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Abstract
Reconstruction of two-dimensional images by filtered back-projection (FBP) and by the maximum
entropy method (MEM) was compared for spectral-spatial EPR images with differing signal-to-noise
ratios. Experimental projections were recorded using direct-detected rapid scans in the presence of
a series of magnetic field gradients. The slow-scan absorption lineshapes were calculated by Fourier
deconvolution. A Hamming filter was used in conjunction with FBP, but not for MEM. Imperfections
in real experimental data, as well as random noise, contribute to discrepancies between the
reconstructed image and experimental projections, which may make it impossible to achieve the
customary MEM criterion for convergence. The Cambridge MEM algorithm, with allowance for
imperfections in experimental data, produced images with more linear intensity scales and more
accurate linewidths for weak signals than was obtained with other MEM methods. The more effective
elimination of noise in baseline regions by MEM made it possible to detect weak trityl 13C trityl
hyperfine lines that could not be distinguished from noise in images reconstructed by FBP. Another
advantage of MEM is that projections do not need to be equally spaced. FBP has the advantages that
computational time is less, the amplitude scale is linear, and there is less noise superimposed on
peaks in images. It is useful to reconstruct images by both methods and compare results. Our
observations indicate that FBP works well when the number of projections is large enough that the
star effect is negligible. When there is a smaller number of projections, projections are unequally
spaced, and/or signal-to-noise is lower MEM is advantageous.

1. Introduction
Reconstruction of most real-world images is based on finite data sets with superimposed noise.
Some information about the object always is lost in the data acquisition, which limits the
accuracy of the reconstructed image. The challenge is to find the “best” image with the least
noise and fewest artifacts.

Filtered backprojection (FBP) was initially used in X-ray tomography to create images from
projections. Now it is widely used in other imaging modalities where the data are integrated
values for some parameter along lines through the object to be characterized [1]. In EPR
imaging spectra measured in the presence of a magnetic field gradient are mathematically
homologous to X-ray projections collected with parallel beams for each viewing angle. FBP
is computationally fast, accurate, easily implemented [2], and widely used in commercial
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instrumentation. However, there are inherent limitations to FBP. Projections must be collected
with equal angle increments to encompass 180°. If too few projections are used to construct
an image, ridges radiate out from sharp features in the image, which is called the “star” or
“streaking” effect. Reconstruction of an image from a data set that does not include projections
over a full 180° range (a missing angle data set) results in ridges at angles that correspond to
the edges of the angular range that would have been sampled by the missing projections. These
ridges can be partially mitigated by iterative reconstruction and estimates of the missing
projections [3,4]. For many physical observables it is known that the quantities must be
positive, so a non-negativity constraint can be used to decrease some artifacts.

In practice there are time and/or instrumental constraints that limit the signal-to-noise and/or
number of projections that can be acquired, so it is important that a reconstruction algorithm
work well with a limited number of projections and limited signal-to-noise. Since the signal is
broadened by the magnetic field gradient, the signal-to-noise is poorer at the higher magnetic
field gradients that are needed to enhance spatial resolution [5]. It has also been pointed out
that, depending upon the characteristics of the object to be imaged, some projections may be
more informative than others [6,7] and there may be cases in which the smallest number of
projections required to adequately define an object could be achieved with unequally spaced
projections. These factors all indicate the need to compare FBP with other reconstruction
algorithms.

An alternative to FBP is the maximum entropy method (MEM). From a very large set of
possible images that are consistent with experimental data, the one with the maximum entropy
can be identified as the “best” [8,9]. MEM has been applied to a variety of problems in
mathematics, astronomy, physics, technology, biology, etc. (see, for example [8–14]). In
magnetic resonance, its applications have been primarily in spectroscopy to suppress baseline
noise and simultaneously improve resolution [15,16]. Many successful applications of MEM
are in multidimensional NMR spectroscopy, where useful signals occupy only a small fraction
of the area of the image which is therefore called a ‘nearly black’ image. By contrast, a typical
EPR image is unlikely to be nearly black. One concern is that the relative intensities and line
widths of signals in images generated by MEM may be altered, which complicates signal
quantitation. Non-linear distortions can, however, be accurately calibrated by adding to the
experimental data synthetic signals with known properties. Non-linear distortion of these
signals can be used to correct intensities of experimental peaks [10].

