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Abstract
The assessment of air pollution regulatory programs designed to improve ground level ozone
concentrations is a topic of considerable interest to environmental managers. To aid this assessment,
it is necessary to model the space-time behavior of ozone for predicting summaries of ozone across
spatial domains of interest and for the detection of long-term trends at monitoring sites. These trends,
adjusted for the effects of meteorological variables, are needed for determining the effectiveness of
pollution control programs in terms of their magnitude and uncertainties across space. This paper
proposes a space-time model for daily 8-hour maximum ozone levels to provide input to regulatory
activities: detection, evaluation, and analysis of spatial patterns of ozone summaries and temporal
trends. The model is applied to analyzing data from the state of Ohio which has been chosen because
it contains a mix of urban, suburban, and rural ozone monitoring sites in several large cities separated
by large rural areas. The proposed space-time model is auto-regressive and incorporates the most
important meteorological variables observed at a collection of ozone monitoring sites as well as at
several weather stations where ozone levels have not been observed. This problem of misalignment
of ozone and meteorological data is overcome by spatial modeling of the latter. In so doing we adopt
an approach based on the successive daily increments in meteorological variables. With regard to
modeling, the increment (or change-in-meteorology) process proves more attractive than working
directly with the meteorology process, without sacrificing any desired inference. The full model is
specified within a Bayesian framework and is fitted using MCMC techniques. Hence, full inference
with regard to model unknowns is available as well as for predictions in time and space, evaluation
of annual summaries and assessment of trends.
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1 Introduction
The evaluation of the effectiveness of legislated emission control programs designed to reduce
ground level ozone concentrations in the U.S. is of considerable importance to the air regulatory
community. The seemingly well-defined goal of estimating trends in air quality is actually
quite difficult to address. Since ozone is a secondary pollutant that results from photochemical
reactions involving precursor pollutants emitted from a variety of transportation and industrial
processes, its levels are difficult to control. The rates of ozone production are driven by
meteorological conditions, primarily sunlight, temperature, along with wind speed and
direction. Since meteorological conditions can vary from year to year, ozone levels could be
higher in years when conditions are conducive to ozone formation and accumulation even if
emission control programs are working as designed. Thus, the overall effect of meteorological
fluctuations is to mask any long-term trends in ozone that are directly related to changes in
precursor emissions.

Until 1997, the U.S. Environmental Protection Agency (EPA) defined the National Ambient
Air Quality Standards (NAAQS) for ozone in terms of the daily maximum ozone measurement
among the network of monitoring sites covering a given area. In 1997, EPA strengthened the
ozone NAAQS based on studies showing adverse effects from exposures allowed under the
previous standard, see U.S. Environmental Protection Agency (2006). The new standard is
defined in terms of the 3-year rolling average of the annual 4th highest 8-hour average ozone
concentration and is met when the 3-year rolling average is less than 80 parts per billion
(ppb), see e.g. epa.gov/air/criteria.html.

In this paper, we develop a new spatial-temporal model for predicting spatial patterns and
associated uncertainties in ozone concentrations and for detecting long term trends. Here, we
use data observed from 1997–2004 for the state of Ohio at ozone monitoring sites located in a
variety of urban, suburban, and rural settings. We use several important meteorological
variables observed at some of the ozone monitoring sites and also at sites where ozone has not
been observed, e.g., several airports in Ohio and neighboring states. We address the spatial and
temporal misalignment of the pollution and meteorological data through spatial modeling. This
allows us to develop a disaggregated model that takes a novel form by relating current day
ozone concentration to previous day ozone (auto-regressive part), an annual intercept term, an
incremental effect due to meteorology, and a spatially correlated error term. As we clarify in
Section 3.1, this avoids the potentially contentious issue of direct modeling of meteorology
and focuses on modeling successive daily increments for a set of meteorological variables, a
more straightforward task. In all of this we infer about latent “true” ozone levels, recognizing
that observed levels may introduce missingness, bias error and measurement error. We use
data from 15 monitoring sites not included in the analysis to validate predictions from our
model.

By modeling daily ozone concentrations, we can easily aggregate to any desired temporal
summary of ozone, particularly the summary underlying the ozone air quality standard and
hence study trends in such summaries. Note that, unlike other models that seek to examine
trends (see below), we learn about trend without having to assume any functional form for it.
By using space-time modeling, we can interpolate or predict ozone levels at any location in
the state, again to whatever desired temporal summary. As a result, we achieve the most highly
resolved (with regard to both space and time) analysis of ozone yet developed. A byproduct
of our high resolution modeling is the potential to link predicted true ozone concentrations to
adverse health outcomes (see, e.g. Bell et al., 2004). Daily predictions of true average ozone
at arbitrary locations, which we can provide, offer a source of information for modeling such
linkage. Moreover, by capturing uncertainty at such resolution and implementing inference
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within the Bayesian framework, we immediately obtain the uncertainty associated with any
aggregation.

