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Abstract
In this paper, we carry out an in-depth theoretical investigation for existence of maximum likelihood
estimates for the Cox model (Cox, 1972, 1975) both in the full data setting as well as in the presence
of missing covariate data. The main motivation for this work arises from missing data problems,
where models can easily become difficult to estimate with certain missing data configurations or
large missing data fractions. We establish necessary and sufficient conditions for existence of the
maximum partial likelihood estimate (MPLE) for completely observed data (i.e., no missing data)
settings as well as sufficient conditions for existence of the maximum likelihood estimate (MLE) for
survival data with missing covariates via a profile likelihood method. Several theorems are given to
establish these conditions. A real dataset from a cancer clinical trial is presented to further illustrate
the proposed methodology.
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1 Introduction
There is a vast literature on parameter estimation in the Cox model in presence of missing
covariates, including Schluchter and Jackson (1989), Lin and Ying (1993), Lipsitz and Ibrahim
(1996, 1998, 2000), Paik (1997), Paik and Tsai (1997), Chen and Little (1999), Herring and
Ibrahim (2001), Leong, Lipsitz, and Ibrahim (2001), Chen (2002), Pons (2002), Herring,
Ibrahim, and Lipsitz (2002, 2004), and Chen, Ibrahim, and Shao (2006). However, there is
very little literature addressing specific theoretical conditions for the existence of MLE’s of
the Cox model in either the full data case or in the presence of missing covariate data. We are
not aware of specific literature that establishes specific theoretical results for existence of such
estimates. This is what we set out to do in this paper. Specifically, we provide necessary and
sufficient conditions for existence of the Maximum Partial Likelihood Estimate (MPLE) with
no missing data as well as sufficient conditions for existence of the Maximum Likelihood
Estimate (MLE) with Missing at Random (MAR) covariate data via the profile likelihood
method. The methodology proposed here is quite new and will shed light on the
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characterizations of existence of the MPLE or MLE for the Cox model with complete data as
well as with missing covariate data. The profile likelihood method for obtaining the MLE in
the presence of MAR covariates is quite different from the other parametric and semiparametric
approaches seen in the literature. The profile likelihood method is genuinely non-parametric
in estimating the cumulative baseline hazard and does not require a semi-parametric estimate
of the baseline hazard as is required in Lipsitz and Ibrahim (1998) and Herring and Ibrahim
(2001).

We mention that Jacobsen (1989) establishes a necessary and sufficient condition for existence
of the MPLE for the Cox model without missing covariate data, Chen, Ibrahim, and Shao
(2004) consider issues in posterior propriety and characterize conditions for existence of the
MLE in generalized linear models with MAR covariate data, and Huang, Chen, and Ibrahim
(2005) carry out a detailed investigation of posterior propriety in generalized linear models
with nonignorably missing covariate data. The methods and models considered in those papers
are quite different from the Cox model setting. In the Cox model, i) we no longer have
independence between the observations in the construction of the partial likelihood, that is, the
complete data log-likelihood is not a sum of n independent observations, ii) the Cox regression
model, and in particular, Cox’s partial likelihood, is an inherently semiparametric model, and
thus a profile likelihood method considered here is quite different than the fully parametric
models considered in Chen, Ibrahim, and Shao (2004) and Huang, Chen, and Ibrahim
(2005), and iii) right censoring and tied observations require new theory not developed in Chen,
Ibrahim, and Shao (2004) and Huang, Chen, and Ibrahim (2005). Thus, i) – iii) will require
new theory for characterizing conditions for existence of the MPLE and MLE of the regression
coefficients in the Cox model allowing for tied observations.

The significance of this work thus has two aspects. First, the proposed methodology will allow
the data analyst to determine, for a given dataset, whether the MPLE or MLE exists before
carrying out the analysis. Such a methodology is critical since it is not always clear from the
computer output in an analysis whether the MPLE or MLE exists or not. Second, such
conditions will be useful for determining suitable starting values for EM-type algorithms when
fitting these models. Thus, the practical consequences of the proposed methodology is that we
provide valuable tools for checking existence of the MPLE or MLE as well as inferential and
computational tools for maximum likelihood based inference for the Cox model with or without
MAR covariates.

