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Abstract

The role of vascular endothelial growth factor receptor 1 (VEGFR1/Flt1) in tumor metastasis remains incompletely
characterized. Recent reports suggested that blocking VEGFR1 activity or the interaction with its ligands (VEGF and PlGF)
has anti-tumor effects. Moreover, several studies showed that VEGFR1 mediates tumor progression to distant metastasis. All
these effects may be exerted indirectly by recruitment of bone marrow-derived cells (BMDCs), such as myeloid cells. We
investigated the role of VEGFR1 activity in BMDCs during the pre-metastatic phase, i.e., prior to metastatic nodule formation
in mice after surgical removal of the primary tumor. Using pharmacologic blockade or genetic deletion of the tyrosine
kinase domain of VEGFR1, we demonstrate that VEGFR1 activity is not required for the infiltration of de novo myeloid BMDCs
in the pre-metastatic lungs in two tumor models and in two mouse models. Moreover, in line with emerging clinical
observations, we show that blockade of VEGFR1 activity neither prevents nor changes the rate of spontaneous metastasis
formation after primary tumor removal. Prevention of metastasis will require further identification and exploration of cellular
and molecular pathways that mediate the priming of the metastatic soil.
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Introduction

VEGF, and more recently, PlGF, have been shown to play

important roles in tumor angiogenesis in preclinical studies.

Moreover, VEGF is a clinically validated target for antiangio-

geneic therapy for cancer, and agents that block PlGF or the

tyrosine kinase activity of their cognate receptor VEGFR1 are

currently approved for cancer treatment or in clinical trials

(sunitinib, sorafenib, cediranib, axitinib, pazopanib, BIBF1120,

etc.) [1,2,3]. In addition to the roles of VEGFR1 activation in

tumor endothelial cells, it has been hypothesized that VEGFR1

activation mediates the mobilization of bone marrow-derived cells

(BMDCs) into blood circulation [4]. Other studies have shown

that BMDCs are recruited to certain tumors and facilitate tumor

progression [5,6]. A recent study demonstrated that PlGF, a ligand

for VEGFR1 as well as Neuropilins 1 and 2 (NRP1/2),

significantly modulated the recruitment of macrophages, tumor

growth and local invasion [7]. On the other hand, blockade of

VEGFR1 did not affect BMDC accumulation or growth of

pancreatic endocrine tumors [8]. Moreover, VEGFR1 blockade

may differentially affect the recruitment of various BMDC

populations in tumors. For example, cediranib, an agent that

potently inhibits VEGFR1 activity, transiently reduced macro-

phage infiltration but increased the total number of myeloid

(CD11b+) cells and did not delay the growth rate of brain tumors

[9]. Thus, the benefit of targeting VEGFR1 activity remains

unclear, and is likely to be highly tumor–, BMDC type– and

context-dependent.

In addition to effects at the primary tumor site, blockade of

VEGFR1 has been proposed as an anti-metastasis approach.

Previous studies in flt1-tk deficient mice have shown that MMP-9

is induced by VEGFR1 signaling in lung cells and facilitates

metastatic tumor growth in experimental metastasis models (i.e.,

after intravenous infusion of cancer cells). Moreover, it has been

recently reported that BMDCs – systemically mobilized in

response to primary tumor growth – home to the lungs and form

‘‘pre-metastatic niches’’ in lungs even prior to the arrival of

metastatic cancer cells [10]. A critical mediator of myeloid

(CD11b+) BMDC recruitment to the ‘‘pre-metastatic niche’’ was

shown to be hypoxia-induced lysyl oxidase [11]. Hypoxia is known

to induce VEGF, PlGF, and their cognate receptor VEGFR1

[1,12]. In a recent study, blockade of VEGFR1 with a specific

antibody, MF1 (ImClone Systems, Inc.) has been shown to inhibit

lung infiltration by BMDCs, subsequent ‘‘pre-metastatic niche’’

formation and metastatic tumor growth [10].

Spontaneous metastasis formation can be induced in preclinical

models by surgically removing metastatic primary tumors

[13,14,15,16]. This model, relevant for resectable human cancers,
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has been extensively used to study the process of metastasis,

including the role of BMDCs [13,14]. In this model, we found that

blockade of VEGFR1 activity did not affect the rate of

spontaneous metastasis formation after primary tumor removal

[17]. Here, we show that myeloid (CD11b+) BMDCs (e.g.,

pulmonary alveolar macrophages), are present in normal lungs

and that VEGFR1 blockade does not modulate their infiltration in

the presence of primary tumors prior to metastasis formation. On

the other hand, we show that BMDCs may be affected by

VEGFR1 activity blockade at later time-points, i.e., during

metastatic tumor growth. Thus, while VEGFR1 activity is not

required for the formation of metastatic tumor nodules, its

blockade may differentially modulate the BMDC infiltration and

growth of primary tumors and metastatic nodules.