Lastly, space-time process modeling for ozone levels achieves a, perhaps less appreciated,
benefit with regard to investigating extremes, such as the annual fourth highest daily average
Non-model based interpolation of extremes, as would be done with monitoring data using
standard software packages to create spatial surfaces, will tend to smooth them out, resulting
in underestimation of the extent of noncompliance. The space-time dependence structure
associated with process modeling is more effective in retaining the extremes of the latent ozone
surfaces. (See Section 5 in this regard.)

More specifically, this paper develops and illustrates several notions of site-specific summaries
and trend surfaces over a large spatial domain. We consider spatial patterns in the annual 4th
highest daily maxima 8-hour ozone concentrations and in the 3-year rolling averages defined
above, across Ohio. Spatial patterns for the 3-year rolling averages can be examined for overall
changes across the period 1997–2004 to assess changes in the ozone surface over time periods
when emission reductions have been in place. Further, our modeling approach can be used to
study site-specific trends by adjusting predicted ozone concentrations for meteorological
effects where those have been observed. In this regard, we could attempt direct spatio-temporal
modeling of extreme levels and for instance, in recent work of Gilleland and Nychka (2005)
using generalized extreme value distributions. However, extremes need not be our only interest;
the proposed high resolution modeling enables more general assessment of ozone patterns in
space and time.

Space-time modeling of air pollutants, ground level ozone concentrations in particular, has
attracted recent attention, see, e.g., Guttorp et al. (1994), Carroll et al. (1997). In recent years,
hierarchical Bayesian approaches for spatial prediction of air pollution have been developed,
see, e.g. Brown et al., (1994), Sahu and Mardia (2005), Sahu et al. (2006) and references
therein. McMillan et al. (2005) propose a regime switching model for ozone forecasting using
meteorological variables as covariates and they illustrate using data from April to September
in 1999 over a spatial domain covering Lake Michigan. They do not explicitly model the
meteorological variables but their method requires them as input possibly obtained from
weather forecast data. They work with data projected to a grid and then introduce a “nearest-
neighbor” spatial model; as a result, interpolation is precluded. With one year of data, their
methodology is suitable for short-term forecasting of ozone but they are unable to investigate
trends.

Cox and Chu (1992) used a generalized linear model approach, assuming a conditional Weibull
distribution for ozone concentrations given meteorology, to estimate trends in daily maximum
ozone levels. Porter et al. (2001) reported on the estimation of trends in ozone concentrations
adjusted for meteorological variables at individual monitoring sites. These authors used a
moving average, Kolmogorov-Zurbenko filter, to separate a baseline component of log
transformed ozone consisting of long-term trend and seasonal variation from short-term
weather variation. Cocchi et al. (2005) followed the approach of Huang and Smith (1999) by
using a tree based partitioning of daily maxima ozone concentrations and assumed these
maxima are Weibull distributed. Trend of ozone maxima is evaluated at a single site in Italy
in terms of the sequence of yearly variations of medians within groups having homogeneous
meteorology. A comprehensive overview of statistical methods for the statistical adjustment
of ground-level ozone is given by Thompson et al. (2001). Huerta et al. (2004) model hourly
readings of concentrations of ozone jointly with air temperature for data from Mexico City.
Their approach uses a dynamic linear model with seasonal harmonics which enables
simultaneous forecasting of ozone and air temperature. Zhu et al. (2003) relate ambient ozone
and pediatric asthma ER visits in Atlanta using hierarchical regression methods for spatially
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misaligned data. Finally, Wikle (2003) provides an overview of hierarchical modeling in
environmental science.

The remainder of this paper is organized as follows. Section 2 presents pertinent exploratory
analyses of the data in order to facilitate model development. Our proposed model is developed
in Section 3. Bayesian prediction methods and development of trend analysis are detailed in
Section 4. Model based analyses are provided in Section 5. A brief summary and future issues
to explore are given in Section 6. An appendix contains the computational details.

2 Exploratory Analysis
We model daily maximum 8-hour ozone concentration data obtained from n = 53 sites in the
state of Ohio for our analysis. We have ozone data from n1 = 50 National Air Monitoring
Stations/State and Local Air Monitoring Stations (NAMS/SLAMS),
epa.gov/cludygxb/programs/namslam.html, and m1 = 3 Clean Air Status and Trends Network
(CASTNET), epa.gov/castnet, sites. Most of the NAMS/SLAMS sites are located in or around
the big cities whereas the CASTNET sites operate in mostly rural areas. The NAMS/SLAMS
network does not record meteorological data whereas the CASTNET sites do. In addition, we
have meteorological data from m2 = 9 weather stations which are mostly located near airports.
Thus we have ozone data from n = n1 + m1 = 53 sites and meteorological data from n2 = m1 +
m2 = 12 sites. All these 62 sites are plotted in Figure 1, (3 CASTNET sites numbered 1, 2, and
3 in the figure are overlapping). Note that there is at least one meteorological station near every
cluster of ozone monitoring sites. In fact, two meteorological stations outside the state of Ohio
have been kept precisely to achieve this purpose.