The rest of this article is organized as follows. Section 2 presents several motivating examples.
We give necessary and sufficient conditions for the existence of the MPLE with no missing
data in Section 3 and give sufficient conditions for existence of the MLE in the presence of
MAR covariate data in Section 4. The computational development involving the Monte Carlo
EM (MCEM) algorithm is given in Section 5. Section 6 presents a detailed analysis of a lung
cancer dataset to further illustrate the proposed methodology. Proofs of all theorems are given
in the Appendix.

2 Motivating Examples
To fix ideas, let yi denote the minimum of the censoring time Ci and the survival time Ti, and
let xi = (xi1,…,xip)′ be the p × 1 vector of covariates associated with yi for the ith subject. Denote
by β = (β1,…, βp)′ the p × 1 vector of regression coefficients. Also, δi = 1{Ti = yi} is the indicator
for the event for i = 1, 2, …, n, where n is the total number of observations and ℛ(t) = {i : yi
≥ t} is the set of subjects at risk at time t. Then, the partial likelihood of Cox (1975) is given
by
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(2.1)

where Dobs = {(yi, δi, xi) : i = 1, 2, …, n} is the observed univariate right censored survival
data. As usual, we assume throughout that xi does not include an intercept, since the interceptis
not estimable in the Cox partial likelihood, and that given xi, Ti and Ci are independent. For
the completely observed data Dobs, the maximum partial likelihood estimate (MPLE) is defined
as β ̂ = arg max Lp(β|Dobs). The asymptotic properties of β ̂ have been well studied in the
literature, and in fact, the MPLE can be computed via standard statistical software, such as the
SAS procedure, PROC PHREG. However, it remains unclear when the MPLE exists and when
it does not for a given dataset. To motivate the proposed methodology, we consider the
following two examples.

Example 1: A Simple Illustration
Suppose n = 3, y1 and y2 are two failure times, y3 is a right censored survival time, and we have
one binary covariate x. Let x1, x2, and x3 denote the three observed values of x. Assuming y1
< y2 < y3, the partial likelihood of Cox (1975) is then given by

where Dobs = {(yi, xi), i = 1, 2, 3}. We consider two special cases.

Case 1—x1 = x2 = 0 and x3 = 1. In this case, we have . Then, we can
see that the maximum value of Lp(β1|D) is attained at β1 = −∞. Thus, the MPLE does not exist.

Case 2—x1 = 0, x2 = 1, and x3 = 0. In this case, we have . Then,
the MPLE does exist. In fact, the MPLE of β1 is .

In Example 1, the partial likelihood function behaves quite differently by simply switching
two observed values of the covariate: one leads to the existence of the MPLE and the other
does not. Thus, a natural question is what are general if and only if conditions for the existence
of the MPLE in the Cox model? From this illustrative example, we can see that this is not an
easy problem to solve, as it requires an in-depth theoretical investigation to find such
conditions.

Example 2: Prostate Cancer Data
We consider data, which consist of n = 550 men who were treated with radiation therapy
following with six months of with short-course androgen suppression therapy for localized
prostate cancer with at least one adverse risk factor (prostate-specific antigen [PSA] > 10 ng/
mL, biopsy Gleason score 7 to 10, or 2002 American Joint Commission on Cancer (AJCC)
clinical tumor category T2b or T2c) between 1989 and 2002. The outcome variable (yi) in years
was time to prostate cancer death, which is continuous and subject to right censoring, and δi =
pfail denotes the censoring indicator which equals 1 if the ith subject died due to prostate cancer,
and 0 otherwise. The goal of this study was to determine whether the number of risk factors
present was associated with time to prostate cancer death (Tsai et al., 2006).
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Define A = I {PSA > 10}, B = I {Gleason ≥ 7}, and C = I {T2b or T2c}. We consider five
covariates: AB, AC, BC, ABC, and age. There are no missing values in this data set. A Cox
proportional hazards model was fitted to this data set. The following outputs were produced
by SAS Procedure PHREG:

Variable DF Parameter Estimate Standard Error Chi-Square Pr > ChiSq

AB 1 0.39759 1.23355 0.1039 0.7472

AC 1 −14.30314 2107 0.0000 0.9946

BC 1 0.59060 1.22714 0.2316 0.6303

ABC 1 2.22155 0.80450 7.6253 0.0058

age 1 0.02262 0.04821 0.2201 0.6390

From the above results, we see that although SAS Procedure PHREG does produce the
estimates for all five covariates, clearly there is some identifiability problem with the covariate,
AC, as it has a large value of the estimate along with a huge standard error compared to all
other covariates. Now, the question is: are the MPLEs are really existent in this Cox model?

