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Abstract
Different types of cell death are often defined by morphological criteria, without a clear reference to
precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes
unified criteria for the definition of cell death and of its different morphologies, while formulating
several caveats against the misuse of words and concepts that slow down progress in the area of cell
death research. Authors, reviewers and editors of scientific periodicals are invited to abandon
expressions like ‘percentage apoptosis’ and to replace them with more accurate descriptions of the
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biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it
should be accepted that caspase-independent mechanisms can cooperate with (or substitute for)
caspases in the execution of lethal signaling pathways and that ‘autophagic cell death’ is a type of
cell death occurring together with (but not necessarily by) autophagic vacuolization. This study
details the 2009 recommendations of the NCCD on the use of cell death-related terminology including
‘entosis’, ‘mitotic catastrophe’, ‘necrosis’, ‘necroptosis’ and ‘pyroptosis’.
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Cell death can be classified according to its morphological appearance (which may be
apoptotic, necrotic, autophagic or associated with mitosis), enzymological criteria (with and
without the involvement of nucleases or of distinct classes of proteases, such as caspases,
calpains, cathepsins and transglutaminases), functional aspects (programmed or accidental,
physiological or pathological) or immunological characteristics (immunogenic or non-
immunogenic).1

The Nomenclature Committee on Cell Death (NCCD) has formulated a first round of
recommendations in 2005, in Cell Death and Differentiation.2 Since then, the field of cell death
research has continued its expansion, significant progress has been made and new putative cell
death modalities have been described. The NCCD provides a forum in which names describing
distinct modalities of cell death are critically evaluated and recommendations on their
definition and use are formulated, hoping that a non-rigid, yet uniform, nomenclature will
facilitate the communication among scientists and ultimately accelerate the pace of discovery.
This study contains the updated NCCD guidelines.

Recommendation to Authors, Reviewers and Editors of Scientific Journals
Authors still make frequent use of expressions like ‘percentage apoptosis’ without mentioning
the method actually employed to assess ongoing cell death. In a totally inappropriate fashion,
these terms are also employed to describe the results of cell-free assays based on purified
cellular components. Such a vocabulary is confusing and imprecise and should definitively be
abandoned. From 2009, Cell Death and Differentiation will actively enforce a policy in which
terms like ‘percent apoptosis’, ‘percent necrosis’, ‘percent cell death’ and ‘percent cell
survival’ must be replaced with more descriptive expressions including ‘percent cells with
condensed chromatin’, ‘percent cells with DNA fragmentation’, ‘percent cells with a low
mitochondrial transmembrane potential (ΔΨm)’, as well as ‘percent propidium iodide (PI)
positive’, ‘percent cleaved caspase-3 positive’, ‘percent terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL) positive’ and ‘percent clone forming’ cells.
Similarly, the term ‘percent autophagic cells’ should be avoided and replaced with a language
that precisely describes what has been measured (such as ‘number of GFP-LC3 puncta/cell’
or ‘percent vacuolated cells’). This applies to the description of experimental results, be it in
the text or in the abstract, as well as to the labeling of figures and figure legends. Moreover,
NCCD encourages researchers to quantify cell death and/or other catabolic events (such as
autophagy) with more than one assay, whenever possible, thereby reducing the probability of
artifacts. The NCCD urges all life science journals and, more specifically, all journals in the
areas of cell biology, cancer research and pharmacology to pursue a similar policy.

When is a Cell ‘Dead’?
Dying cells are engaged in a process that is reversible until a first irreversible phase or ‘point-
of-no-return’ is trespassed (Table 1). It has been proposed that this step could be represented
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by massive caspase activation,6 loss of ΔΨm
,7 complete permeabilization of the mitochondrial

outer membrane8 or exposure of phosphatidylserine (PS) residues that emit ‘eat me’ signals
for normal neighboring cells. However, there are dozens of examples in which caspases are
activated in the context of non-lethal processes and differentiation pathways.9,10 The ΔΨm can
be dissipated by protonophores without progression to immediate cell death.11 PS exposure
can be reversible, for instance in neutrophilic granulocytes.12 Thus, the concept of a restriction
point for cell death, as it was described by Pardee13 for the cell cycle, has yet to be specifically
defined.