Materials and Methods

Mice
C57BL and Actb-GFP/C57BL mice (constitutively expressing

GFP) were obtained from the Jackson Laboratory (Bar Harbor,

Maine). Flt-1TK–/–/C57BL mice were backcrossed to 99.9%

C57BL strain background (N10 equivalent) from flt-1TK–/– mice

[18,19], kindly provided by Dr. M. Shibuya, University of Tokyo,

Japan. Strain background was verified by the Jackson Laboratory’s

Speed Congenic Development Service (The Jackson Laboratory,

Bar Harbor, Maine). All mice were bred and maintained in sterile

barrier animal facilities. All flt-1TK–/–/C57BL mice were used for

experiments after genotyping to confirm the deletion of the

intracellular domain of VEGFR1. All animal experiments were

performed after obtaining approval from the Subcommittee for

Research and Animal Care of the Massachusetts General Hospital.

Bone Marrow Transplantation
C57BL mice (6–7 weeks old, male) were lethally irradiated

(137Cs Irradiator; Atomic Energy of Canada Ltd, Mississauga,

Canada) using two 6 Gy fractions (with less than 12 hour time

interval between dosing) delivered to the whole body. Irradiated

mice were rescued 24 hours later by a bone marrow transplant

isolated from Actb-GFP/C57BL, as previously described [13]

(Figure 1A). We used the model after confirming that no weight

loss or fibrosis, inflammation or any other sign of damage was

detectable in the lungs two months after BMT. The BMT protocol

was also optimized to ensure reproducible levels of GFP+ BMDC

chimerism in BMT-Actb-GFP/C57BL mice. Blood was collected at

four and eight weeks after BMT for flow cytometry analysis. To

limit the variability in GFP-BMDC chimerism, BMT mice were

prepared in large groups (32 recipient mice were injected with

pooled BM from 11 donor mice). One group was prepared for

each tumor model (see Figure 1B).

Tumor Cells
Lewis lung carcinoma (LLC1/LL2, CRL-1642) and B16

melanoma cell lines (CRL-6323) – both syngeneic to C57BL

mouse – were purchased from ATCC (Manassas, VA). Both cell

lines were propagated in DMEM (LLC1-ATCC/B16F1-Cellgro)

supplemented with 10% fetal bovine serum (Atlanta Biologicals,

Norcross, GA).

Tumor Growth and Metastasis Model
LLC1 or B16 cells were subcutaneously (s.c.) implanted in the

left leg of BMT-Actb-GFP/C57BL (8 weeks after BMT), flt-1TK–/–/

C57BL or C57BL mice as a 50 ml concentrated cell solution

containing 300,000 cells in sterile PBS. Tumor growth was

measured with a caliper three times per week and tumor volume

(V) was calculated using the following formula (1):

V ~0:52 | tumor length | tumor widthð Þ3=2 ð1Þ

Primary tumors were surgically resected when they reached a

diameter of 10 mm. Mice were sacrificed by pentobarbital

overdose (200 mg/kg administered by i.p. injection) at the time

of resection (i.e., day 0), or 10 or 14 days after resection to analyze

BMDC infiltration and metastatic nodule formation in the lungs

(see schema in Figure 1A). Prior to sacrifice, blood was collected

from anesthetized animals by cardiac puncture using a 26-G

needle. The lungs were washed by cardiac injection of 15 ml of

PBS, weighed and then examined using a dissecting microscope.

The number of macroscopic metastases was enumerated by

counting individual nodules with a cell counter. B16 metastases

are easily identifiable, in part due to their pigmentation (see

Figure 2). Primary tumor tissues and whole lungs were fixed in

4% paraformaldehyde at 4uC for 6 hours, dehydrated in 30%

sucrose overnight, and embedded in OCT into frozen samples for

immunofluorescence histological analyses.

Antibody Treatment
Tumor-bearing mice were administered i.p. MF1 blocking

monoclonal antibodies against VEGFR1 (a gift from ImClone

Systems, New York, NY) at a blocking dose of 20 or 40 mg/kg

three times per week (see Ref. [20]) from the time of tumor

implantation (Figure 1B). As a control, tumor-bearing mice were

treated i.p. 3 times per week with 20 mg/kg of non-specific rat

IgG (Jackson ImmounoResearch Laboratories, West Grove, PA).