We consider data for r = 8 years from 1997 to 2004, inclusive. In each year we have data for
T = 169 days covering the high ozone season from April 15 to September 30. However, 7,832
(=10.93%) of the total N = nrT = 71,656 are missing. In particular, about 50% of the data
(roughly 4 years) were missing in eight sites; some of these sites started gathering data from
2001. In fact in the years 1997–2000 the percentages of missing values were 22.94, 19.73,
16.70, and 13.61, respectively.

The boxplot of ozone values by year are plotted in Figure 2 which shows the overall levels.
The overall level goes up in 1998, comes down to the lowest levels in 2000 and then rises
again, but comes down in the year 2004. This pattern is also seen in the annual 4th highest
daily maximum 8-hour average concentration levels as well, see top panel of Figure 3. The
bottom panel of Figure 3 plots the 3-year rolling averages and we observe evidence of non-
attainment (true ozone values greater than 80) in most of the sites in our study period.

Standard multiple regression methods (stepwise, forward and backward selection) were used
to choose the most important meteorological variables to include in our model. The four (=
p) most important variables are found to be maximum daily temperature in degree centigrade,
relative average humidity, wind speeds in the morning and in the afternoon. McMillan et al.
(2004) also included these four and the additional variables: average station pressure and wind
direction in their work. However, given the four variables above, we did not find these
additional variables to be significant in our spatio-temporal analysis for data taken over the
eight years, 1997–2004. All the n2rTp = 64,896 values of the successive daily increments of
the four meteorological variables were used for our analysis. The time series plots (not
included) of these variables are all centered around zero and they do not show any auto-
correlation, making those amenable to the independence assumption made in Section 3.1.

Data from 15 sites (in addition to the 53 modeling sites) have been set aside for validation
purposes; these sites are also plotted in Figure 1. They are not included for modeling since
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about 70.46% observations were missing. In particular, there were only 5,991 available values
out of the possible 20,282 (=15rT) observations.

Histograms and normal QQ plots were plotted on the three measurement scales: original,
logarithmic, and square-root. The data on the original scale are surprisingly symmetric, but
high variability would lead to negative fitted and predicted ozone concentrations. The log-scale
introduces negative skewness. The square-root scale seems most attractive both in terms of
symmetry and stabilizing the variance so that there are no negative fitted or predicted ozone
values. This is in accord with other work in modeling air pollutants, see e.g. Sahu et al.
(2006).

3 Model Development
We use the notation Zl(s, t) to denote the observed square-root ozone concentration at location
s, in year l on day t. We have t = 1,…,T = 169 and l = 1,…,8. We model data from n = 53
stations denoted by s1,…,sn, all within Ohio. Further, let Ol (s, t) denote the true value
corresponding to Zl(s, t). Let xlj(s, t) and δlj(si, t) denote respectively the value of the jth
meteorological variable and the increment, j = 1,…,p in year l on day t. That is, δlj(si, t) =
xlj(si, t) − xlj(si, t − 1). We shall use the following vector notations: Zlt = (Zl(s1, t),…,Zl(sn, t))
′, Olt = (Ol(s1, t),…,Ol(sn, t))′, xl(si, t) = (xl1(si, t),…,xlp(si, t))′, and δl(si, t) = xl(si, t) − xl(si, t
− 1).

To handle missingness along with potential bias and measurement error, we assume:

(1)

where εl(si, t) is a white noise process, specifically assumed to follow  independently.
Thus  is the so called nugget effect. The Gaussian error assumption may be a concern due
to occasional large excursions in ozone concentration levels. The use of square root
transformation helps in this regard. However, it is possible to use a non-Gaussian error model
for the εl(si, t)’s such as a t-process. Regardless, preliminary residual analysis suggests that it
is plausible to take  to be homogeneous in space and time.

Next, we turn to the modeling for Ol(s, t). There is high auto-correlation between ozone
measurements on successive days, hence, we include an auto-regressive term in our model.
We also introduce a global (not site specific) annual intercept parameter. However, the
residuals after fitting such a model will show significant local variation. From the Introduction,
we anticipate that this arises primarily due to changes in local meteorological conditions.
However, we also introduce space-time random effects to allow for other unobserved but
consequential local variables, enabling spatio-temporally varying intercepts. Thus, we assume
that,

(2)

where ηl(s, t) is a spatially correlated error term, ρ Ol(s, t − 1) is the auto-regressive term with

0 < ρ < 1, ξl is the global annual intercept in year l, and  is the local adjustment to
Ol(s, t) arising due to the increments in meteorological variables xl(s, t). In principle, nonlinear
functions of change in meteorology could be employed. However, these may be hard to
interpret and, furthermore, out of sample model validation suggests that our flexible model is
adequate.
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Clarification of the dynamic model defined by (1) and (2) may be helpful. We are modeling
true ozone dynamically to suggest that ozone differentials are explained by meteorology
differentials. The meteorology differentials are not modeled dynamically. Another approach,
arguably more demanding and more open to criticism, would be to build a dynamic weather
model and then treat true ozone at time t to be conditionally independent given the weather at
time t. Expressed in different terms, for us, Ol(s, t − 1) serves as a proxy for many other
unobserved explanatory variables for ozone concentration levels.