In the absence of a clearly defined biochemical event that can be considered as the point-of-
no-return, the NCCD proposes that a cell should be considered dead when any one of the
following molecular or morphological criteria is met: (1) the cell has lost the integrity of its
plasma membrane, as defined by the incorporation of vital dyes (e.g., PI) in vitro; (2) the cell,
including its nucleus, has undergone complete fragmentation into discrete bodies (which are
frequently referred to as ‘apoptotic bodies’); and/or (3) its corpse (or its fragments) has been
engulfed by an adjacent cell in vivo. Thus, bona fide ‘dead cells’ would be different from ‘dying
cells’ that have not yet concluded their demise (which can occur through a variety of
biochemically distinct pathways, see below). In particular, cells that are arrested in the cell
cycle (as it occurs during senescence) should be considered as alive, and the expression
‘replicative cell death’ (which alludes to the loss of clonogenic potential), as it is frequently
used by radiobiologists, should be abandoned.

Definition of ‘Apoptosis’
The expression ‘apoptosis’ has been coined by Kerr et al.14 to describe a specific morphological
aspect of cell death (Table 2). Apoptosis is accompanied by rounding-up of the cell, retraction
of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation, nuclear
fragmentation (karyorrhexis), classically little or no ultrastructural modifications of
cytoplasmic organelles, plasma membrane blebbing (but maintenance of its integrity until the
final stages of the process) and engulfment by resident phagocytes (in vivo). Hence, the term
‘apoptosis’ should be applied exclusively to cell death events that occur while manifesting
several among these morphological features. It is worth noting that it is not correct to assume
that ‘programmed cell death’ (PCD) and ‘apoptosis’ are synonyms because cell death, as it
occurs during physiological development, can manifest non-apoptotic features.19-21

Specific biochemical analyses (such as DNA ladders) should not be employed as an exclusive
means to define apoptosis, because this type of cell death can occur without oligonucleosomal
DNA fragmentation. Similarly, the presence of proteolytically active caspases or of cleavage
products of their substrates is not sufficient to define apoptosis. Frequently, the active
suppression (by pharmacological and/or genetic means) of DNA fragmentation and/or caspase
activation demonstrates that these changes are not required for the execution of the cell death
program, although caspase activation may be necessary for the acquisition of the apoptotic
morphology.22-24 Moreover, the presence of active caspases and/or of specific products of
their enzymatic activity can be linked to non-lethal biological processes.9,10 The measurement
of DNA fragmentation and/or of caspase activation, however, may be helpful in diagnosing
apoptosis. Thus, it may be reasonable to use caspase activation not only to diagnose but also
to better define (together with other features) the type of cell death.

It should be noted that the expression ‘apoptosis’ hides a major degree of biochemical and
functional heterogeneity. There are several distinct subtypes of apoptosis that, although
morphologically similar, can be triggered through different biochemical routes (for instance
through the ‘intrinsic’ or the ‘extrinsic’ pathway, with or without the contribution of
mitochondria, etc...).25,26 Moreover, the apparent uniformity of apoptotic cell death may
conceal heterogeneous functional aspects, for instance concerning the perception of apoptosis
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by the immune system.27 Thus, although apoptosis mostly occurs in a non-immunogenic
fashion, some lethal stimuli can lead to the exposure or secretion of proteins that elicit the
engulfment of apoptotic material by dendritic cells, followed by efficient antigen presentation
and stimulation of a specific immune response.28

Cell death is frequently considered to be ‘caspase-dependent’ when it is suppressed by broad-
spectrum caspase inhibitors such as N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone
(Z-VAD-fmk). As a word of caution, however, it should be noted that Z-VAD-fmk does not
act on all caspases with an equal efficiency, and it also inhibits calpains and cathepsins,
especially at high concentrations (>10 μM). Moreover, Z-VAD-fmk has been associated with
several off-target effects that would result from the binding to cysteines on proteins other than
cysteine proteases.29 As an example, Z-VAD-fmk has been shown to interfere with the
interaction between the adenine nucleotide translocase and cyclophylin D,30 thereby favoring
necrotic cell death.31 For these reasons, the term ‘Z-VAD-fmk-inhibitable’ should be preferred
to ‘caspase-dependent’. A second difficulty arises from the fact that caspase inhibition often
prevents the appearance of some morphological signs of apoptosis (such as chromatin
condensation and DNA fragmentation), yet only retards cell death.32 In many instances,
caspase inhibition simply induces a shift from an apoptotic to a mixed cell death morphology,
or even to full-blown pictures of necrosis or autophagic cell death, which, however, may
manifest some delay.33 Thus, ‘caspase-independent cell death’ 32 can occur despite the efficient
inhibition of caspases and can exhibit some of the morphological signs of apoptosis (such as
a partial chromatin condensation),34 autophagy or necrosis.