There have been a small number of conflicting reports on the utility of MEM for magnetic
resonance (MR) image reconstruction. Although Constable and Henkelman [17] concluded
that MEM “does not work” for MR image reconstruction, Smith et al. [18] and Johnson et al.
[19] demonstrated that when MEM was applied to a 2D EPR image, baseline noise was
suppressed and images could be reconstructed from smaller numbers of projections without
interference from the “star” effect. An important distinction between the images examined in
the two studies was that the MRI data were acquired in the time domain, which creates an array
of evenly-spaced points in k-space that can be Fourier transformed to generate an image. In
contrast, the EPR projections were acquired as equally spaced points in the signal domain,
which corresponds in the frequency domain to a set of radial rays through a central point.

In the present study we seek to determine the advantages and disadvantages of the FBP and
MEM methods for reconstruction of rapid-scan spectral-spatial EPR images. These images
display the EPR spectrum as a function of position in the sample [5]. Accurate spectral
lineshapes are important for interpretation of information in the image. It was therefore of
interest to compare images reconstructed with the two techniques from data that contained
varying amounts of noise.
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1.1 Implementations of MEM
MEM has been implemented in ways that differ in the expression for entropy and in the
mathematical procedure that is used to maximize the criterion, Q(f) [14,20–22].

(1)

where S(f) is the entropy, λ is the Lagrange multiplier, C(f) is a measure of the discrepancy
between a reconstructed image and the experimental data, and f is the 1-D array of N points in
the reconstructed image.

(2)

where M is the number of experimental data points, σk is the standard deviation of the noise
that can be defined as the variance for an individual point or the width of the Gaussian
distribution for baseline points, Dk is the experimental data, and R is the operator appropriate
for the experiment. For an EPR image, R is the Radon transformation and for NMR data
collected in the time-domain, R is the Fourier transform.

The Lagrange multiplier λ in Eq.(1) determines the relative weights of S(f) and C(f). For each
value of λ, solution of Eq.(1) gives a different image fλ. In the limit of large λ, the role of
entropy is reduced and the reconstructed image contains noise, experimental artifacts and other
information that is not strongly supported by the data. Decreasing λ results in poorer agreement
between the image and the experimental data, but the information contained in the image is
considered to be more reliable. In the limit of λ=0, maximization of Q(f) = S(f) gives an image
with no information derived from the experimental data. It is commonly accepted that one
should select λ such that C(f) = M. In this case the reconstructed image fits the data to within
the limitations of the noise. Some MEM algorithms vary λ iteratively until C(f) = M [23,24].
Since probability is inherently positive, non-negativity is an inherent property of the method.

The entropy, S(f), can be defined in different ways that originate from the Shannon formula
[25,26]

(3)

Since the fi values are interpreted as probabilities, , which provides an additional
constraint on the algorithm.

Alternatively, entropy can be defined as [27]:

(4)
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where f0 is a ‘default’ image, to which fλ will tend if the parameter λ in Eq.(1) is very small.
In most MEM applications f0 is chosen to be flat. If some a priori information about the image
to be reconstructed is available it can be helpful to incorporate this information into the ‘default’
image (see, for example, [28]).

In the unique maximum entropy image the gradients ∇S and ∇C are parallel. The non-
parallelism between these two vectors is estimated by the equation:

(5)

The ideal situation with TEST=0 is often difficult to reach and more modest criteria have to
be used. It is suggested [27] that the iteration process can be terminated when value C(f) = Aim
is reached provided TEST<0.1. Aim usually is equal to M. In this case, the reconstructed image
can be considered as the unique maximum entropy image.

In this study the Cambridge algorithm for MEM [27] is compared with the algorithm used by
Smith and Stevens [18]. Instead of treating λ as an input parameter that must be optimized
[18], the focus of the Cambridge algorithm [27] is on minimizing C(f) while maximizing S(f).
While in other algorithms the next approximation of the image is searched along a single
direction, the Cambridge algorithm uses a more efficient multidimensional (normally three)
method, based on vectors constructed from the first and second derivatives of the functions C
(f) and S(f).