The auto-regressive models require an initial condition for Ol(s, 1), the first value in year l. We
assume the following model:

(3)

where γl(s) is the additional regional effect in year l at site s over a global level μl.

Note that we could instead adopt a “random walk” model for Ol(s, t), e.g.,

(4)

This model corresponds to setting ρ = 1 in (2) and eliminates the need for the ξl’s. However,
we find the fixing of ρ to be unsatisfactory. (Indeed, model comparison using model choice
and validation showed considerably poorer performance for (4) compared with (2).) In essence,
the ρ = 1 model is nonstationary, yielding prediction/forecasting that is explosive in time. As
a noteworthy aside, inference regarding the β’s is essentially the same in (2) and (4). Intuitively,
using Ol(s, t − 1) to explain Ol(s, t) with a 45° line through the origin or with a more flexible
line would not be expected to much affect how the meteorology variables explain Ol(s, t).
Empirically, it is observed in comparing the two fitted models.

A second alternative is to change the right side of (4) to  in the
spirit of (2). However, we can see that this model does not permit us to work with incremental
meteorology, it would force us to model the meteorology which we seek to avoid. (Again, see
Section 3.1.) So, in the sequel, we confine ourselves to the specifications in (2) and (3).

Now we write the above models using vectors and matrices to facilitate computation. The first
model equation is obtained from (1):

(5)

where εlt = (εl(s1, t), ⋯ , εl(sn, t))′. Let 1 be the vector of dimension n with all elements unity
and γl = (γl(s1),…,γl(sn))′. From (3) and (2) we have, respectively

(6)

(7)

where β = (β1,…,βp)′, ηlt = (ηl(s1, t),…,ηl(sn, t))′ and
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For the measurement error in (5) we assume that ,
independently, where 0 is the vector with all elements zero and In is the identity matrix of order
n. For the spatially correlated error we assume that ηlt ~ N(0, ∑η), l = 1,…,r, t = 2, …, T

independently, where ∑η has elements . We take ρ(si − sj ; ϕη) = ρ
(dij , ϕη) = exp(−ϕηdij) where dij is the distance between sites si and sj, i, j = 1,…,n.1 We
acknowledge the simplification associated with choosing the exponential covariance structure,
however, other members of the Matèrn family of covariance functions can be chosen.

Finally we assume that γl ~ N(0, ∑l), l = 1,…,r independently, where  and ∑γ has
elements ∑γ(i, j) = ργ(si − sj ; ϕγ). As before we assume that, ργ(si − sj ; ϕγ) = exp(−ϕγdij). The
parameters ϕη and ϕγ are determined using cross-validation as discussed in Section 5.1.

3.1 Specification for δl(s, t)
It is a highly complex problem to model a multi-dimensional meteorological variable over a
large spatial domain for a number years. Numerical models based on a large number of input
parameters are often implemented in a super-computer to produce many aspects of climate
forecasting. It is beyond a reasonable scope for our work to attempt to replicate such climate
models, to attempt dynamic modeling of the meteorological variables xl(s, t) at the un-observed
sites. Instead, we specify spatially correlated but temporally independent models for the
increments δl(s, t).

In particular, recall that we have only observed the p-dimensional increments in meteorological
variables, δl(s, t), in each year l and on each day t in n2 sites of which m1 are CASTNET sites
and m2 weather stations. We order the sites so that first n1 are NAMS/SLAMS sites where
δl(s, t) has not been observed, the next m1 sites are the CASTNET sites and the last m2 sites
are weather stations.

Based on our exploratory analysis, as mentioned in Section 2, we assume that each of these
δl(s, t) are independently normally distributed with zero mean. The p components of δl(s, t)’s,
however, will have correlation with each other. In addition, we expect them to be spatially
associated with spatial decay that may vary with component. Hence, we need to specify and
estimate correlation structures between components, k ≠ k′ = 1,…,p, δlk(si, t) and δlk′(sj, t) for
any given year l and day t. We assume that the correlation structure is not influenced by the
true ozone values (or their transformations), Ol(s, t). Hence, in order to estimate the parameters
describing the correlation structure of δl(s, t) we only use the observations δl(s, t) observed at
n2 sites over all the years, l = 1,…,r and the days t = 1,…,T. We now specify the correlation
structure and discuss its estimation.

The correlation structure within the p-components of δl(s, t) at any given s, l and t can be
described, without loss of generality, by a p × p lower-triangular matrix A, say, where A =

1The use of an isotropic covariance function for the residual process in an autoregressive, local meteorology adjusted model seems
reasonable. Of course, alternate choices could be examined.
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(a1, a2, ⋯, ap). (This is the so-called coregionalization matrix discussed in, e.g., Gelfand et
al., 2004.) Let ρk(si − sj; ϕk) denote the correlation between δlk(si, t) and δlk(sj, t). For
convenience, we adopt the exponential covariance structure, i.e. ρk(si − sj; ϕk) = exp(−ϕkdij),
k = 1,…,p where dij is the distance between the sites si and sj. As a result, we obtain the cross-
covariance function between δl(si, t) and

 where . Let

 where  and

. The covariance matrix of δlt is:

By partitioning,

we have that:

(8)

(9)

for l = 1,…,r, and t = 1,…,T, where we have dropped the arguments for ∑ for ease of notation.