To confirm MF1 inhibitory activity, we incubated mouse brain

endothelial cells (bEnd.3 cells) in serum free condition overnight.

After 1 hr of exposure with rat IgG (50 mg/ml) or MF1 (20 mg/ml

or 50 mg/ml), cells were stimulated with 100 ng/ml recombinant

mouse PlGF-2 (Minneapolis, MN) for 10 min. Then, the cells were

rinsed with cold PBS and collected using RIPA buffer supple-

mented with protease inhibitors (Roche, Nutley, NJ) and

phosphatase inhibitiors cocktail (Sigma, St. Louis, MO). Protein

extracts were incubated with anti-VEGFR1 antibody (Santa Cruz

Biotechnology, Santa Cruz, CA) overnight and VEGFR1 was

precipitated using protein A agarose. Immunoprecipitates were

separated on denaturing gel and transferred to PVDF membrane.

Phosphotyrosine was detected using anti-phosphotyrosine anti-

body (Millipore, Billerica, MA). The membrane was then stripped

and re-probed with anti-VEGFR1 antibody (Figure 1C).

Histological Analysis
Frozen tumor and lung tissue samples were cryosectioned into

10-20 mm slices. Tissue sections were immunostained with

monoclonal antibodies against CD11b-PE, F4/80-PE, and CD31-

APC (all from BD Pharmingen, San Diego, CA). For VEGFR1

staining, we used MF1 antibodies labeled with Alexa-Flour-647

(Molecular Probes, Carlsbad, CA). All tissue sections were mounted

on glass coverslips using VectashieldH mounting media with DAPI

from Vector Labs (Burlingame, CA). For quantitative analysis, we

collected 6–12 random 8-bit images per section of lung (6 per region

of the lung, including lung metastasis and tissue surrounding

metastasis) and tumor tissue (6 images of the periphery and 6 images

of the center) (102461024 pixels), using a confocal microscope

(Olympus, Center Valley, PA) and a 206 water-immersion lens

(0.95NA). For each image, we determined the area occupied by

GFP-positive BMDCs or immunostained cells normalized by area

of DAPI-stained cells (nuclear counterstaining) using an algorithm

VEGFR1-Independent Metastasis
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Figure 1. Experimental design. (A) Timeline for spontaneous metastasis studies: C57BL mice were lethally irradiated and transplanted 24 hours later
with bone marrow cells isolated from Actb-GFP/C57BL mice (BMT). BMT mice were allowed to recover for 8 weeks prior to study. LLC1 or B16 tumor cells
(TCs) were subcutaneously (s.c.) implanted in the left leg. Three days after LLC1 or B16 injection and until sacrifice, mice were treated 3 times per week by
intraperitoneal (i.p.) injection of rat IgG (control) or VEGFR1-blocking antibody (MF1, 20 mg/kg). Primary tumors were resected when they reached a
maximum length of 10 mm. Lung tissue was isolated from mice at three time points: at time of primary tumor resection and 10 and 14 days after
removal of the primary tumor. Note: Tumor growth varied from 13–17 days; no macroscopic metastases are detectable at days 0 or 10 after tumor
resection. (B) Bone marrow chimerism (each blue line represents GFP+ BMDCs in one BMT mouse, 30 mice prepared in one BMT procedure). Blood flow
cytometric analysis was used to enumerate the percentage of GFP+ BMDCs among nucleated blood cells. (C) Mouse brain endothelial cells treated with
rat IgG or MF1 were stimulated with 100 ng/ml of recombinant mouse PlGF-2 and incubated with anti-VEGFR1 antibody (MF1). VEGFR1 was
immunoprecipitated and the ratio of phosphorylated-VEGFR1 to total VEGFR1 was compared to the ratio calculated for non-stimulated endothelial cells
(assigned the value of 1). MF1 inhibited VEGFR1 phosphorylation in endothelial cells after PlGF2 stimulation in a dose-dependent manner.
doi:10.1371/journal.pone.0006525.g001
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written for Matlab software. The mean ratio of GFP to DAPI

coverage area was calculated as a measure of cell number per tissue

area. We report the average of the mean values of GFP/DAPI ratio

for mouse lungs or tumors in each treatment group (6–7 lungs or

tumors per treatment group were included).