Considerations on ‘Autophagy’ and ‘Autophagic Cell Death’
Macroautophagy is characterized by the sequestration of cytoplasmic material within
autophagosomes for bulk degradation by lysosomes. Autophagosomes, by definition, are two-
membraned and contain degenerating cytoplasmic organelles or cytosol,35,36 which allows
them to be distinguished by transmission electron microscopy from other types of vesicles such
as endosomes, lysosomes or apoptotic blebs.3 The fusion between autophagosomes and
lysosomes generates autolysosomes, in which both the autophagosome inner membrane and
its luminal content are degraded by acidic lysosomal hydrolases. This catabolic process marks
the completion of the autophagic pathway. When the fusion of autophagosomes with lysosomes
is blocked, the former accumulate in spite of autophagy inhibition.36,37 Hence, a massive
increase in the number of autophagosomes is by no means a demonstration that the autophagic
pathway is induced, and functional tests are required to investigate autophagy. A very
comprehensive description of the assays for monitoring autophagy in higher eukaryotes and a
set of guidelines for their interpretation has been recently provided by Klionsky et al.38 One
technique commonly employed to detect autophagy relies on the redistribution of GFP-LC3
fusion proteins into vesicular structures (which can be autophagosomes or autolysosomes).3,
39 However, the exclusive use of GFP-LC3 as a marker of autophagy is not sufficient to
diagnose an enhanced autophagic catabolism.38

‘Autophagic cell death’ is morphologically defined (especially by transmission electron
microscopy) as a type of cell death that occurs in the absence of chromatin condensation but
accompanied by massive autophagic vacuolization of the cytoplasm. In contrast to apoptotic
cells (whose clearance is ensured by engulfment and lysosomal degradation), cells that die with
an autophagic morphology have little or no association with phagocytes.40,41 Although the
expression ‘autophagic cell death’ is a linguistic invitation to believe that cell death is executed
by autophagy, the term simply describes cell death with autophagy.15,16,42 Thus far, involuting
Drosophila melanogaster salivary glands provide the only in vivo evidence that the
knockdown/knockout of genes required for autophagy truly reduces cell death.43 This may be
due to the limited number of studies that have investigated autophagic cell death in vivo,

Kroemer et al. Page 4

Cell Death Differ. Author manuscript; available in PMC 2009 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



although there are no doubts that autophagy promotes cell survival, in multiple physiological
and experimental settings.44 Significantly, some reports indicate that cells presenting features
of ‘autophagic cell death’ can still recover upon withdrawal of the death-inducing stimulus.
45 In most cases described to date in which autophagy is suppressed by genetic knockout/
knockdown of essential autophagy (atg) genes, cell death is not inhibited but rather occurs at
an accelerated pace,15 pointing to the prominent role of autophagy as a pro-survival pathway.
This said, it should be noted that most of these studies have been performed on immortalized
cell lines in vitro and that autophagic cell death rarely affects individual cells in vivo.19,41

Nevertheless, in specific cases, autophagy may participate in the destruction of cells, as a result
of a protracted atrophy of the cytoplasm, beyond a not yet clearly defined point-of-noreturn.
43,46 Thus, direct induction of autophagy by overexpression of the Atg1 kinase is sufficient to
kill fat and salivary gland cells in Drosophila. Interestingly, although Atg1-driven autophagic
cell death entails caspase-dependent mechanisms in fat cells,46 the same does not hold true in
salivary gland cells (which cannot be rescued from Atg1-induced death by p35 expression).43