We also note that from (9) it is easy to obtain the distribution of  for any arbitrary
location s′, which we shall require for prediction purposes in Section 4.

Equation (8) provides the likelihood specification for estimating the elements in the lower
triangular matrix A and the parameters, ϕk, k = 1,…,p. Let ν denote these parameters and u

denote the observations . We assume N(0, 104) for each element in the
lower triangle of A and the uniform prior distribution U(0:001, 0:1) for each ϕk. (This range
was adequate to capture the rates of decay in δlk(s, t), k = 1,…,p:) The likelihood (8) and these
prior specifications are used to obtain the posterior distribution of ν given u.

We run the Metropolis-Hastings algorithm to sample from this posterior distribution of ν as
follows. Let S22 denote the sample covariance matrix of order n2p × n2p obtained from the

rT = 8 × 169 = 1352 realizations . The starting values for the elements of A are obtained by
taking the first 4 × 4 sub-matrix of Cholesky decomposition of S22. The starting values of the
ϕ parameters are all chosen to be 0.005. The jump sizes for the Metropolis algorithm are tuned
to have 40–50% acceptance rates. For our data the proposal variance of the normal proposal
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distribution for the elements of A is found to be 0.5 to have the desired acceptance rate. (Actual
observed rate was 47.45%.) The ϕ parameters are sampled on the log-scale with a uniform
proposal distribution with jump size 0.02. Note that this algorithm can be run both before or
with the main Gibbs sampler for ozone model fitting. Finally, we can compare the model based
estimate (say, the posterior mean) of ∑22 with the observed covariance matrix S22 to check the
quality of model fit. Omitting details, whether we use a histogram of differences or
conventional trace or determinant criteria, the suggestion is that the model fits very well.
Moreover, we validate the ozone model extensively in Section 5 again producing very
satisfactory results.

3.2 Joint Posterior Details
Define N = nrT and M = nr(T − 1) and let ϑ lt = ξl1 + ρOlt − 1 + Fltβ, for l = 1,…,r and t = 2,
…T. Further, let θ denote all the parameters, . Let w denote

all the augmented data, olt,  and the missing data, denoted by , for i = 1,…,n, l = 1,
…,r, t = 1,…,T, and z denote all the non-missing data zl(si, t), for i = 1,…,n, l = 1,…,r, t = 1,
…,T. The log of the posterior distribution, denoted by log π(θ, w|u, z), is written as:

where  are the prior distributions. We assume that a-priori
μl and ξl are independent normally distributed with means 0 and variances 104. The auto-
regressive coefficient ρ is specified the N (0, 104) I (0 < ρ < 1), β ~ N (0, 104 Ip),

, l = 1,…r independently, where the distribution G
(a, b) has mean a/b. In our implementation we take a = 2 and b = 1 to have a proper prior
specification for each of these variance components.

4 Prediction Details
4.1 Predicting Ozone at a New Location

Spatial prediction at location s′ and time t′ is based upon the predictive distribution of Zl(s′, t
′) given in the model Equations (1), (2), and (3). These models allow us to interpolate the spatial
surface at any time point t′ ≥ 1 in a given year. According to (1), for a new location s′ at time
t′ Zl(s′, t′), has the distribution:

(10)

where, for t′ = 1,

(11)
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and for t′ > 1, . From this it is clear that Ol(s′, t
′) can only be sequentially determined using all the previous Ol(s′, t) up to time t′. Hence, we
introduce the notation Ol(s, [t]) to denote the vector (Ol(s, 1),…,Ol(s, t))′ for t ≥ 1.

The posterior predictive distribution of Zl(s′, t′) is obtained by integrating over the unknown
quantities in (10) with respect to the joint posterior distribution, i.e.,

(12)

When using MCMC methods to draw samples from the posterior, the predictive distribution
(12) is sampled by composition; draws from the posterior distributions, π(θ, w|u, z) and π(ν|
u), enable draws from the above component densities, details are provided below.

In (12) we need to generate the random variables γl(s′), δl(s′, t′), and Ol(s′, t′) conditional on
the posterior samples at the observed locations s1, …, sn and at the time points 1,…,T. To draw
samples from δl(s′, t′) we use the conditional distribution π (δl(s′, t′)|u, ν). This distribution is
similar to (9), see Section 3.1 for more details. Once δl(s′, t′) has been drawn we draw Ol(s′,
t′) from its conditional distribution given all the parameters, data and Ol(s′, [t′ − 1]). For t′ = 1
we need to sample γl(s′) for each l. For this we have

where ∑γ,12 is 1 × n with the ith entry given by σγ(si − s′) = exp(−ϕγd(si, s′)) where d(si, s′) is

the distance between the sites si and s′ and . Therefore,

(13)

Analogous to (7), we obtain for t′ > 1

where ∑η,12 is 1 × n with the ith entry given by ση(si − s′) = exp(−ϕηd(si, s′)) where d(si, s′) is

the distance between the sites si and s′ and . Hence,

(14)

where  and
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In summary, we implement the following algorithm to predict Zl(s′, t′).