Example 3: Small Cell Lung Cancer Data
We consider data from a phase III advanced non-small-cell lung cancer (SCLC) clinical trial
conducted by the University of North Carolina at Chapel Hill (LCCC 9719). The results of this
study have been published in Socinski et al. (2002). The goal of this trial was to compare a
defined duration of therapy (A) to continuous therapy followed by second line therapy (B) in
order to determine optimal duration of therapy in SCLC patients. LCCC 9719 had n = 230
patients. We consider here five prognostic factors: x1 = treatment (2 arms: A and B, coded as
1 and 0), x2 = gender (female and male, coded as 0 and 1), x3 = age in years, x4 = highest grade
toxicity (recorded by cycle) (2 levels: 0 versus > 0, coded as 0 and 1), and x5 = quality of life
(QOL) FACTG score. For these five prognostic factors, x4 and x5 had missing information and
x1, x2, and x3 were completely observed for all cases. In this dataset, there is a total missing
covariate data fraction of 52.74% on these two covariates. The outcome variable (yi in months)
is time to progression, which is continuous and subject to right censoring, and δi denotes the
censoring indicator which equals 1 if the ith subject had disease progression, and 0 otherwise.
The median follow up time is 3.94 months and the range of the follow up time is (0.10, 12.26)
months. There are d = 102 distinct progression times and ties are present in the dataset. A
summary of the dataset is given in Table 1. In the presence of missing covariates, a joint
probability distribution must be specified for the progression time and the missing covariates,
and a profile likelihood method is hence proposed for obtaining the MLE in Section 4, as a
partial likelihood approach in this context may not be as desirable.

3 Existence of the MPLE With No Missing Data
In this section, we characterize very general conditions for the existence of the MPLE of β for
a given dataset Dobs under the Cox model with no missing covariate data. Define X* to be

(3.1)

Let ki denote the number of subjects in ℛ(yi) for i = 1, 2,…, n. Also let . Then, X*

is a K × p matrix. Using X*, we are led to the following theorem.
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Theorem 3.1
The MPLE of β in (2.1) exists if the following conditions are satisfied:

(C1) X* is of full rank p; and

(C2) There exists a positive vector v, i.e., each component of v is positive, such that

(3.2)

In addition, if (C1) is satisfied, then (C2) is a necessary condition for the existence of MPLE
for β.

The proof of Theorem 3.1 is given in the Appendix.

Remark 3.1—In X* defined by (3.1), the rows corresponding to δi = 0 or xj = xi can be
excluded. Thus, the effective numbers of rows in X* can be reduced substantially. Specifically,

let , where the indicator function 1{xj ≠ xi} = 1 if xj ≠ xi and 0 otherwise.

Then, the effective numbers of rows in X* is given by .

Remark 3.2—When ties are present, as discussed in Klein and Moeschberger (2003, Chapter
8), the partial likelihood may be defined as

(3.3)

where , zi = Σj∈ i xj, di = the number of events at yi, and

i is the set of all individuals who have the event at time yi. We can thus rewrite (3.3) as

and Theorem 3.1 can be easily extended to the cases when ties are present. Note that the partial
likelihood given by (3.3) is the likelihood of Breslow (1974), and the Breslow likelihood is the
default choice in SAS to handle ties in the failure times.

Remark 3.3—Suppose y1 ≤ y2 ≤ ··· ≤ yn. Then, from condition (C2), it is easy to observe that
if there exists a j such that x1j ≤ x2j ≤ ··· xnj, the MPLE of β does not exist. Also, when one of
the components of xi, say, xij, is binary and the xij’s take the same value for δi = 1 or the the
xij’s take the same value for δi = 0, then the MPLE of β does not exist.

Remark 3.4—When conditions (C1) and (C2) are satisfied for a subset of the data, the MPLE
still does exist. To see this, we assume that the subset consists of the first n* observations. Then
we have
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The existence of the MPLE can obtain by simply applying Theorem 3.1 to the above upper
bound. These subset conditions are only sufficient but not necessary. However, this result is
particularly useful for large datasets, for which checking conditions (C1) and (C2) may not be
computationally feasible.