Definition of ‘Necrosis’
‘Necrotic cell death’ or ‘necrosis’ is morphologically characterized by a gain in cell volume
(oncosis), swelling of organelles, plasma membrane rupture and subsequent loss of intracellular
contents. For a long time, necrosis has been considered merely as an accidental uncontrolled
form of cell death, but evidence is accumulating that the execution of necrotic cell death may
be finely regulated by a set of signal transduction pathways and catabolic mechanisms.4,47 For
instance, death domain receptors (e.g., TNFR1, Fas/CD95 and TRAIL-R) and Toll-like
receptors (e.g., TLR3 and TLR4) have been shown to elicit necrosis, in particular in the
presence of caspase inhibitors. TNFR1-, Fas/CD95-, TRAILR- and TLR3-mediated cell death
seemingly depends on the kinase RIP1,48 as this has been demonstrated by its knockout/
knockdown and chemical inhibition with necrostatin-1.49-51 Although there is no generalized
consensus on the use of this expression, some authors have proposed the term ‘necroptosis’ to
indicate regulated (as opposed to accidental) necrosis. At a biochemical level, necroptosis may
be defined as a type of cell death that can be avoided by inhibiting RIP1 (either through genetic
or pharmacological methods),49,50 which may represent a convenient means to discriminate
between programmed and fortuitous forms of necrosis.

Several mediators, organelles and cellular processes have been implicated in necrotic cell
death, but it is still unclear how they interrelate with each other. The causative elements of
necrosis are unclear, as well as its bystander effects. These phenomena include mitochondrial
alterations (e.g., uncoupling, production of reactive oxygen species, i.e., ROS, nitroxidative
stress by nitric oxide or similar compounds52 and mitochondrial membrane permeabilization,
i.e., MMP, often controlled by cyclophilin D), lysosomal changes (ROS production by Fenton
reactions, lysosomal membrane permeabilization), nuclear changes (hyperactivation of
PARP-1 and concomitant hydrolysis of NAD+), lipid degradation (following the activation of
phospholipases, lipoxygenases and sphingomyelinases), increases in the cytosolic
concentration of calcium (Ca2+) that result in mitochondrial overload and activation of non-
caspase proteases (e.g., calpains and cathepsins).4,53 In several (but not all) instances of
necrotic cell death, a crucial role for the serine/threonine kinase RIP1 has been demonstrated.
54 Thus far, however, there is no consensus on the biochemical changes that may be used to
unequivocally identify necrosis. In the absence of a common biochemical denominator,
necrotic cell death is still largely identified in negative terms by the absence of apoptotic or
autophagic markers, in particular when the cells undergo early plasma membrane
permeabilization (as compared with its delayed occurrence, which is associated with late-stage
apoptosis). For these reasons, caution should be used in classifying particular cell death routines
as necrotic.
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Definition of ‘Cornification’
Cornification is a very specific form of PCD that occurs in the epidermis, morphologically and
biochemically distinct from apoptosis. It leads to the formation of corneocytes, that is dead
keratinocytes containing an amalgam of specific proteins (e.g., keratin, loricrin, SPR and
involucrin) and lipids (e.g., fatty acids and ceramides), which are necessary for the function of
the cornified skin layer (mechanical resistance, elasticity, water repellence and structural
stability). Cornification is less often referred to as ‘keratinization’ or ‘cornified envelope
formation’,17,55 and it is generally considered as a terminal differentiation program similar to
those leading to other anucleated tissues (such as the lens epithelium and mature red blood
cells).56,57 This is mainly due to the fact that these processes display the (often limited)
activation of the molecular machinery for cell death, in particular of caspases.9,10,57,58 In
contrast with corneocytes, however, both mature red blood and lens epithelial cells retain the
ability to undergo stress-induced death,59,60 and hence only cornification should be regarded
as a bona fide cell death program.

At the molecular level, cornification follows a specific mechanism of epithelial differentiation
during which cells express all enzymes and substrates required for building up the epidermal
barrier that allows for isolating the body from the external environment. This is obtained by
the crosslinking enzymes (e.g., transglutaminase types 1, 3 and 5) acting on several substrates
(e.g., loricrin, SPR, involucrin and SP100),18 as well as through the synthesis of specific lipids
that are released into the extracellular space (where they are covalently attached to cornified
envelope proteins), and proteases, which are required for impermeability and desquamation,
respectively.