1. Draw a sample θ(j),ν(j), j ≥ 1 from the posterior distribution.

2. Draw  using (13).

3. Draw  from the distribution π (δl(s′, t′)|u, ν(j)).

4. Draw  sequentially, i.e. first obtain  from (11) and then draw

 using (14) and iterate.

5. Finally draw  from .

The ozone concentration on the original scale is the square of . If we want the
predictions of the smooth ozone concentration process without the nugget term we simply omit

the last step in the above algorithm and square the realizations . We use the median
of the MCMC samples and the lengths of the 95% intervals to summarize the predictions. The
median as a summary measure preserves the one-to-one relationships between summaries for
O and Z, and for O2 and Z2.

4.2 Ozone Summaries
We now develop methodology for assessing trend in ozone summaries. We investigate these
trends using the true ozone process Ol(s, t). Recall that we model ozone levels on the square-
root scale, hence to return to the original scale we use  where appropriate.

The true annual 4th highest daily maximum 8-hour average ozone concentration, denoted by
fl(s), is given by the 4th highest value of the series  in any given year l,

l = 1,…,r. The summaries of the posterior predictive realizations  are used for
predictions of the annual 4th highest daily maximum 8-hour average ozone concentration (and
to obtain their uncertainties).

The 3-year rolling average of the annual 4th highest daily maximum 8-hour average ozone
concentration is obtained by averaging fl(s) over three successive years and assigning the
average to the final year of averaging. Thus the three year rolling average of the annual 4th
highest daily maximum 8-hour average ozone concentration in year l is given by

Again we obtain posterior predictive samples  from MCMC iterations and thereby get
the prediction summary values along with their uncertainties. We can also estimate the
probability of non-attainment at a site s and in year l, denoted by P(gl(s) > 80), by averaging

the indicator functions  over j.
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We can obtain the meteorology-adjusted levels only for the sites where we have observed the
values, xl(s, t), of the meteorological variables. These levels are obtained from the residuals

 using:

The posterior predictive realizations  are summarized to obtain the adjusted levels at site

s in year l. Note that  is the natural definition of the locally adjusted level
though, in the presence of Ol(s, t − 1) as in (2) this become less clear. However, since the β’s
obtained under the model in (2) and (3) are very similar to those that are obtained under the
model in (4) and since adjusting for meteorology in (4) immediately takes the natural form,
we propose the use of this summary. The unadjusted levels are given by

.

We evaluate relative percentage change between 1997 and 2004 as:

Again averaging over posterior predictive realizations produces the desired inference. Percent
change for any other pair of years can be handled similarly.

5 Analysis
5.1 Model Checking

Under weak prior distributions it is not possible to estimate all the parameters in the covariance
structure,  and ϕγ consistently, see e.g. Zhang (2004), Sahu et al. (2006) and the
references therein. Hence, we use the set-aside validation data from 15 stations to select the
two decay parameters ϕη and ϕγ. The variance components are estimated using MCMC. Let

 denote the model based validation estimate for  denote the ith
validation site. Again recall that we model ozone in the square root scale. The validation mean-
square error is given by

where  has been observed and 0 otherwise, and nv is the total number of
available observations at the 15 validation sites. For our data set nv = 5,991 as mentioned in
Section 2. We searched for the optimal values in a two dimensional grid formed of the values
0.004, 0.005, 0.01 and 0.05. The pair of values ϕη = 0.005 and ϕγ = 0.05, provided the smallest
estimated VMSE. The VMSE increases hugely if the values of ϕη and ϕγ are interchanged.
However, the VMSE is not sensitive to the choice of the decay parameters near these best
values. As a result, although it is possible to further refine the grid in a neighborhood of the
best value we do not explore beyond our grid here.
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As mentioned above we have performed validation for all 5,991 available observations in the
fifteen hold-out sites. Overall, 94.73% of the 95% prediction intervals contain the actual
observations and about 50.4% of the predictions are greater than the actual observations. Figure
4 shows the validation plot for a randomly chosen site. To enhance readability we only show
the validations for once in every fourteen days. The validations indicate that the model does
not appear to introduce any bias in prediction and performs very well for out of sample
predictions. The predicted annual surfaces discussed in the next subsection also validate the
model.

We have performed the usual model diagnostics for checking model adequacy using various
residual plots. For example, the fitted versus residual plot (not shown) does not show any
curvature or pattern and confirms that the homoscedasticity assumption is acceptable; there
were only a few extreme values. The residuals plotted against the year (not shown) do not
reveal any anomalies. The variability of the residuals for different years are approximately
constant and, in fact, the ratio of the maximum to the minimum variance is less than two.