Remark 3.5—Jacobsen (1989) also characterizes a necessary and sufficient condition for the
existence of the MPLE. His condition can be stated as follows: there is no a ∈ Rp such that a
′δi(xj − xi) ≥ 0 for j ∈ ℛ(yi) and 1 ≤ i ≤ n. According to Lemma A.1, we can see that Jacobsen’s
condition implies (C2). Thus, (C2) is necessary for existence and for uniqueness. We note that
the conditions stated in Theorem 3.1 are sufficient. However, compared to Jacobsen’s
condition, the conditions (C1) and (C2) given in Theorem 3.1 are easier to check. First, it is
straightforward to check condition (C1) that X*has full column rank. As discussed in Appendix
A of Roy and Hobert (2007), condition (C2) can be checked with a simple linear program using
the ‘simplex’ function from the ‘boot’ library in the R programming language.

Example 1: A Simple Illustration (revisited): Recall that in Example 1, we have n = 3, y1 <
y2 < y3, δ1 = δ2 = 1, and δ3 = 0. For Case 1 in which x1 = x2 = 0 and x3 = 1, we have k1 = 3,
k2 = 2, k3 = 1, and K = 6. Thus, using (3.1), (X*) = (0, 0, 1, 0, 1, 0)′, which is a 6 × 1 matrix.
After excluding the rows corresponding to δi = 0 or xj = xi, the effective number of rows in
X* is K* = 2. It is easy to see that X* is of full rank, which is 1. Also, for any v = (v1, v2, v3,
v4, v5, v6)′ such that vi > 0, (X*)′v = v3 + v5 > 0. Thus, by Theorem 3.1, the MPLE does not
exist.

For Case 2, where x1 = 0, x2 = 1, and x3 = 0, using (3.1), we have (X*)′ = (0, 1, 0, 0, −1, 0). Let
v = (v1, v2, v3, v4, v2, v5)′ for vj > 0, j = 1, 2, …, 5, (X*)′v ≡ 0. Obviously, X* is of full rank.
Thus, the MPLE does exist by Theorem 3.1.

In general, we have X* = (0, x2 − x1, x3 − x1, 0, x3 − x2, 0)′ and (3.2) reduces to

(3.4)

Condition (C1) requires that at least two of x1, x2, and x3 are different. If x1 = x2 and condition
(C1) holds, then there is no positive solution v to (3.4) regardless of the value of x3. Thus, the
MPLE always does not exist when x1 = x2. However, if x1 < x2, then the MPLE exists if x3 <
x2 and does not exist if x3 ≥ x2. Similarly, if x2 < x1, the MPLE exists if x3 > x2 and does not
exist if x3 ≤ x2. One interesting observation is that even if x3 < x1 < x2, the MPLE still exists
although x3, for which δ3 = 0, is distinct from {x1, x2} in the sense that δ1 = δ2 = 1. Thus, the
condition for existence of the MPLE cannot be characterized by the value of δi alone by fitting,
for example, a binary regression model to δi while treating (1, xi)′ as a vector of covariates.

Example 2: Prostate Cancer Data (revisited): After we further examined the data, we found
that
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Variable δ= 0 δ= 1 Total

Only one of A, B, C 253 2 255

Only AB not C 116 1 117

Only AC not B 35 0 35

Only BC not A 64 1 65

ABC 71 7 78

Total 539 11 550

From the above table, “only AC not B” is the only group, in which there are no events. This
explains why we obtained the unusual estimate and standard error for the regression coefficient
corresponding to AC. From Remark 3.3, it becomes apparent that the MPLEs do not exist for
this dataset if we fit the five covariates in the Cox model. One way to fix this problem is to
combine AB, AC, and BC as one variable, which was called the two-factors only variable in
Tsai et al. (2006).

4 Profile Maximum Likelihood Estimation in the Presence of Missing
Covariates

When there are missing covariates, we assume that the distribution of the censoring time Ci
does not depend on the missing covariates and the missingness is MAR. In this case, we cannot
directly use the Cox partial likelihood since we need to model the failure time and the covariates
jointly. Thus, instead of the partial likelihood approach, we use a profile likelihood approach
when we have MAR covariates.

