate the frequency bands used online). These data again indicate that the locations/
frequencies that we had chosen for online control were not optimal. For example, the locations
used for horizontal movement in both subjects were not the best possible. In these examples,
the actual and imagined motor actions produced activations over several motor cortical areas
comparable to those in a recent ECoG motor mapping study [28]. The imagined tasks used by
subject E produced patterns that are comparable to those produced by the actual tasks used by
subject D.

4. Discussion
This study demonstrates that ECoG activity can support two-dimensional cursor control. In
contrast to a recent study using EEG [2], two-dimensional control was achieved here using
different locations on the same hemisphere. This may prove beneficial for BCI applications
for patients with unilateral hemiparesis. After brief one-dimensional training similar to what
we and our collaborators have previously reported [18,19,20,21], all five subjects achieved this
two-dimensional control within minutes. The level of control over the two movement signals
and the speed of the movement reported here (see Table 3) were comparable to those that have
previously been achieved after extended training using EEG in humans or in highly controlled
experiments using intracortical microelectrodes in non-human primates (see Tables 1 and 2 in
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[2]). The time course of control acquisition is much faster than the weeks or months reported
in a recent EEG study [2], and may be comparable to the rapid control acquisition suggested
by anecdotal evidence for intracortical studies in monkeys. In summary, by showing that ECoG
can support rapid acquisition of robust two-dimensional control without penetrating the cortex,
this paper further demonstrates that ECoG is an excellent signal recording modality for BCI
applications that may combine high performance with technical and clinical practicality.

While all subjects studied in this paper successfully achieved two-dimensional control, the
present experimental approach has three important limitations. The first limitation is that, at
present, the only subjects available for these ECoG studies are patients with epilepsy who are
temporarily implanted with electrode grids prior to surgery. The second limitation relates to
the current difficulty of identifying appropriate ECoG signal features. The third limitation
stems from the arbitrary nature of the motor/imagery tasks used for BCI control. These three
limitations are described in more detail below.

Patient volunteers who are transiently implanted with subdural electrodes for clinical
evaluation offer a rare opportunity to conduct scientific studies. However, this opportunity is
constrained by the clinical needs of the patients undergoing treatment. These constraints
include variation in patients’ cognitive status, restricted time for experimentation, and, for our
research purpose, typically suboptimal cortical coverage by the electrode array. The cognitive
status of the patients is often somewhat impaired due to the medical condition that results in
epilepsy [40], seizures during the course of their ECoG monitoring, and concurrent
administration of narcotic medication to control their pain. In addition, the subjects’ willingness
to participate is often influenced by the highly variable nature of the clinical course of diagnosis
and treatment, and consequently may wax and wane unpredictably. The time available for
experimentation is curtailed by the limited duration of electrode placement: two of the five
subjects (B, D) had their electrodes implanted for a total of 7 days each. Post-operative recovery
(2-3 days) and other factors reduced the time available for experimentation to about 3-4 days.
In addition, clinical testing (e.g., electrical cortical mapping) or seizures (and subsequent post-
ictal periods) often further limit available time. Because the study protocols are approved for
only relatively short experimental periods per day, there were limited opportunities for
experimentation in these patients. Patients A, C and E had a prolonged monitoring course (five,
two, and two weeks, respectively) due to clinical requirements, which made additional testing
possible. Variable cognitive status and reduced time were the most limiting factors in
conducting our multi-step experimental protocol (i.e., signal identification, sequential one-
dimensional training, concurrent two-dimensional control). In addition to the patient and time
limitations, configuration and placement of the grids are optimized for clinical and not for BCI
purposes. The configuration (i.e., 1-cm inter-electrode distance) of the clinical grids is almost
certainly significantly coarser than that previous studies have suggested to be optimal (i.e., the
optimum spatial sampling resolution is probably 1.25 mm [41,12]). In fact, we often observed
task-related correlations limited to only one or a few recording sites. The placement of the
electrodes is dictated by clinical requirements and thus, rarely covers all relevant motor areas
and is highly variable between subject. These patient-related issues greatly increase inter- and
intra-subject experimental variability and significantly impair the use of a consistent and
systematic experimental procedure, and will thus ultimately limit the amount of information
that can be extracted using this subject population. The experience with these issues in the
present study and in related studies suggests several important areas for future investigation.
These include controlled animal studies that determine the long-term effects of subdural/
epidural implants, that assess the difference between subdural and epidural recordings with
regard to signal-to-noise ratio, and that define the optimum spacing and placement of the
electrodes. These efforts should be accompanied by the development and testing of wireless
telemetry systems. We expect that appropriate implementation and integration of this
optimized ECoG recording platform will result in a small and potentially epidural implant with
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wireless transmission, which will substantially reduce the clinical risks currently associated
with a large and transcutaneous implant. We anticipate that this and future studies will provide
ample evidence of the utility of the ECoG platform and will thus support FDA approval of
long-term human ECoG-based BCI use for the purpose of communication and restoration of
mobility and functional interactions.