Flow Cytometric Analyses
Blood was collected from mice by cardiac puncture. Tumor

tissues were digested into a single cell suspension using collagenase

type II (Worthington, Lakewood, NJ) [13]. Cells were immuno-

stained with the following monoclonal antibodies: anti-CD11b-

APC, anti-Gr-1-FITC/PE, anti-CXCR4-PE, anti-CD45-PerCP

(all from BD Pharmingen) and MF1-Alexa-647. We used Fc-

blocking antibodies (BD Pharmingen) to block non-specific

binding and non-specific fluorescently labeled IgG as control.

Statistical analysis
Two-tailed unpaired students t-tests (assuming unequal variances)

were used to compare all treatment and control groups with p,0.05

indicating a statistical difference. The rate of spontaneous metastasis

formation in control and treatment groups was also compared using

the Mann-Whitney U test (Wilcoxon rank-sum test).

Results

Effect of VEGFR1 blockade on primary tumor growth
Continuous blockade of VEGFR1 with MF1 antibodies – from

the time of LLC1 or B16 implantation in BMT-Actb-GFP/C57BL

mice – did not delay primary tumor growth compared to non-

specific IgG (Figure S1A,B). Similarly, LLC1 tumor growth rate

was comparable in flt-1TK–/–/C57BL to that in C57BL mice

(Figure S1C). The growth of B16 melanoma was delayed by an

average of 2 days in flt-1TK–/–/C57BL compared to C57BL mice

(p,0.05, Figure S1D). Thus, blockade of VEGFR1 activity leads

to a slight or no growth delay in primary B16 and LLC1 tumors.

Since VEGFR1 is thought to modulate BMDCs recruitment to

tumors and metastasis, we measured next the number of

metastases that formed in the lungs after surgical removal of the

primary tumors.

Effect of VEGFR1 blockade on spontaneous metastasis
formation after primary tumor resection

We surgically removed the primary tumors – as per animal

protocol – when LLC1 and B16 tumors grew to 10-mm in

diameter (approximately 15–17 days after implantation). Two

weeks after resection of primary tumors, metastatic tumor nodules

were present in the lungs of all 17 mice bearing LLC1 tumors,

both after MF1 (n = 9) and IgG (n = 8) treatment (see data

reported in Ref. [17]). The metastatic nodules (with sizes estimated

as 1–3 mm, 3–5 mm, .5 mm) were counted using a dissecting

microscope (Figure 2). At this time-point, there were no

significant differences between the number nor the size of

metastatic nodules [17]. At the same time-point after resection

of primary B16 tumors, 9/12 mice treated with MF1 and 9/13

mice treated with IgG developed lung metastatic nodules. In mice

that developed macroscopic metastases, there was no significant

Figure 2. Effect of VEGFR1-blockade on metastasis. Representative images of lung metastases 14–16 days after resection of the primary tumor
and bone marrow-derived cell (BMDC) accumulation in the primary tumor, peri-metastatic lung (PML, tissue surrounding lung metastases) and lung
metastases in the LLC1 (A) and B16 (B) models. The number of BMDCs was calculated as the ratio of green fluorescence protein (GFP)-surface area to
DAPI-surface area. DAPI was used to stain the nuclei of all cells (n = 6–8 mice per group). All images are 512 mm across.
doi:10.1371/journal.pone.0006525.g002
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difference between the numbers of nodules in the MF1-treated

and IgG-treated groups [17]. Thus, in this setting of neoadjuvant

and adjuvant VEGFR1 blockade (i.e., continuous blockade of

VEGFR1 using MF1 from the time of primary tumor implanta-

tion) did not significantly alter the rate of spontaneous macro-

scopic lung metastasis formation.

Next, we measured metastatic nodule formation after resection

of LLC1 or B16 primary tumors implanted in flt-1TK–/–/C57BL

mice (mice which lack the tyrosine kinase domain but not the

extracellular domain [18]) or in C57BL mice. When evaluated at

14 days after primary LLC1 tumor resection, 12/13 flt-1TK–/–/

C57BL mice and 6/8 C57BL mice had macroscopic lung

metastases. At the same time-point after B16 primary tumor

resection, 7/14 flt-1TK–/–/C57BL mice and 6/8 C57BL mice had

metastatic nodules in the lung (see data reported in Ref. [17]).

Control and treatment groups were compared using student’s t-

tests and rank-sum tests (Mann-Whitney U), and differences in

metastatic tumor formation were not significant between groups.