For notational simplicity, we assume that all failure times are distinct and let y1, y2, …, yd be
d distinct failure times. Let h0(y) ≥ 0 denote the baseline hazard function and also let

 denote the baseline cumulative hazard function. Let  and
Dobs = (yi, δi, xi,obs, i = 1,2, …, n). Also let D = (yi, δi, xi,obs, xi,mis, i = 1, 2,…, n) denote the
complete data. In addition, let ri = (ri1, ri2, …, rip)′ to be the vector of the p missing covariate
indicators such that ril = 0 when xil is missing and ril = 1 when xil is observed for i = 1, 2, ···,
n and l = 1, 2, ···, p. Since we assume ignorable missingness in the covariates (i.e., MAR
covariates and the parameters of the missing data mechanism are distinct from the sampling
model), we do not need to model ri. Also, we assume that the parameters of the distributions
for the censoring times Ci’s are distinct from the sampling model. Thus, for ignorably missing
covariates, ignoring the parts adhering to censoring and the missing data mechanism, the
observed data likelihood function based on the Cox model (Cox, 1972) is given by

(4.1)

where xmis = (xi,mis, i = 1, 2, …, n), f(xi,mis, xi,obs|α) denotes the joint distribution of xi, and α
is the vector of parameters for the covariate distribution.

It is well known that the partial likelihood can be expressed as a profile likelihood (Johansen,
1983) by substituting a nonparametric maximum likelihood estimator for the cumulative
baseline hazard function H0(y), which is a function of the fixed coefficients β, and that this
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nonparametric maximum likelihood estimator is necessarily a pure-jump estimator with jumps
precisely at the observed event times. Following the profile likelihood approach (see, for
example, Klein and Moeschberger (2003, Chapter 8)), we have

(4.2)

We note that in (4.2), the function

is maximized when h0(yj) = 0 except for the times at which events occur. Thus, the MLE of
(β,α) exists if the upper bound in the right-hand side of (4.2) goes to zero when

. Write

(4.3)

The following theorem characterizes the conditions for existence of the MLE of (β, h0, α) when
the xij’s are bounded.

Theorem 4.1

If the xij’s are bounded, i.e., ai ≤ xij ≤ bi, define X** to be , j ∈ℛ(yi), δj = 0,

1 ≤ i ≤ n)′, where   and each component of  is equal to either
 or  for all i. Then, the MLE of (β, h0, α) in (4.1) exists if

the following conditions are satisfied: (C1*) lim||α||→∞ L(α|Dobs) = 0; (C2*) X** is of full rank;
and (C3*) there exists a positive vector v such that X**′v = 0.

The proof of Theorem 4.1 is given in the Appendix. The main intuition behind Theorem 4.1
is that when the MLE exists under conditions (C2*) and (C3*) for the most extreme possible
values of the missing covariates, then the MLE also exists for any intermediate values of the
missing covariates, and averaging over the missing values will not affect the existence of the
MLE. In Theorem 4.1, the elements of the matrix X* corresponding to the missing covariates
are “filled-in” by either  or , where  and  are in fact the
two possible extreme values of the missing covariates when the xij’s are bounded.
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The next theorem gives the sufficient conditions for existence of the MLE of (β, h0, α) when
the xij’s unbounded.

Theorem 4.2
If the xij’s are unbounded, the MLE of (β, h0, α) in (4.1) exists if condition (C1*) in Theorem
4.1 and conditions (C1) and (C2) in Theorem 3.1 are satisfied for the completely observed
cases.

The proof of Theorem 4.2 is given in the Appendix. Theorem 4.2 is practically useful as the
conditions stated in this theorem are easy to check than those given in Theorem 4.1. We note
that in Theorem 4.2, we are not doing a complete case analysis. Instead, we use a subset of the
data with the completely observed cases to establish the sufficient conditions for the existence
of the MLE when the missing covariates are unbounded.

Remark 4.1—Assume that the maximum number of missing components of xi, i = 1, …, n,
is pi. Then, to verify the conditions given in Theorem 4.1, we need to check only the conditions
(C2*) and (C3*) for at most 2pi possible X **’s.

Remark 4.2—When there are no missing covariates, it is easy to observe that the profile
maximum likelihood estimate of β reduces to the MPLE, while the profile maximum likelihood
estimate of α is the MLE.

Remark 4.3—Ibrahim, Lipsitz and Chen (1999) and Chen and Ibrahim (2001) provide a
comprehensive set of guidelines for specifying the joint distribution of the covariate vector
xi through a series of one dimensional conditional distributions. Condition (C1*) stated in
Theorem 4.1 holds for many covariate distributions considered in Ibrahim, Lipsitz and Chen
(1999) and Chen and Ibrahim (2001).