The second major limitation is the identification of optimal ECoG signal features. As described
in Section 2.3, our first step in utilizing ECoG for real-time BCI control was the identification
of the features (i.e., signal amplitudes at particular locations and frequencies) that would be
most effectively modulated by the subject using a particular task (i.e., a signal identification
procedure). Because there is no strong a-priori basis for making this selection, and because
ECoG contains more signal features that are responsive to more tasks than does EEG, this
choice is also more difficult. Moreover, ancillary analyses supported the notion reported in
[20] that signal features typically change between the signal identification procedure and the
real-time experiment. Traditional signal translation schemes (such as classification or
regression) assume that the signal properties are the same during initial signal identification
and during BCI feedback. Since this assumption is often not met, it tends to reduce
performance. A good example is the generally large difference in performance between the
optimized features determined offline and the set of features used online (Table 3). Full
exploitation of the promise of ECoG signals will require better ways to initially identify good
signal features, and subsequently track them as they evolve. One such possibility is to simply
detect changes from a signal baseline (e.g., at one location per control dimension), rather than
trying to identify and use specific features or sets of features. In this approach, a set of features
recorded during rest is modeled, and deviations from this model (such as those associated with
production of a task) are measured. These measurements can be used for device control. Initial
testing [42,43,44] demonstrates that this methodology can be used effectively in situations in
which there is little a priori knowledge about signal features (such as in the experiments
discussed here).

The third limitation is related to the non-intuitive and arbitrary tasks utilized for BCI control.
With an ideal brain-computer interface, a person with a motor disability would simply intend
a particular movement. This intended action would be detected by the BCI system and
translated into appropriate device action. In contrast, the subjects in typical human BCI
experiments (such as those described in this paper) use arbitrary and non-intuitive imagery
(such as imagined tongue or hand movements) to drive a computer cursor. While a recent EEG-
based study [2] and this paper demonstrate that subjects can make good use of such non-
intuitive imagery‡, it appears likely that multi-dimensional control could be more e ciently
achieved and potentially further improved by using more intuitive tasks such as directed actual
or imagined hand movements. It has been widely assumed that only microelectrodes implanted
within cortex can provide the signal fidelity necessary for effective realization of this approach.
However, evidence in recent and ongoing studies [45,46,47,48,49,50] strongly suggests that
this is not the case; that, in fact, ECoG supports decoding of multidimensional movement
parameters with a fidelity that is comparable to that achieved previously only with
microelectrodes implanted within cortex.

In summary, in the present paper, we describe two-dimensional BCI control using ECoG in
humans after minimal training, and we outline several promising directions for further research.
These results should help to move BCI research closer to practical realization of powerful and
reliable BCI systems for long-term use by people with severe neuromuscular disorders.