1.2 Specific Considerations for Spectral-spatial EPR Imaging
From a mathematical point of view, the difference between most NMR applications and EPRI
is in the use of different operators R (see Eq. (2)). For most NMR applications R is Fourier
transformation. By applying inverse Fourier transformation to experimental data one can
always find an image that fits the experimental data exactly, fexact = R−1D. However, this is
not what people usually want. Any distortions in the data, such as noise, are incorporated into
the resulting image so the exact image may not be the ‘best’ representation of the object. MEM
algorithms may help to obtain an image that does not fit the data as well as fexact does but MEM
outputs can be considered as more reliable. If Radon transformation is used as in the case of
EPRI, consistency of all the projections becomes important. Any inconsistency in the data such
as random noise and signal distortion by hardware and data acquisition imperfections make it
impossible to find an exact image. In other words no image can be found that exactly fits the
data, so R(fexact) ≠D and C(f)>0.

For in vivo or rapid-scan EPR imaging experiments, in addition to random noise there are
distortions such as instability of baseline and of resonator frequency. Shifts in resonator
frequency cause shifts of the EPR spectra and may be accompanied by phase shifts that cause
dispersion signal admixture. Small frequency shifts cause broadening of peaks in the
reconstructed image and larger shifts could result in spurious peaks. The discrepancy between
the experimental projection and the ideal projection caused by a frequency shift may be larger
than random noise in the regions with high signal intensities and may vanish where intensities
are close to baseline.

In the papers that applied MEM to reconstruction in EPRI [18,19] Eq.(2) was applied assuming
constant σk = σ, which implies that there is a normal distribution of misfit errors with standard
deviation σ:
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(6)

However, as noted above distortions caused by hardware imperfections may be much larger
in some regions of the dataset than noise level. In this case all distortions that exceed noise
level are introduced into the final reconstructed image. On the other hand, the use of a larger
constant σ that is high enough to take all distortions into consideration is not suitable for the
regions where random noise dominates. It is equivalent to noise level overestimation. In this
situation the constraint C(f) = M may not be reachable at all and is no longer useful. The
standard deviation σk in Eq. (2) could be substituted by an effective σk

eff that takes both
distortions and random noise into consideration. In this case the algorithm can search for the
image with maximum entropy provided that C(f) = M is fulfilled. In the present paper two
ways to adjust σk are compared.

2. Experimental Section
2.1 Sample Preparation

Lithium phthalocyanine (LiPc) prepared electrochemically following procedures in the
literature [29,30] was provided by Prof. Swartz, Dartmouth University. Well-shaped needles
were selected, placed in a 4 mm OD (3 mm ID) quartz tube, evacuated overnight on a high
vacuum line, and then the tube was flame sealed. A solution (0.5 mM) of Nycomed trityl-
CD3 (methyl-tris(8-carboxy-2,2,6,6-tetramethyl(d3)-benzo[1,2-d:4,5-d′]bis(1,3)dithiol-4-yl)
tri-potassium salt) in water was placed in a 10 mm OD (9 mm ID) tube, degassed by bubbling
with N2 and then flame sealed. The distance between the centers of the two tubes was 11 mm.

2.2 Magnets, gradient coils, resonator
Rapid scan signals at 250 MHz were obtained on a locally designed and built spectrometer
[31]. A 4-coil air-core magnet with a pair of Z-gradient (Maxwell) coils to produce the gradients
[32] was used. The Hall probe was located in an auxiliary magnet coil system connected in
series with the main magnet [33]. To allow setting of the dc magnetic field with 10 times greater
resolution than is available in the Bruker software at the low magnetic fields required for these
experiments, the auxiliary magnet system had a coil constant 10 times greater than the magnet
that was used for the experiments, but otherwise is similar to that described in [33].