Remark 4.4—When there are ties in the event times, similar to Remark 3.2, the upper bound
given in (4.2) can be modified as

where K > 0 is independent of β, α, and xi, and zi and di are defined in (3.3). Thus, all the theory
developed in this subsection is still valid in the presence of ties.

Next, we consider an interesting special case where each missing component of xi is discrete
and bounded.

Corollary 4.1
Assume that each missing component of xi is discrete and bounded. Then condition (C3*) given
in Theorem 4.1 is also necessary for the existence of the MLE for (β, h0) if condition (C2*) is
satisfied.

The proof of Corollary 4.1 directly follows from the fact that when each missing component
of xi is discrete and bounded, we have
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Thus, details of the proof are omitted for brevity.

5 Computational Development
When there are no missing covariates, computing the MPLE of β is straightforward and, in
fact, the MPLE can be computed via standard statistical software, such as the SAS procedure,
PROC PHREG. In the presence of missing covariates, the EM algorithm is required.
Martinussen (1999) proposes an efficient EM algorithm for computing the MLE and its
standard error in the presence of discrete missing covariates. When xi,mis is continuous or mixed
continuous and categorical, we need to develop a Monte Carlo EM (MCEM) algorithm, which
is an extension of Martinussen’s algorithm for computing the MLE’s of β, h0, and α as well as
their standard errors.

To implement the MCEM algorithm, let γ = (β, h0, α). Let γ(t) denote the parameter estimate
of γ at the tth EM iteration. In the E-step, we take an MCMC sample of size

, from

for i = 1, 2, …, n. Note that this conditional distribution is log-concave as long as f(xi,mis,
xi,obs |α(t)) is log-concave in each component of xi,mis. We then compute

(5.1)

where  and H0(yj) = Σyl≤yj,δl=1 h0(yl). In the M-step, we compute

(5.2)

(5.3)
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and

Following Booth and Hobert (1999), in the MCEM algorithm, we take m(t+1) = m(t) + Δm,
where Δm > 0. With this dynamic MCMC sample size m(t), the MCEM algorithm requires
much less computational time. Also a large m(t) is not needed in early iterations of the algorithm
since γ(t) is still far from the MLE γ ̂ and the algorithm is not near convergence. As t increases
m(t) increases, and a more computationally accurate estimate of Q(γ|γ (t)) is obtained in the E-
step.

When xi,mis is categorical, the E-step at the (t + 1)st iteration reduces to the EM by the Method
of Weights (Ibrahim, 1990). With the EM by the Method of Weights, a similar M-step can be
developed. We refer to Ibrahim (1990) and Martinussen (1999) for the detailed development
of the EM algorithm in this case. It is easy to see from (5.2) that when there are no missing
covariates, β(t+1) is the MPLE of β, which is consistent with Remark 4.2.

Let γ ̂ denote the estimate of γ at EM convergence. Using Louis’s method (Louis, 1982), the
estimated observed information matrix of γ based on the observed data is not difficult to
compute. Note that the complete-data likelihood function can be written as

(5.4)

Thus, the log-likelihood function for the ith observation is given by

(5.5)

Write the gradient vector of Q(γ|γ(t)) as

and write the matrix of second derivatives of Q(γ|γ(t)) as

In addition, write the complete data score vector as
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Then, the estimated observed information matrix of γ ̂ is given by

(5.6)

where  is an MCMC sample of size , from f(xi,mis|xi,obs, γ ̂), and

. Thus, the estimate of the asymptotic covariance matrix of γ ̂ is [ℐ(γ ̂)]−1.

Finally, we note that when there are ties in the failure times, (5.7), (5.2), and (5.3) can be
modified as

(5.7)

where ,

(5.8)

and

(5.9)

The calculation of ℐ(γ ̂) needs to be modified accordingly in the presence of ties. Again, the
above formulation can be easily extended to the case where xi,mis is categorical.