‡In these studies, subjects often reported that they replaced the initial type of imagery task with a different type or that they simply
”controlled the cursor,” which suggests that the BCI task can become similar to a typical motor skill.
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Figure 1.
ECoG array in situ. A: Exposed brain after craniotomy. B: 8×8 electrode grid on the surface
of the brain. C: Lateral x-ray image. The electrode grid and several strips are visible. D: Average
brain template and electrode locations co-registered to the x-ray image.
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Figure 2.
Electrode locations in the five subjects projected onto a standard brain. To facilitate
comparison, the electrodes were projected from the left onto the right hemisphere for subjects
A, D and E (see asterixes).
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Figure 3.
Example of an analysis comparing ECoG signals for right hand movement and rest (modified
from [36]). A: Color-coded values of r2 for all locations and frequencies. B: Average spectra
(red for rest, green for right hand movement) (left) and r2 as a function of frequency (right) for
electrode 15. C: Topographical distribution (black dots indicate electrode locations on the 8×4
grid) for color coded r2 values calculated for 20 Hz.
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Figure 4.
Trial sequence for two-dimensional cursor movement. Initially, the screen was blank (rest
period). Then, a target appeared in one of four possible locations on the periphery of the screen
(movement preparation). Then, a cursor appeared in the center of the screen and immediately
started moving as determined by the subject’s ECoG features (movement period). When the
cursor reached the target or the space of one of the three other targets, the screen went blank
and then, after a brief rest period, the next trial began.
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Figure 5.
Learning curves for ECoG control of two-dimensional cursor movement using motor actions
or imagery (see text).

Schalk et al. Page 16

J Neural Eng. Author manuscript; available in PMC 2009 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Average cursor movement trajectories for the five subjects.
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Figure 7.
Example topographies of control for subjects D and E, calculated for all locations and for the
control signals given by the frequency-band combination used online. These topographies
show the color-coded correlation (as r2 values) of cortical activity with vertical or horizontal
movement, and thus indicate the level of task-related control of different cortical areas. Subject
D used actual tongue movements for vertical control and actual hand movements for horizontal
control. Subject E used imagined versions of the same actions. The traces below each
topography show r2 values for the locations used online (indicated by stars). Yellow bars
indicate the frequency bands used online. The topographies show activity patterns over
locations expected with these motor/imagery tasks (see also [28]), and are similar for actual
and imagined tasks. These figures also illustrate that choice of different locations/frequencies
could have yielded improved online performance (see text).
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Table 2
Two-dimensional cursor control. This table shows for each subject: the actual or imagined motor action that the subject
used for control of horizontal (h) or vertical (v) movement; the cortical location (i.e., Brodmann’s area) and frequency
band of the feature used for horizontal (h) or vertical (v) movement, and average target accuracy. These results
demonstrate that people can use ECoG activity to control two-dimensional cursor movement

Actual Movements

Subject Task (Direction) Brodmann’s Area Frequency Band Avg. Acc.

B Tongue Movement (v) 1 79-85 Hz 69%

Eye Movement (h) 20 17-19 Hz

20 17-19 Hz

20 17-19 Hz

C Middle Finger Movement (v) 40 70-80 Hz 73%

90-100 Hz

110-120 Hz

130-140 Hz

Shoulder Movement (h) 4 70-90 Hz

6 70-90 Hz

5 100-120 Hz

D Tongue Movement (v) 6 77-83 Hz 58%

95-101 Hz

Hand Movement (h) 4 77-83 Hz

Imagined Movements

Subject Task (Direction) Brodmann’s Area Frequency Band Avg. Acc.

A Imagined Jaw (v) 31 115-121 Hz 53%

Imagined Hand (h) 47 47-53 Hz

38 47-53 Hz

E Imagined Tongue (v) 43 90-95 Hz 60%

110-115 Hz

Imagined Hand (h) 3 85-90 Hz

2 90-95 Hz

6 115-120 Hz

125-130 Hz
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