The resonator was constructed from 6 equally spaced turns of no. 20 copper wire [31]. It has
an internal diameter of 25 mm and height of 50 mm. The spacing between the turns is 10 mm.
The turns were series capacitively coupled using Voltronics 25 series non-magnetic porcelain
chip capacitors. The resonator frequency was tuned using a combination of 10 and 3.7 pF
capacitors. With the sample in the resonator, the resonant frequency was 246.73 MHz. The
measured Q of the empty resonator was 155 ± 5. The resonator efficiency (B1/√P) was
determined to be 0.35 ± 0.05 G/√Watt [31]. The resonator and the scan coil assembly were
shielded using a non-magnetic aluminum stock pot that is 33 cm in diameter and 26 cm high.
Electrical contact between the pot and its cover was achieved with finger stock. Having the
shield outside the scan coils helps to eliminate field inhomogeneities produced by the eddy
currents that are observed when the shield is between the scan coils and the resonator.
Calibration of the scan widths gave a field constant of 10.8 ± 0.2 G/A.

2.3 Spectroscopy
The imaging experiments were performed with 60 experimental projections (4 missing
projections) using the missing angle data acquisition algorithms for 2D spectral-spatial imaging
[34,35]. Projections were equally spaced between −82.97° and +82.97°. Rapid scan signals
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were recorded using triangular scans with modulation frequencies in the range of 1 to 8 kHz
and scan widths in the range of 0.85 to 6.93 G. The RF power was 0.44 mW. A 4th order
hardware Butterworth filter (Krohn-Hite model 3955) was used with a cutoff frequency of 1
MHz and input and output gain of 20 dB. To test the sensitivity of the reconstruction algorithms
to experimental noise, two data sets were recorded for each projection. One data set was taken
by averaging 5,000 scans, for which many projections have relatively low signal-to-noise (S/
N), and the second data set was averaged for 50,000 scans, which gives significantly improved
S/N. The slow-scan lineshapes were recovered from the rapid-scan spectra using Fourier
deconvolution [31]. Typical projections at low and high gradient are shown in Fig. 1.
Comparison spectra that are denoted as “slow scan” were recorded in rapid-scan mode using
a scan frequency (700 Hz) and scan width (0.6 G) for which the scan rate is low enough that
a slow-scan absorption signal was obtained, or as conventional slow-scan spectra.

To test the impact of the number of projections on the image reconstruction algorithms a set
of 30 projections (assuming 2 missing projections) was calculated from each of the sets of 60
projections. Interpolation was used to generate projections at equally spaced intervals between
−81.56° and 81.56° as required for reconstruction of a spectral-spatial image.

2.4 Algorithm Details
Images were reconstructed on grids of 200×200 pixels using 287 data points per projection.
Since our aim was to compare MEM and FBP algorithms, the same sets of 30 or 60 projections
were used for both cases. MEM does not require projections to be collected with equal angle
increments so there is no need to estimate “missing” projections as in FBP.

2.4.1 FBP—The missing angle algorithm for FBP [35] was implemented in MatLab 7.0. A
Hamming filter was applied to the experimental projections. To permit the same matrix formats
for the FBP and MEM algorithms Radon transformation matrixes were built with sizes
40000×17220 (40000×8610) for 60 (30) projections, instead of using the intrinsic MatLab
Radon transformation routines. Fortunately, these huge matrices are sparse, and defining them
as the sparse type in MatLab allows use of only 50 (25) Mb of memory. Otherwise, these
matrices would require several gigabytes of RAM. The other advantage of doing Radon
transformation by matrix multiplication on the image in vector form is that it is about twice as
fast as the Matlab intrinsic routines.

2.4.2 Cambridge MEM algorithm [27,36]—As noted in the introduction, imperfections
in experimental data may make it impossible to achieve C(f) = M using the definition of C(f)
given in eq. (2). Therefore an alternate definition of C(f) that still permits use of the efficiencies
of the Cambridge algorithm is proposed.

(7)

Two approaches to selecting , defined in eq. (8) and (10), were examined. In both cases a
different σk was calculated for each projection.

(8)
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(9)

Practical implementation of this idea shows that better results are obtained when ε is smoothed
to eliminate high-frequency noise.

(10)

The parameter κ was adjusted so that the C(f) = M constraint was fulfilled.

The algorithm was implemented as described in ref. [27]. Program code was generated in
Matlab using built-in matrix operations. This approach required the image matrix and dataset
to be aligned column-wise. The images were represented by vectors of 40000 elements, while
60 (30) projections were given by the vector 287*60=17220 (287*30=8610) elements. The
image fmin was obtain by minimization of the function C(f) (Eq.(7) ) using an iterative
procedure in which the next f(n+1) approximation of the reconstructed image was found as
follows

(11)

where parameter α is calculated to reduce C(f) along the direction given by the gradient ∇C:

(12)

where R is the Radon transform operator and D is experimental data.