5.2 Results and Interpretation
The point and interval estimates of the model parameters are given in Table 1–Table 2. We
found strong dependence among successive day ozone concentrations (estimate of ρ = 0.7783).
Except for wind speed, all meteorological variables were found to be significantly related to
ozone concentrations. The estimates of the variance components  and  show that more
variation is explained by the spatio-temporal effects than the pure error process εl(s, t).

The estimates of μ1,…,μ8, see Table 2, show that changes in the global ozone level as defined
in our model are similar to that in Figure 2. Due to the inclusion of the auto-regressive term
ρOl(s, t − 1) for t > 1 in equation (2), the estimates of ξ1,…,ξ8 (see Table 2) do not show this
pattern. The estimates of  (see Table 2) capture (significantly) differing levels of
variability between years. The ratio of the maximum variance in 1998 to the minimum in 2001
is more than 3; this is also evident in the boxplots provided in Figure 2.

We now summarize the different types of trend information that can be realized from this
modeling approach as described in Section 4.2. The annual 4th highest daily maximum true
ozone values are plotted by linearly interpolating the predictions at 289 gridded locations in
Ohio (see Figure 5) with the observed 4th highest daily maxima at the monitoring sites
superimposed on the predictive surface. We find excellent agreement among the predicted and
observed maxima values. Quantification of this agreement can be found by calculating the root
mean square error (RMSE) between the observations and predictions closest to the monitoring
sites. The RMSE’s, in units of ppb, for the years 1997–04 are: 3.4, 5.1, 4.9, 4.3, 3.7, 4.6, 5.0,
and 4.5, respectively. Thus, the model is predicting the maxima within a range of 3–5 ppb on
average. Figure 6 shows the lengths of the 95% prediction intervals. As expected these intervals
are larger in non-monitored areas compared with monitored areas. The majority of NOx and
VOC emissions in the eastern U.S. come from three sources: mobile sources, industrial
processes, and large electric utilities. Mobile sources and electric utilities accounted for 78
percent of annual NOx emissions in 2004, see U.S. Environmental Protection Agency
(2005). From 1997–2004, annual NOx emissions have decreased by 25% in the eastern U.S.,
and similarly VOC emissions have decreased by 21%. Figure 5 shows decreasing patterns of
true ozone levels across time that might be attributed to reduced levels of ozone precursor
emissions.

Model based interpolated maps of the 3-year rolling averages of the annual 4th highest daily
maximum 8-hour true ozone concentrations (Figure 7) are given for the years 1999–2004. We
define the year 1999 as the rolling average for 1997–1999, and similarly for the other rolling
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averages. As with the annual patterns, we find good agreement with the data superimposed on
the plot. The RMSE’s are 3.7, 4.2, 3.6, 3.7, 3.6, and 3.5 respectively. These RMSE’s show
somewhat better predictions for the 3-yr averages in comparison to the annual maxima. Also,
these patterns reflect the reduced emission levels over this time period. The increase in the 3-
year rolling averages that include 2002 can be attributed to the above normal ozone-forming
conditions for that year. In 2002, temperatures were above normal and precipitation was below
normal in the northeast. These maps of true ozone concentrations (O in our model), suggest
regions of non-attainment with the current NAAQS for ozone standard of 80 ppb based on the
3-year rolling averages. Uncertainty in this inference is given by the lengths of the prediction
intervals (Figure 8). To quantify the extent of non-attainment across Ohio, we developed maps
of the probabilities of exceeding the ozone NAAQS. Using a nominal probability level of 0.8,
almost all of Ohio was found to exceed this probability level for all rolling averages except for
2004 where we see improved air quality conditions in southern Ohio (Figure 9).

Trends in meteorology-adjusted ozone predictions at 12 monitoring sites in Ohio, along with
trends in unadjusted predictions, are shown in Figure 10. Again, we see high ozone unadjusted
predictions in 2002, in comparison to the smoother adjusted predictions at and around this time
period. From the adjusted predictions, we see an overall decreasing pattern in ozone, that is
not easily discerned in the plot of the unadjusted predictions. Figure 11 illustrates the spatial
pattern of trend at monitoring sites defined as a relative difference (%) of adjusted and
unadusted predictions for 1997–2004. These trends are all negative, some significant,
according to the 95% predictive intervals based upon the MCMC replications. Given our
definition of trend, we see more significant reductions based on the meteorology-adjusted
ozone predictions. Only 6 of 12 sites show significant reductions on the unadjusted scale, while
11 out of 12 show significant reductions on the adjusted scale. While, from a public health
perspective, all that matters is realized ozone concentration levels, clarification of trends in the
non-meteorological component is informative.

6 Discussion
We have formulated a model for assessing ozone levels at point-level spatial resolution and
daily temporal resolution. We have shown how to use this model to do standard prediction but,
more interestingly, to provide summaries of annual fourth highest daily average ozone levels
and also summaries in the form of three year rolling averages of these fourth highest daily
averages. Moreover, we can attach uncertainty to all of these predictions, derived from the
model fitting. We are also able to demonstrate the benefit of fitting models when interpolating
extremes as opposed to interpolating the observations themselves. This contrasts with the case
for summarizing averages.