Thus, genetic ablation of VEGFR1 activity did not result in

significantly different rate of formation of macroscopic lung

metastasis. Similarly, the number of spontaneous macroscopic

lung metastases formed 2 weeks after LLC1 or B16 resection was

not significantly different between flt-1TK–/–/C57BL and C57BL

mice [17].

The number of circulating VEGFR1+ and CXCR4+ BMDCs
is tumor-dependent, but blockade of VEGFR1 activity
does not change BMDC accumulation in the primary
tumor

Several studies have shown that VEGFR1 modulates BMDC

infiltration in tumors, and that BMDCs are modulating metastasis.

Thus, we measured the accumulation of BMDCs in the primary

tumors and lungs after the formation of macroscopic metastases in

our model. Evaluation of blood cells in tumor-bearing flt-1TK–/–/

C57BL and C57BL mice showed no significant difference between

circulating CD45+, CD11b+, Gr-1+, VEGFR1+ or CXCR4+ cells

in these mice (Figure 3A). However, we detected significantly

more circulating VEGFR1+ cells and significantly fewer circulat-

ing CXCR4+ cells in C57BL mice bearing LLC1 tumors

compared to C57BL mice bearing B16 tumors. Next, we

investigated the intra-tumor accumulation of BMDCs. While

LLC1 or B16 cells do not express VEGFR1 (as evaluated by PCR,

data not shown), certain cells in the tumor stroma might express

VEGFR1 (e.g., endothelial cells). Thus, we performed flow

cytometric analysis of tumor stromal cells in LLC1 and B16

tumors after gating on the CD45+ cell population. LLC1 tumors

contained more hematopoietic (CD45+) cells than B16 tumor both

in flt-1TK–/–/C57BL and C57BL mice. However, no statistically

significant differences were found among infiltrating hematopoi-

etic BMDCs positive for VEGFR1+ cells, Gr-1 (granulocytes/

monocytes), F4/80 (macrophages) or CD11b (all myeloid cells) in

the tumors grown in flt-1TK–/–/C57BL and C57BL mice

(Figure 3B).

VEGFR1-blocking antibody reduces the accumulation of
bone marrow-derived cells in the metastatic lesions and
peri-metastatic lung tissue, but not in the primary tumors

To establish with precision the BMDCs infiltration after

VEGFR1 blockade, we quantified the BMDCs in LLC1 and

B16 tumors implanted in BMT-Actb-GFP/C57BL mice after

treatment with MF1 at the time of resection (approximately 2

weeks after implantation). Antibody blockade of VEGFR1 – from

the time of implantation – did not change the number of GFP+

BMDCs in primary LLC1 or B16 tumors (Figure 4A–B) [17].

However, when most mice spontaneously developed macroscopic

metastases (2 weeks after primary tumor resection), we detected a

significant increase in BMDC accumulation inside the LLC1

metastatic nodules and in the peri-tumor lung tissue, but not in

B16 metastases (Figures 2 and 4E,L). Thus, the reduction by

VEGFR1 blockade in BMDC accumulation in metastases is tumor

dependent. However, prior to the time-point used by us for

resection (days 14–16), BMDC ‘‘pre-metastatic niches’’ [10], and

metastatic foci [13] should have been formed in the lungs in these

tumor models. Thus, we measured the accumulation of BMDCs in

the lungs at the earlier time points (i.e., days 0 and 10 after

resection).

VEGFR1-blocking antibody does not reduce the baseline
accumulation of myeloid bone marrow-derived cells in
the pre-metastatic lungs

At the time of the primary tumor resection, as well as 10 days

after that, evaluation of lungs showed no macroscopic metastatic

tumor nodules. Nevertheless, BMDC infiltration at the time of

Figure 3. Flow cytometric analysis of circulating cells and
tumor-homing BMDCs in tumor-bearing mice. (A) Peripheral
blood from C57BL (black bars) and flt-1TK–/–/C57BL (empty bars with
diagonal lines) mice were analyzed using antibodies for specific surface
markers (all cells were CD45+). B, Flow cytometric analysis of
enzymatically digested LLC1 tumor suspensions from C57BL (black
bars, n = 6) and flt-1TK–/–/C57BL (empty bars with diagonal lines, n = 6)
mice using antibodies for specific surface markers. There was no
statistically significant difference in the blood cell population studied in
C57BL and flt-1TK–/–/C57BL nor in the number of hematopoietic cells
within the tumor tissues. However, there were significant inter-tumor
differences: mice with B16 tumors had significantly more CXCR4+CD45+