With f obtained by means of Eqs. (11,12) σeff is calculated according to Eq.(8) or Eq.(10).
Iterations started from a flat guess image and nearly flat ‘default’ image. The guess image f
and ‘default’ image f0 cannot be identical. In this case ∇S=0, would result in a divide by zero
error (see, for example, Eq.5)

1. After 10 iterations have been completed, the ‘default’ image f0 is replaced by the
current image f divided by 10, i.e. f0i = fi/10.

2. After another 10 iterations, f0 is replaced similarly.

3. Step 2 is repeated until C(f) = M is reached. The process is complete, provided that
TEST < 0.1.

Similar final images were obtained by different methods of scaling f to generate f0.

2.4.3 Smith and Stevens MEM algorithm [18]—The iteration process starts with a guess
image. Elements of the image are updated iteratively according to the equation:
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(13)

where α is a parameter that defines the length of the step in the direction of ascending S and
descending C. Iterations are interrupted when convergence stops or its rate becomes too slow
to give improvement in the image in a reasonable time. In the ref. [18] it was suggested that
the algorithm should start from flat guess images that have maximum entropy, which ensures
that the resulting images satisfy the global extremum criteria TEST < 0.1. In our study an
extensively smoothed version of the image generated by FBP also was used as a starting image
for this algorithm.

3. Results
3.1 Data Acquisition

Rapid-scan EPR projections were recorded for a sample containing tubes of LiPc and of trityl-
CD3. Examples at high and low gradients are shown in Fig. 1a and 1b, respectively. Note that
this direct-detection method gives the EPR absorption signal [37]. The S/N in the projections
was calculated as the ratio of the amplitude at the peak of the signal to the root-mean-square
noise in the baseline at the left of the scan. When 5,000 scans were averaged the S/N was 228
at very low gradient and 10 at a gradient of 2.2 G/cm, which is a much smaller degradation
than occurs when first-derivative spectra are recorded [31]. When 50,000 scans were averaged
the S/N improved to 727 at very low gradient and 29 at a gradient of 2.2 G/cm. The improvement
in S/N with increasing number of scans is approximately proportional to the square root of the
number of scans, as expected if noise is stochastic. The intensities of the signals from the LiPc
and trityl-CD3 samples were selected to make the amplitudes of features in the image similar.
Since the spatial extent of the trityl-CD3 sample is substantially greater than for the LiPc
sample, the amplitude of the trityl-CD3 signal in the absence of a gradient is much greater than
for the LiPc sample. Thus, the projections at low gradient that are shown in Fig. 1b are
dominated by the trityl-CD3 signal, which can be recognized by the characteristic 13C hyperfine
lines that are separated by 0.166 G.

The quality of the data and of individual projections can be examined. The image fmin that fits
experimental data as well as possible is found by minimization of the function C(f). The
Cmin=C(fmin) is a characteristic of data inconsistency. The lower Cmin the better the projections
match the image. The projections obtained from this ‘best’ image can be compared with
experimental projections to estimate mismatch error for every single point in the dataset (Eq.
(9)). In Eq. (9) ε is represented as a 1-D vector including all projections. However, it proved
to be very helpful to write the ε-matrix as a two-dimensional array, where projections are
columns. This figure clearly shows ‘bad’ projections, which have greater mismatch between
an experimental projection and the reconstructed image. If ε is large for a particular column,
it is likely that something went wrong when this projection was measured. If it is a frequency
shift, the image can be improved by correcting this faulty projection.