6 Analysis of Small Cell Lung Cancer Data
For the LCCC 9719 data discussed in Section 2, we use the proposed methods to estimate the
regression coeffients assuming the missing covariates are MAR. We consider a Cox regression
model for [yi |xi, β, h0] allowing for right censoring. Thus, we have
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where xi = (xi1,…, xi5)′ is a 5 × 1 vector of covariates, i = 1, 2, …, n, β = (β1,…,β5)′ is the vector
of the corresponding regression coeffcients, h0(yi) and H0(yi) denote the baseline hazard
function and the cumulative baseline hazard function, respectively. Since xi1, xi2, and xi3 are
always observed, they do not need to be modeled. Thus, we only need to model two missing
covariates (x4, x5) conditioning on the completely observed covariates throughout. We consider
two models: [x4|x1, x2, x3][x5|x1, x2, x3, x4] and [x4|x1, x2, x3, x5][x5|x1, x2, x3] for (x4, x5). We
use a logistic regression model for xi4 and a normal linear regression model for xi5. Specifically,
for example, for [x4|x1, x2, x3][x5|x1, x2, x3, x4], we have

where α4 = (α40, α41, α42, α43)′, and

where α5 = (α50, α51, …, α55)′.

To illustrate how to apply the Theorems presented in Sections 2 and 3, we consider a subset
of the LCCC 9719 data, which is given in Table 2. Since all of the covariates are observed in
this subset, using (3.1) after excluding the rows corresponding to δi = 0 or xj = xi, X* is a 35×
5 matrix. The first 8 rows are given by  for i = 1, 2, …, 8, and the last row is given by

. Using Maple (Version 8) linsolve, with Maple code “linsolve(X*, v);”, after loading
a linalg package, we obtain a closed form solution for X*′v = 0 and find that there indeed exists
a positive vector v > 0 satisfying X*′v = 0. Also, |X*′X*| = 9.2344 × 1010 > 0. Thus, conditions
(C1) and (C2) given in Theorem 3.1 are met for this subset. As discussed in Remark 3.4, when
the conditions (C1) and (C2) are satisfied for a subset of the data, these two conditions hold
for the entire set of completely observed cases. In addition, we can show that lim||α||→∞ L(α|
Dobs) = 0, where L(α|Dobs) is defined by (4.3), using the results established in Chen and Shao
(2001) and hence, details are omitted here for brevity. Thus, based on Theorem 4.1, the MLE
does exist for the entire dataset.

Since the MPLE of β and the MLE of (β, h0, α) exist for this dataset, we can compute various
estimates of β and α4 and α5. We standardized age and QOL score in order to make the
numerical computations more stable. We used the SAS procedure PHREG to obtain the MPLE
of β for the complete case (CC) analysis (i.e, an analysis deleting all of the missing values).
The MCEM algorithm discussed in Section 5 was implemented using FORTRAN 77 with
IMSL, the estimated observed information matrix ℐ(γ ̂) given by (5.6) is of dimension (102
+15)×(102+15), and its inverse was computed via the IMSL subroutine DLINDS. The Gibbs
sampling algorithm was used to generate the Monte Carlo sample with 500 “burn-in” iterations
at each MCEM iteration. In the MCEM, we took m(0) = 500 and Δm = 50. The convergence
criterion for the MCEM algorithm for obtaining the MLE was that the squared distance between
the tth and (t + 20)th iterations was less than 10−3. The MCEM algorithm for obtaining the MLE
of (β, h0, α) required only 25 iterations using m(t) = 1750 at convergence.
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The resulting MPLEs and MLEs are shown in Tables 3, 4, and 5 for the complete case (CC)
analysis as well as analyses incorporating all of the cases with two different models for (x4,
x5). In the tables, standard errors (SEs), Z-statistics, p-values, and 95% confidence intervals
for β are also reported. We can see some differences between the estimates in Tables 3 and 4.
In the CC analysis, the 95% confidence interval for β1 is (−0.024, 0.967) while the 95%
confidence interval is (0.133, 0.820) in the analysis incorporating all of the cases, which
indicates that the regression coefficient for treatment is not significant at the 0.05 level in the
CC analysis, but significant in the analysis incorporating all of the cases. This indicates that
continuous therapy followed by second line therapy may have a strong effect (i.e., more
beneficial) compared to defined duration of therapy with respect to time to progression. Also,
the SEs from the analysis incorporating all of the cases are consistently smaller than those from
the CC analysis for all of the βj’s. This is expected since more information is used in the all
case analysis.

The reason why we considered two models for (x4, x5) is that there are two possibilities in
modeling the joint covariate distribution as a sequence of one dimensional conditional
distributions. As Ibrahim, Lipsitz, and Chen (1999) point out, it is important to conduct a
sensitivity analysis to examine whether inference about the parameters of primary interest,
which are the βj’s in this case, is robust with respect to the order of conditioning in the covariate
distributions. From Tables 4 and 5, both estimates and SEs for all the βj’s are very close for
these two joint covariate distributions. Thus, inference about β is quite robust with respect to
these two different orders of conditioning.