blood circulating cells than mice with LLC1 tumors (p,0.05 by
Student’s t-test). In addition, while B16 tumors recruited fewer CD45+

cells, the fraction of VEGFR1+CD45+ cells was greater than in LLC1
tumors. A statistically significant difference (p,0.05 by Student’s t-test)
is identified with an asterisk.
doi:10.1371/journal.pone.0006525.g003
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resection was small but detectable in both LLC1 and B16 tumor

models, and comparable with BMDC accumulation in tumor-free

BMT-Actb-GFP/C57BL mice (Figure 5). Thus, VEGFR1 block-

ade by MF1 treatment did not reduce BMDC infiltration in the

lungs prior to macroscopic metastases formation (i.e., at days 0 and

10) in mice that had primary tumors removed [17]. These BMDCs

were likely pulmonary alveolar macrophages, which reside in the

normal, non-irradiated lung in comparable numbers in tumor-free

non-BMT C57BL mice (Figure 6). To directly address the issue

of BMDC phenotype (Figure 7A,D), and to exclude the

possibility that inflammatory BMDCs infiltration in lungs was an

artifact due to prior whole body irradiation and BMT, we

performed CD11b (Mac1) and VEGFR1 immunostaining in

normal, non-irradiated C57BL and flt-1TK–/–/C57BL mice. In the

lungs of these mice, we detected myeloid (CD11b+) cells in

numbers comparable to those of lung infiltrating BMDCs in

BMT-Actb-GFP/C57BL mice. Moreover, the number of

VEGFR1+ cells in the lung tissue was not significantly different

between C57BL and flt-1TK–/–/C57BL mice (Figure 7B,E).

Next, we measured the number of CD11b+ cells in spontaneous

metastatic nodules in flt-1TK–/–/C57BL and C57BL mice formed

after primary tumor resection. Consistent with the effect of

antibody blockade of VEGFR1, we detected a significant decrease

in the number of CD11b+ cells but not VEGFR1+ cells in the peri-

tumor areas in LLC1 lung metastases from (non-irradiated) flt-

1TK–/–/C57BL and C57BL mice (Figure 7C,F,G).

Discussion

VEGF is a clinically validated target in metastatic (advanced)

cancer treatment, but the mechanism(s) by which its blockade

leads to a clinical benefit remain unclear [3]. It is largely thought

that the benefit derives from blockade of the interaction between

VEGF and its receptor VEGFR2 on endothelial cells, which

mediates key functions in angiogenesis and vascular function [2].

But VEGF binds with a higher affinity to VEGFR1, which is

present on endothelial cells but also on inflammatory cells in

tumors or even on the malignant cells in certain tumors [1].

Recent studies of the VEGFR1 ligand PlGF have proposed that

VEGFR1 mediates tumor growth and angiogenesis by recruiting

tumor-promoting inflammatory cells [7]. Others have shown that

VEGFR1 signaling activation leads to MMP-9 expression in lung

Figure 4. Bone marrow-derived cell (BMDC) accumulation in the primary tumors, lung metastases and surrounding (peri-
metastatic) lung tissues after VEGFR1 blockade. Confocal images of cryo-sectioned primary tumor (A–D), peri-metastatic lung tissue (E–H) and
metastatic lung tumors (I–L) collected from BMT-Actb-GFP/C57BL mice (BMDCs are shown in green) after IgG (A, C, E, G, I, K) or MF1 (B, D, F, H, J,
L) treatment. Tissues were counterstained with DAPI nuclear dye (in blue). The width of images in A–J is 512 mm and images in K and L are 256 mm
across.
doi:10.1371/journal.pone.0006525.g004

VEGFR1-Independent Metastasis
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stromal cells, which facilitates lung metastasis in a model of

experimental metastasis [19]. Moreover, it has been proposed that

BMDC infiltration into lung tissue precedes the spontaneous

arrival of metastatic cancer cells, and that VEGFR1 expression on

the BMDCs mediates this process [10]. The direct implication is

that VEGFR1 blockade may prevent/eradicate metastasis of the

primary tumors to distant organs. Of note, a phase III of the anti-

VEGF antibody bevacizumab as adjuvant after surgery in patients

with colorectal cancer showed that VEGF blockade did not affect

metastasis formation or patients’ disease-free survival [21].