As the U.S. EPA continues with emission control program of ozone, it will be necessary to
further refine and update statistical analyses of trend. In future work, we plan to investigate
spatially varying coefficients, see e.g. Gelfand et al. (2003), in the incremental meteorology
model, imagining that the effect of different meteorological variables might be different for
different parts of the state. We also plan to extend the analysis to, at the least, the eastern portion
of the United States. This will dramatically increase the number of sites for both ozone
measurements and meteorology data. (The current paper handles 142,543 observations
altogether.) Approximate computation will be required. In particular, approximate process
representations (see for example, Wikle (2006) or Paciorek and Ryan, 2006) will be employed.
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Appendix: Distributions for Gibbs sampling

Conditional Distributions for: 
Any missing value, Zl(s, t) is to be sampled from 
Straightforward calculation yields the following complete conditional distributions:

Note that we do not need to sample from Ol1 since we have the identity (6). Let . The
full conditional distribution of Olt is N(Λltχlt, Λlt) where

when 1 < t < T, and for t = T

The full conditional distribution of ξl is N(Λχ, Λ) where

The full conditional distribution of ρ is N(Λχ, Λ) where

restricted in the interval (0, 1). The full conditional distribution of β is N(Λχ, Λ) where

Conditional Distribution of 
We obtain the likelihood contribution for δ(si, t), i = 1,…,n1 as follows. We have, Fltβ =
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where X1 is n1 × n1p and X2 is (n − n1) × (n − n1)p. Let

. Let us partition Qη as follows:

where Q11 is n1 × n1 and Q22 is n2 × n2 and we suppress the symbol η for convenience. Define

alt = Olt − ξl1 − ρOlt−1 and partition  is n1p × 1. Now

where C is free of . Now from (9) we have:

Thus the conditional posterior distribution of  is N (Λ χ lt,Λ) where

Conditional Distributions for: γl, μl and 
The conditional posterior distribution of γl will come from

Hence, the conditional posterior distribution of γl is N (Λlχ1, Λl) where

We also have the conditional distribution:
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The conditional posterior distribution of μl is N (χl, λl) where
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Figure 1.
The ozone monitoring sites and meteorological sites in Ohio. The 50 NAMS/SLAMS sites are
plotted as points; the sites numbered 1, 2 and 3 are three CASTNET sites; sites denoted by ‘+’
are meteorological sites (two are outside Ohio); 15 validation sites are shown by the symbol
△.

Sahu et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2009 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Boxplot of the daily maximum 8-hour ozone levels by years.
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Figure 3.
Annual 4th highest daily maxima ozone levels at 53 data sites in panel (a) and 3-year rolling
averages in panel (b).
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Figure 4.
Validation plot for a randomly chosen hold-out site. The observed data are plotted as points.
The validation predictions are plotted as solid lines and the 95% equal tailed prediction intervals
are plotted as broken line.
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Figure 5.
Model based interpolation of the true annual 4th highest maximum ozone levels for 8 years.
Observed data are superimposed on the plots.
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Figure 6.
Lengths of 95% intervals of the true annual 4th highest maximum ozone levels for 8 years.
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Figure 7.
Model based interpolation of the 3-year rolling averages of the true annual 4th highest
maximum ozone levels. Observed data are superimposed.

Sahu et al. Page 25

J Am Stat Assoc. Author manuscript; available in PMC 2009 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Lengths of 95% intervals of the 3-year rolling averages of the true annual 4th highest maximum
ozone levels.
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Figure 9.
The probability that 3-year rolling average of the true annual 4th highest maximum ozone levels
exceed 80 for the year 2004. Observed 3-year averages which are less than 80 are superimposed
on the plots.
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Figure 10.
Trends in ozone levels at the 12 sites where meteorological variables have been observed: panel
(a) for the un-adjusted and (b) for the adjusted trends.
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Figure 11.
Relative percentage trends (RPT) in the year 2004 (base year = 1997) at the 12 sites where
meteorological variables have been observed, significant values are labeled by (S) and non-
significant values are labeled by (NS). The radius of the plotted circles are proportional to the
RPT’s labeled in the plots. Left panel is for the un-adjusted ones and right panel is for the
meteorology-adjusted ones.
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Table 1

Estimation of the parameters. CI stands for equal tailed credible intervals.

Mean sd 95%CI

ρ 0.7783 0.0030 (0.7723, 0.7842)

β1(temp) 0.1069 0.0021 (0.1029, 0.1109)

β2(humidity) −0.0126 0.0004 (−0.0134,−0.0118)

β3(wind speed am) −0.0025 0.0030 (−0.0083, 0.0033)

β3(wind speed pm) −0.0120 0.0025 (−0.0170,−0.0074)

σε
2

0.0486 0.0007 (0.0460, 0.0487)

ση
2

0.3235 0.0046 (0.3149, 0.3326)
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