Tentative Definitions of Atypical Cell Death Modalities
‘Mitotic catastrophe’

Mitotic catastrophe is a cell death mode occurring either during or shortly after a dysregulated/
failed mitosis and can be accompanied by morphological alterations including micronucleation
(which often results from chromosomes and/or chromosome fragments that have not been
distributed evenly between daughter nuclei) and multinucleation (the presence of two or more
nuclei with similar or heterogeneous sizes, deriving from a deficient separation during
cytokinesis). However, there is no broad consensus on the use of this term,61-63 and mitotic
catastrophe can lead either to an apoptotic morphology or to necrosis.64 As a result, the NCDD
recommends the use of expressions such as ‘cell death preceded by multinucleation’ or ‘cell
death occurring during metaphase’, which are more precise and more informative.

‘Anoikis’
Apoptosis induced by the loss of the attachment to the substrate or to other cells is called
anoikis.65 Besides its specific form of induction, the molecular mechanisms of anoikis-
associated cell death match those activated during classical apoptosis.66 The NCCD
acknowledges the use of this term for historical reasons, as it is already quite diffuse in the
literature. However, it will be necessary to determine whether under certain circumstances
other modalities of cell death occur in vivo following detachment, that is, whether there are
forms of anoikis refractory to caspase inhibitors and/or others that manifest necrotic features.

‘Excitotoxicity’
This is a form of cell death occurring in neurons challenged with excitatory amino acids, such
as glutamate, that leads to the opening of the N-methyl-D-aspartate Ca2+-permeable channel,
followed by cytosolic Ca2+ overload and activation of lethal signaling pathways.67

Excitotoxicity seemingly overlaps with other types of death such as apoptosis and necrosis
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(depending on the intensity of the initiating stimulus), and involves MMP as a critical event.
For these reasons, and for the presence of common regulators such as nitric oxide itself,68

excitotoxicity cannot be considered as a separate cell death modality.

‘Wallerian degeneration’
Additional less-characterized forms of cellular catabolism take place in the nervous system,
such as Wallerian degeneration, in which part of a neuron or axon degenerates without affecting
the main cell body.69,70 This term does not describe a type of cell death sensu stricto, because
neurons affected by Wallerian degeneration remain alive.70

‘Paraptosis’
This term was originally introduced to describe a form of PCD morphologically and
biochemically distinct from apoptosis.71 In multiple cell types, paraptosis was triggered by the
expression of the insulin-like growth factor receptor I, and it was associated with extensive
cytoplasmic vacuolization and mitochondrial swelling, but without any other morphological
hallmark of apoptosis.71 The manifestations of paraptosis could not be prevented by caspase
inhibitors, nor by the overexpression of antiapoptotic Bcl-2-like proteins,71,72 and seemingly
resulted from a signaling cascade involving specific members of the mitogen-activated protein
kinase family.72 At present, it is still unclear whether paraptosis represents a route of cell death
that is truly distinct from all others.

‘Pyroptosis’
Pyroptosis has first been described in macrophages infected with Salmonella typhimurium.73

It involves the apical activation of caspase-1 (but not of caspase-3), a protease that is mostly
known as interleukin-1β (IL-1β)-converting enzyme. Caspase-1 activation induced by S.
typhimurium (and by other pathogens such as Pseudomonas aeruginosa and Shigella
flexneri) occurs through Ipaf,74-76 an Apaf-1-related NLR protein.78 In contrast, pyroptosis
induced by Bacillus anthracis lethal toxin does not require Ipaf and rather involves another
NLR protein, that is Nalp1.78 In addition, lipopolysaccharide-treated macrophages (either in
the presence or in the absence of ATP) undergo pyroptosis mediated by the adaptor protein
ASC, which together with caspase-1 forms a supramolecular cytoplasmic complex also known
as ‘pyroptosome’.79 Thus, distinct routes to caspase-1 activation induce pyroptosis. As this
form of cell death leads to the release of IL-1β (which is one of the major fever-inducing
cytokines or pyrogens) and of IL-18, it may play a relevant role in both local and systemic
inflammatory reactions.80,81 As it stands, macrophages undergoing pyroptosis not only exhibit
morphological features that are typical of apoptosis, but also display some traits associated
with necrosis.82

‘Pyronecrosis’
Nalp3 and ASC are involved in the necrotic cell death of macrophages infected by S.
flexneri at high bacteria/macrophage ratios and associated with the release of HMGB-1,
caspase-1 and IL-1β, which is called pyronecrosis.83 Pyronecrosis and pyroptosis are
distinguished based on the fact that the latter (but not the former) requires caspase-1. It remains
to be determined whether RIP1 is implicated in pyronecrosis, as well as whether pyroptosis
and pyronecrosis play any role outside of the innate immune system.84,85