We sought to establish if blockade of VEGFR1 activity could

eradicate tumor progression to metastasis in a model mirroring the

neoadjuvant and adjuvant therapy of tumors (i.e., continuous

VEGFR1 blockade in mice from the time of implantation of the

primary tumor, including the period after resection of the primary

tumor when it has reached 1 cm in diameter and has seeded

metastatic cells in the lungs). None of the cancer cell lines used in

this study (LLC1 and B16) expressed detectable levels of

VEGFR1. In these models, we measured the spontaneous

formation of lung metastatic nodules. In addition, we studied

formation of lung metastatic nodules in a genetic model of

VEGFR1 deficiency (flt-1TK–/–/C57BL mice, which lack tyrosine

kinase domain of VEGFR1). Since these mice express the

extracellular domain of VEGFR1, the ligands can bind to the

extracellular portion of the receptor, unlike when the MF1

antibodies are used (which completely block both ligand-receptor

interaction and downstream signaling). Consistent with published

reports on blockade of the VEGFR1 ligand PlGF, we found a

significantly decreased blood vessel density in primary LLC1

tumor after VEGFR1 blockade by MF1 treatment. However,

MF1 treatment did not decrease the number of BMDCs recruited

into primary LLC1 tumors, nor their growth rate. Moreover,

despite continued VEGFR1 blockade with MF1, metastatic

nodule formation rate was not affected in mice whose tumors

were resected when they reached 1 cm in diameter. These results

were confirmed using the spontaneous LLC1 metastasis in flt-

1TK–/–/C57BL mice. In a second model, we evaluated B16

growth and spontaneous metastasis after primary tumor resection.

Similar to LLC1 tumors, tumor growth and spontaneous B16

metastatic nodule formation was not significantly affected by MF1

treatment from the time of tumor implantation. In flt-1TK–/–/

C57BL mice, B16 primary tumor growth was significantly delayed

compared to C57BL, but spontaneous B16 metastatic nodule

formation after primary tumor resection was similar. The lack of

effects of VEGFR1 antagonism on the rate of spontaneous

metastasis is of particular interest in light of recent reports that

VEGF antagonism might lead to increased metastatic burden

[22,23].

Figure 5. Effect of VEGFR1-blockade on BMDC infiltration in lungs prior to macroscopic metastasis formation. Treatment of tumor
bearing mice with MF1 antibody did not change the infiltration with BMDCs in lungs at the time of primary tumor resection (day 0) or 10 days after
primary tumor removal. Representative images of lung tissue from non-tumor bearing C57BL (A) and BMT-Actb-GFP/C57BL (B) mice and from LLC1-
tumor bearing mice at the time of primary tumor resection (day 0) after treatment with IgG (C) or MF1 (D). The number of BMDCs was calculated as
the ratio of green fluorescence protein (GFP)-surface area to DAPI-surface area (E). DAPI was used to stain the nuclei of all cells (n = 6–8 mice per
group). All images are 512 mm across.
doi:10.1371/journal.pone.0006525.g005
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In a study of PlGF blockade, Fischer et al. reported significant

effects of anti-PlGF on the primary B16 tumors and lymphatic

metastasis [7]. Data from our own experiments using PlGF blockade

(Dawson et al., unpublished observations) are consistent with the

results in this report [7], and suggest that the antiangiogenic effect in

primary tumors may account for the effects of PlGF blockade on

lymphatic metastasis and lung metastasis. It is important to note that

in this case the blockade of the ligand (i.e., PlGF) may affect not only

VEGFR1 activity, but also NRP1 and NRP2 [1].

We used the similar regimen for MF1 treatment, similar cell lines

and similar mouse strain as Kaplan et al. [10]. At this dose, MF1

was ‘‘biologically active’’ since it significantly inhibited PlGF-

induced VEGFR1 phosphorylation in vitro. Moreover, MF1

treatment significantly inhibited BMDC accumulation in and

around growing metastatic nodules in vivo. Nevertheless, VEGFR1

activity blockade did not change BMDC/CD11b+ cell accumula-

tion in pre-metastatic lungs. This may point toward a key role of the

resident pulmonary alveolar macrophages in the pre-metastatic

phase as opposed to de novo BMDC recruitment. The lack of effect of

MF1 treatment on tumor angiogenesis and inflammatory cell

infiltration has been well established for spontaneous tumors (e.g.,

pancreatic insulinoma, see Ref. [8]). In models in which an anti-

tumor effect for VEGFR1 blockade was detected, they were

attributed to direct effects on cancer cells or by modulation of

Figure 6. Representative images and analysis of CD11b and MF1 staining of normal lung tissue. (A–H) Confocal microscopy images of
lung tissue from C57BL (A–D, non-irradiated, non-GFP control) and BMT-Actb-GFP/C57BL (E–H, irradiated mice, GFP+ BMDCs shown in green) mice
stained with CD11b-AF546 (red) and MF1-AF647 (yellow) and counterstained with DAPI nuclear dye (blue). The number of GFP, CD11b, or MF1
positive cells was calculated as a ratio of green, red, or yellow surface area to DAPI surface area, respectively (I). All images are 512 mm across.
doi:10.1371/journal.pone.0006525.g006
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angiogenesis [20,24], but there was no data reported on