3.2 Reconstruction and Comparison of Images
Images were reconstructed from four datasets: (1) 60 spectra each averaged 5,000 times; (2)
60 spectra, each averaged 50,000 times; (3) 30 spectra, each averaged 5,000 times; and (4) 30
spectra, each averaged 50,000 times. Images for each dataset were reconstructed by four
methods which are denoted as follows:

FBP – filtered back projection.
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CMEM – Cambridge algorithm with σeff calculated using Eq. (8)

CMEM2 – Cambridge algorithm with σeff, calculated using Eq.(10)

SMEM – the algorithm, developed by Smith and Stevens

In addition four auxiliary images (AUX) were reconstructed under conditions that correspond
to infinitely large λ, and used for comparison with images obtained with different approaches
to estimating σeff. Quantitative parameters for each of these algorithms are summarized in
Tables 1–3 and discussed in the text. In all the images the spacings between the two tubes in
the phantom and dimensions of the tubes are in good agreement with measured dimensions.
The results shown in the Figures 2 – 7 emphasize FBP and CMEM for data set (1) which has
the larger number of projections, but poorer signal-to-noise and data set (4) which has the
smaller number of projections and better signal-to-noise. Figures 2–7 show images with their
spatial and spectral profiles for these cases.

Table 1 summarizes the χ2 errors (C) for the reconstructed images and the TEST for global
convergence (eq. 5). For each data set C/Cfbp is smallest for the AUX image, although the noise
is higher (data not shown). These AUX images, which were reconstructed under conditions
that correspond to infinitely large λ (Eq. 1), have the best match with experimental data. The
problem with such images is that all imperfections are incorporated into the images. MEM is
used to find an image that does not fit the data quite as well but contains less noise and less
other imperfections. The ratios C/Cfbp increase in the order AUX < CMEM < CMEM2 <
SMEM. Increases in the ratio can mean less noise, but could also result from lost information
so the parameter TEST (Eq.5) must be examined. The smaller the value of TEST, the closer
the image is to the global extremum, which guarantees the minimum loss of useful information
for a given misfit C. The images reconstructed by the CMEM and CMEM2 methods give TEST
values less than 0.01. Values of TEST for images generated by SMEM are larger than for the
Cambridge algorithm but still are below the tolerable level TEST=0.1. The larger values of
TEST imply that entropy is not maximized as effectively by the SMEM method as by the
CMEM or CMEM2 methods.

Images reconstructed by CMEM and FBP are compared in Fig. 2 and 5. The lower noise in
the baseline regions of the images reconstructed by CMEM than by FBP are evident in the
pairs of images. However, in the regions of highest intensity the noise is actually higher in the
CMEM images than the FBP images because the Hamming filter reduces the noise
superimposed on the FBP image to a greater extent than MEM does. Even so, the ability of the
MEM method to reduce noise in baseline regions reveals hyperfine structure of the trityl signal
even for cases where it is corrupted by noise in the FBP images (see Fig. 3).

It is well-known fact that MEM is a non-linear algorithm that can introduce nonlinearities
[38] in the intensities in an image, so it is important to check the images. One measure of the
linearity of the intensity scale is the ratio of the amplitude of the more intense trityl peak to the
less intense LiPc peak (Table 2), which was calculated in two ways. (a) The spatial slices
through the image were summed (as in Figs. 4, 7) and the ratios of the peak heights in these
1D slices are summarized in Table 2, row 1. The expected value of this 1D ratio, estimated by
measuring the amplitudes of the LiPc and trityl peaks for the high-gradient projections, is 1.12.
This calculation can be done because the EPR signals from two radicals do not overlap. The
1D peak ratios for the FBP images (Table 2) are very close to the expected value. For the data
sets obtained with 50,000 averages the 1D peak ratios from the CMEM images are significantly
better than from the SMEM images indicating improved linearity. For the data sets with only
5000 averages the greater noise on the peaks contributed to poorer peak ratios. (b) Ratios for
the average of six points at the tops of the peaks are summarized in Table 2, row 2, and should
be the same for all images. No attempt was made to correct for superimposed noise. The average
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of the ratios for the two FBP images calculated from the datasets with 50,000 averages is 1.78,
which is taken as the comparison value for other images. The values for the corresponding
AUX images (1.75) are similar. MEM algorithms represent non-linear distortion which is
stronger for noisier datasets. The SMEM algorithm suffers from nonlinearity to a greater extent
than CMEM does.