Finally, the estimated baseline hazard functions h0(y) are plotted in Figure 1 for the complete
case analysis as well as the analysis incorporating all of the cases, labeled Complete Cases and
All Cases, respectively. In the all case analysis, the model [x4|x1, x2, x3][x5|x1, x2, x3, x4] for
(x4, x5) was used since an almost identical estimated baseline hazard function was obtained
under the model [x4|x1, x2, x3, x5][x5|x1, x2, x3]. Strikingly, the CC analysis resulted in a much
different (larger) estimate of the baseline hazard than the all case analysis, which further
demonstrates the importance of incorporating all of the cases into the analysis.
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Appendix: Proofs of Theorems
We first establish a useful result, which is formally stated in the following lemma.

Lamma A.1
Let X* be an n* × p matrix (p < n*). Also let Rn* denote the n*-dimensional Euclidean space.
If there is no positive vector v = (v1, v2, …, vn*)′ ∈ Rn* (denoted by v > 0, i.e., vi > 0 for i =
1, 2, …, n*) such that

(A.1)

then there exists a non-zero vector b ∈Rp such that

(A.2)

where  is the ith row of X*.

Proof
Let  = {X*′ v: v > 0, v ∈ Rn*}. Then  is a convex cone in Rp (see Theorem 2.6 in Rockafellar
(1970)). Since (A.1) does not hold, by Corollary 11.7.3 of Rockafellar (1970), there exists some
non-zero vector b such that ∀ v > 0, b′X*′v ≤ 0 and hence ∀ v ≥ 0, b′X*′v ≤ 0. In particular,
(A.2) holds.

Proof of Theorem 3.1
Observe that for δ = 0 or 1 and x > −1

(A.3)

Without loss of generality (WLOG), assume y1 ≤ y2 ≤ … ≤ yn. Then

(A.4)
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where t = (t1, t2, …, tn)′, R+n = R+ ×…×R+ with R+ = (0, ∞), and F (u) = exp(−exp(−u)).

Sufficiency—WLOG, we assume that Lp(β|Dobs) ≢ 0. Then, there exists a β0 such that
Lp(β0|Dobs) > 0. Let M > 1 such that

For β satisfying max1≤i≤n,j>i δi(xj − xi)′β > M, there exist i0 and j0 achieving the maximum such
that δi0(xi0−xj0)′β < −M. Since F is a nondecreasing distribution function, we have

(A.5)

When max1≤i≤n,j>i δi(xj−xi)′β ≤ M, following Lemma 4.1 in Chen and Shao (2001), conditions
(C1) and (C2) imply that

(A.6)

Combining (A.5) and (A.6) leads to supβ Lp(β|Dobs) = supβ: ||β||≤D Lp(β|Dobs). Since Lp(β|
Dobs) is a continuous and bounded function, there exists a β ̂ such that

and hence the MPLE exists.

Necessity—Assume that the MPLE of β exists. Then, there is a β* such that

Assume that condition (C2) does not hold. Then, by Lemma A.1, there exists a non-zero vector
b such that δi(xj − xi)′b ≤ 0 for all 1 ≤ i ≤ n and j > i. Thus,
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which is an increasing function of s when condition (C1) holds. This is a contradiction. This
shows that condition (C2) is necessary for the existence of the MPLE for β if condition (C1)
is satisfied.

Proof of Theorem 4.1
Write

(A.7)

It is sufficient to prove that

(A.8)

Observe that

is an increasing function in  for δj = 1 and a decreasing function in  for δj = 0. For 1 ≤
l ≤ p, let  if βl ≥ 0 and  if βl < 0. Write

 and . Let ℛi = ℛ(yi) − {i}. Then we have

(A.9)

It directly follows from (A.7), (A.9) and (4.3) that

Following the proof of Theorem 3.1,  if conditions (C2*) and (C3*) are
satisfied. Consequently, we obtain (A.8) under condition (C1*).

Proof of Theorem 4.2
Let 1 = (1, 1, …, 1)′. Then we have
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Therefore, the above inequality, condition (C1*) in Theorem 4.1, and conditions (C1) and
(C2) stated in Theorem 3.1 directly yield the existence of the MLE of (β, h0, α).
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Figure 1.
Estimated baseline hazard function (h0(y)) for CC and all cases analyses.
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