‘Entosis’
Entosis, originally described as a form of ‘cellular cannibalism’ in lymphoblasts from patients
with Huntington’s disease,86 has been reported as a new cell death modality in which one cell
engulfs one of its live neighbors, which then dies within the phagosome.87 Intriguingly, the
most efficient cells in performing entosis are MCF-7 breast cancer cells,87,88 which lack both
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caspase-3 and beclin-1 and hence are (relatively) apoptosis- and autophagy-incompetent. This
points to the possibility, which remains to be explored, that entosis is a default pathway that
is unmasked (and hence can be observed) exclusively when other catabolic reactions are
suppressed. Entosis is not inhibited by Bcl-2 or Z-VAD-fmk, and internalized cells appear
virtually normal. Later they disappear, presumably through lysosomal degradation. In rare
cases, however, internalized cells are able to divide within the engulfing cell or are released.
87 Hence, it is difficult to know whether the cell-in-cell morphology (entosis) truly represents
a novel cell death modality.89

Postface
As it stands, three distinct routes of cellular catabolism can be defined according to
morphological criteria, namely apoptosis (which is a form of cell death), autophagy (which
causes the destruction of a part of the cytoplasm, but mostly avoids cell death) and necrosis
(which is another form of cell death). Although frequently employed in the past, the use of
Roman numerals (i.e., type I, type II and type III cell death, respectively) to indicate these
catabolic processes should be abandoned. Moreover, several critiques can be formulated
against the clear-cut distinction of different cell types in the triad of apoptosis, autophagic cell
death and necrosis.

First, although this vocabulary was originally introduced based on observations of developing
animals,41,90 it has rapidly been adopted to describe the results of in vitro studies performed
on immortalized cell lines, which reflect very poorly the physiology of cell death in vivo. In
tissues, indeed, dying cells are usually engulfed well before signs of advanced apoptosis or
necrosis become detectable. Thus, it may be acceptable - if the irreversibility of these
phenomena is demonstrated - to assess caspase activation and/or DNA fragmentation to
diagnose apoptotic cell death in vivo.

Second, there are numerous examples in which cell death displays mixed features, for instance
with signs of both apoptosis and necrosis, a fact that lead to the introduction of terms like
‘necroapoptosis’ and ‘aponecrosis’ (whose use is discouraged by the NCCD to avoid further
confusion).53 Similarly, in the involuting D. melanogaster salivary gland, autophagic
vacuolization is synchronized with signs of apoptosis,91 and results from genetic studies
indicate that caspases and autophagy act in an additive manner to ensure cell death in this
setting.43 Altogether, these data argue against a clear-cut and absolute distinction between
different forms of cell death based on morphological criteria.

Third (and most important), it would be a desideratum to replace morphological aspects with
biochemical/functional criteria (Table 3) to classify cell death modalities. Unfortunately, there
is no clear equivalence between morphology and biochemistry, suggesting that the ancient
morphological terms are doomed to disappear and to be replaced by truly biochemical
definitions. In this context, ‘loss-of-function’ and ‘gain-of function’ genetic approaches (e.g.,
RNA interference, knockout models and plasmid-driven overexpression systems) represent
invaluable tools to characterize cell death modes with more precision, but only if such
interventions truly reduce/augment the rate of death, instead of changing its morphological
appearance (as it is often the case). Present cell death classifications are reminiscent of the
categorization of tumors that has been elaborated by pathologists over the last one and a half
centuries. As old morphological categorizations of tumors are being more and more supported
(and will presumably be replaced) by molecular diagnostics (which allows for a more
sophisticated stratification of cancer subtypes based on molecular criteria), the current catalog
of cell death types is destined to lose its value as compared with biochemical/functional tests.
In the end, such efforts of classification are only justified when they have a prognostic and/or
predictive impact, allowing the matching of each individual cancer with the appropriate
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therapy. Similarly, a cell death nomenclature will be considered useful only if it predicts the
possibilities to pharmacologically/genetically modulate (induce or inhibit) cell death and/or if
it predicts the consequences of cell death in vivo, with regard to inflammation and recognition
by the immune system.
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