Table 3 summarizes important spectral information. Linewidths were determined by fitting
Lorentzian lineshapes to the sum of three spectral slices through the peaks of intensities for
the LiPc and trityl signals in the images (see Figs. 3, 6). Although the LiPc signal has a simple
Lorentzian lineshape, the trityl lineshape is more complicated, including C13 sidebands. The
regions in the spectra for the 13C hyperfine lines were not included in the fitting. The linewidths
for the trityl signal in all of the images agreed with directly measured signals within expected
accuracy. There was greater scatter in the linewidths for the LiPc signal (Table 3). The
discrepancies are greater for the CMEM2 and SMEM methods than for FBP or CMEM.
However, in general, the linewidths obtained by fitting the LiPc spectra are quite good. The
linewidths of the LiPc signal obtained by SMEM are systematically underestimated (Table 3),
which indicates a systematic non-linearity in intensities. The non-linearity in the SMEM
images can be decreased by starting iteration from a smoothed FBP image instead of from a
flat image (values not tabulated). However, these images can not be considered as ones having
maximum entropy because values of TEST are in the range of 0.2–0.3. The 13C hyperfine lines
are better defined by MEM than by FBP and the relative intensities are in reasonable agreement
with slow scan spectra (Fig. 3,6).

It is surprising to see how poor the LiPc lineshapes are in Fig. 3. For example, the LiPc spectra
from the FBP image are strongly distorted in comparison with CMEM curve. Although the
discrepancies in measured linewidths for the LiPc signal for CMEM (−2mG) and FBP (2mG)
methods are equal, the fit of the Lorentzian lineshape to the MEM slices is 2–3 times better
than to the FBP slices. It is clear that fitting a known lineshape function to the spectral slices
permits relatively accurate lineshape estimation even from imperfect spectral slices. The
sources of FBP spectral slice distortions are noise and streak artifacts (see Figs. 2,5). The streaks
appear because of imperfections in the data including frequency shifts, the small number of
projections, and the missing angle. The streaks caused by the small number of projections
disappear in AUX and CMEM images. The streaks from data imperfections (or, perhaps, from
‘missing’ projections) are equally seen in AUX and FBP images, but suppressed in MEM
images (see Figs. 2,5). Reduction of these artifacts in CMEM images improves the spatial
resolution as shown in Figs. 4 and 7. The MEM curves are narrower and have more symmetrical
shape than the FBP profiles. The left-shift of the LiPc peak in the MEM profile relative to the
FPB profile (Fig. 4) is the result of the artifacts in FBP. The fact that the tops of the peaks for
MEM and FBP 2D images coincide supports this statement.

4. Conclusions
Two different implementations of the Cambridge MEM algorithm [27] (CMEM, CMEM2)
and the maximum entropy algorithm developed by Smith and Stevens [18] (SMEM) were
compared with the commonly used FBP method. The CMEM method has found to give more
accurate results than CMEM2 or SMEM, so the focus is on the comparison between CMEM
and FBP.

FBP is a linear method. As mentioned in the introduction, both the advantage and disadvantages
of MEM originate from its nonlinear behavior. This study seeks to determine the pros and cons
of MEM for reconstruction of spectral-spatial EPR images. Figures 2–7 together with
quantitative analysis given in Tables 1–3 reveal important differences between the two
algorithms. MEM entirely suppresses noise in the regions with no useful signals (base plane)
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and shows less noise filtering at the top of peaks in the image, which is a non-linear behavior.
On the contrary, the linear FBP method spreads noise from projections evenly over the image.
Generally, the FBP images are noisier than MEM images for noisy datasets. From the practical
point of view it is important to know how this difference impacts the spectral and spatial
information extracted from the image. Spatial profiles were obtained by integration of two-
dimensional image along spectral axis. This smoothes random noise and eliminates difference
in noisiness on the tops of the MEM and FBP peaks in spatial profiles. If the goal is to determine
the linewidth of the signal from a species with known lineshape, non-linear fitting can be
applied. In this case accuracy of the entire fitted curve is important and noise is less of a problem
than other distortions. Our results show that spectra obtained by both FBP and CMEM show
similar accuracy, when compared to directly measured EPR spectra. Thus, the difference in
nonlinear noise distribution over the images doesn’t strongly impact the linewidth information.
Nonlinearity of the MEM method, however, is significant in spatial profiles. Quantitative
analysis of the ratios of trityl and LiPc peak intensities shows stronger nonlinear distortion for
MEM images for noisier data. The weaker LiPc peak is underestimated in these profiles. In
contrast, the ratio of peaks in FBP-reconstructed images exhibits little variation, which can be
attributed to the linearity of the reconstruction procedure. However, this does not make spatial
profiles obtained by FBP method more informative. Images show streaks around the peaks,
which when integrated along spectral axes contribute to the spatial profile. As a result there is
distorted information about distribution of radicals in the sample. A significant advantage of
MEM is that weak trityl 13C hyperfine lines could be distinguished from noise more readily
than by FBP.