hematogenous metastasis formation. This may be related to cell

migration and MMP-9 activity in response to VEGFR1 activation

in resident pulmonary macrophages and/or endothelial cells [19].

The regulation of tumor angiogenesis by VEGFR1 may be

direct or indirect (related to BMDC recruitment) [1,4]. Given the

lack of modulation of metastatic nodule formation by VEGFR1 in

our models, we evaluated the kinetics of BMDC infiltration in

Figure 7. Representative images and quantification of CD11b and VEGFR1 positive cells at the periphery of lung metastases. (A–F)
Confocal microscopy images of lung tissue from C57BL mice (WT, A–C) and flt-1TK–/–/C57BL (KO, D–F) mice after immunostaining for CD11b (using
FITC-labeled anti-CD11b antibody, in green in B and E), or for VEGFR1 (using AF647-labeled MF1 antibody, in red in C and F). Sections were
counterstained with DAPI nuclear dye (in blue in A–F). The number of positive cells was calculated as the ratio of CD11b+ or VEGFR1+ surface area to
DAPI surface area (G). A statistically significant difference (p,0.05 by Student’s t-test) is identified with an asterisk. All images are 512 mm across.
doi:10.1371/journal.pone.0006525.g007
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lungs prior to and after macroscopic metastatic nodule formation.

We found no significant difference after blockade of VEGFR1

activity in BMDC infiltration in lungs prior to macroscopic

metastasis formation. BMDC infiltration in BMT-Actb-GFP/

C57BL mice was similar the CD11b+ cell infiltration in non-

irradiated C57BL mice. Moreover, MF1 treatment did not

significantly change the number of BMDCs in the pre-metastatic

lungs of mice. This lack of modulation of BMDC infiltration in

normal lungs was confirmed in flt-1TK–/–/C57BL mice, which had

comparable CD11b+ cell numbers (most likely pulmonary alveolar

macrophages) in pre-metastatic lungs. Nevertheless, after the onset

of metastatic nodule growth, MF1 blockade of VEGFR1 led to a

partial decrease in BMDC infiltration inside and around LLC1

metastatic nodules, which is consistent with modulation by

VEGFR1 activity of BMDC accumulation in some tumors during

their growth. Of note, despite the significant reduction, the BMDC

accumulation was not completely blocked, and remained quite

high, suggesting that BMDC accumulation in growing metastatic

nodules is only partially controlled by VEGFR1 signaling. In

growing B16 tumors, which have low levels of BMDC infiltration

in both primary and metastatic sites [17], MF1 blockade of

VEGFR1 did not change the number of BMDCs. Collectively,

these data suggest that signaling pathways alternative to VEGFR1

are involved in BMDC infiltration in growing B16 or LLC1

tumors. Of interest, in BMT-Actb-GFP/C57BL mice, GFP+

expression in BMDCs often co-localized with expression of Gr1

or CD11b. These BMDCs have been shown to modulate

resistance to VEGF blockade in these tumor models [25].

In summary, we show that formation of the metastatic nodules

is independent of intracellular VEGFR1 activity, since neither

pharmacologic blockade nor genetic deficiency in intracellular

VEGFR1-TK domain prevented or altered pre-metastatic BMDC

infiltration, nor spontaneous metastasis. We propose that pathways

other than VEGFR1 are activated and lead to BMDC infiltration,

and should be targeted in order to optimize anti-VEGF therapy

and prevent spontaneous metastasis.

Supporting Information

Figure S1 Primary LLC1 and B16 tumor growth kinetics after

VEGFR1 blockade. LLC1 and B16 tumors were grown in BMT-

Actb-GFP/C57BL mice treated with IgG (black solid lines) or

MF1 (blue dashed lines) (A,C) or in C57BL (WT, black solid lines)

or flt-1TK-/-/C57BL (KO, blue dashed lines) mice (B,D).

Found at: doi:10.1371/journal.pone.0006525.s001 (1.19 MB

PDF)
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