In summary, each approach was found to have advantages and disadvantages. For FBP the
advantages are: (i) less computation time is required, (ii) the relative intensities of features in
the image are more accurate. The disadvantages of FBP are: (i) the “star” effect is observed
when the number of projections is small, (ii) projections must be equally spaced, (iii)
imperfections in a small number of projections adversely impact the whole image, (iv) both
noise and streak-like artifacts in the image distort spin concentration profile along spatial axis;
For MEM the advantages are: (i) even with a small number of projections, there is no “star”
effect, (ii) less noise in baseline regions of the image permits recognition of weak signals, (iii)
nonnegativity is implicit in the algorithm, (iv) projections do not need to be at equally spaced
angular increments, (v) more accurate shape of the spatial profile, (vi) better matching with
experimental projections. The disadvantages of MEM are: (i) it is computationally intensive,
(ii) the amplitude scale is nonlinear and amplitudes of weak peaks are underestimated, and (iii)
noise superimposed on peaks is higher than with FBP. The overall pattern is that FBP works
well when the number of projections is large enough that the star effect is negligible and signal-
to-noise is higher. MEM has advantages when projections are not equally spaced, when there
are fewer projections, and/or when signal-to-noise is not as good.
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Figure 1.
Rapid scan projections in the presence of magnetic field gradients, after Fourier deconvolution
to recover the slow-scan lineshapes. a) Gradient = 2.2 G/cm. b) Gradient = 0.01 G/cm. For
each pair of scans the upper and lower traces were obtained by averaging 5,000 or 50,000 scans,
respectively.
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Figure 2.
2-D spectral-spatial EPR image of a small tube containing solid LiPc and a larger tube
containing an aqueous solution of trityl-CD3. The centers of tubes were separated by 11 mm.
Each of the 60 projection was averaged 5,000 times with scan frequencies of 1 to 8 kHz and a
scan rate of 13.9 kG/s. A Hamming filter was used in conjunction with FBP. No filtering was
used for reconstruction by CMEM algorithm. Statistics for the images are shown in Tables 1–
3.
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Figure 3.
Spectral slices through the 2-D spectral-spatial image in Fig. 2 for (a) the LiPc signal and for
(b) the trityl-CD3 signal at the positions for maximum signal intensity. The red (upper) and
blue (lower) lines are from the images reconstructed by CMEM and FBP, respectively, and
calculated by summing three slices. The green lines (middle) are the corresponding slow-scan
lineshapes obtained by Fourier deconvolution of non-gradient rapid scans recorded with 500
Hz modulation frequency and a 0.6 G sweep width.
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Figure 4.
Spatial profiles of the images shown in Fig. 2 obtained by the summation of numerical 2D
image matrix along spectral axis. Red lines show MEM profile; blue lines show FBP profile.
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Figure 5.
2-D image of the same object as shown in Fig. 2 with the same experimental parameters, except
that each of the 30 projections was averaged 50,000 times which results in better S/N. Statistics
for the images are shown in Tables 1–3.
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Figure 6.
Spectral slices, analogous to those in Fig. 3, through the image in Fig. 5. The red (upper) and
blue (lower) lines are from the images reconstructed by CMEM and FBP, respectively, and
calculated by summing three slices. The green lines (middle) are the corresponding slow-scan
lineshapes obtained by Fourier deconvolution of non-gradient rapid scans recorded with 500
Hz modulation frequency and a 0.6 G sweep width.
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Figure 7.
Spatial profiles of the images shown in Fig. 6 obtained by the summation of numerical 2D
image matrix along spectral axis. Red lines show MEM profile; blue lines show FBP profile.
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