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Abstract
The mean residual life function is an attractive alternative to the survival function or the hazard
function of a survival time in practice. It provides the remaining life expectancy of a subject surviving
up to time t. In this study, we propose a class of transformed mean residual life models for fitting
survival data under right censoring. To estimate the model parameters, we make use of the inverse
probability of censoring weighting approach and develop a system of estimating equations.
Efficiency and robustness of the estimators are also studied. Both asymptotic and finite sample
properties of the proposed estimators are established and the approach is applied to two real-life
datasets collected from clinical trials.
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1. INTRODUCTION
For a nonnegative survival time T with finite expectation, the mean residual life function
(MRLF) at time t ≥ 0 is defined as

(1)

In order for the quantity m(t) to make sense, at least practically, we shall insist that it is only
defined when the condition T > t has positive probability. Throughout this article, we assume
T is absolutely continuous with a density f(t) with respect to the Lebesgue measure. Denoting
the corresponding survival and hazard functions as F(t) and λ(t), respectively, the following
four relationships can be easily verified:

and
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provided that all denominators are nonzero, where ṁ(t) denotes the first derivative of m(t).

An important property of MRLF is that m(t) + t is nondecreasing, which is obvious because m
(t) + t = E(T|T > t). This is also reflected by the fact that ṁ (·) + 1 ≥ 0, as f(t) and λ(t) are always
nonnegative. For other properties of MRLF that do not concern us here, we refer interested
readers to Balkema and de Haan (1974), Hollander and Proschan (1975), Kotz and Shanbhag
(1980), Arnold and Zahedi (1988), and the references within.

MRLF is of interest in many fields, such as reliability research, survival analysis and actuarial
study, and so forth. For example, it is sometimes more informative to tell a prostate cancer
patient how long he can survive or live without disease recurrence, in expectation, given his
current situation (which of course includes the fact that he has “survived” or lived without the
disease so far). As another example, a customer may be interested in knowing how much longer
his or her computer can be used, given that the computer has worked normally for, say, t years.
Later in this article, two real data examples are introduced and analyzed, which will further
illustrate the usage of MRLF.

In the following, we will briefly review the literature on MRLF. Early studies on MRLF focused
more on its probabilistic behaviors. See, for example, the book by Cox (1961) for a general
introduction, and Swartz (1973) and Kotz and Shanbhag (1980) for some characterization and
representation theorems. Balkema and de Haan (1974) in particular studied the limiting
behavior of m(t) when t → ∞. More recent works include those of Hall and Wellner (1984)
and Oakes and Dasu (1990). The concept of MRLF has also been generalized to multivariate
distributions. See Arnold and Zahedi (1988) and a recent work by Bassan, Kochar, and
Spizzichino (2002).

For statistical inference, many testing procedures have been established. Hollander and
Proschan (1975) developed tests for testing exponentiality (under which the MRLF is constant)
versus decreasing MRLF alternatives and exponentiality versus “new better than used” in
expectation alternatives. In their work, the authors also discussed interesting distribution
classes. Recently, El-Bassiouny and Alwasel (2003) proposed a more efficient test for the first
scenario considered by Hollander and Proschan (1975). Dauxois (2003), on the other hand,
considered testing exponentiality versus nonexponentiality when right-censored data are
present.

Estimation of MRLF in homogeneous cases has not been addressed as extensively as the
probabilistic properties or testing procedures. Of course, when no censoring is present, this is
trivial, because one can easily compute the empirical MRLF. Actually, Bickel et al. (1993, p.
197) showed that it is the optimal (i.e., most efficient) estimator using semiparametric
efficiency theory. For bivariate MRLF under order restriction, Rojo and Ghebremichael
(2006) developed a projection estimator, again, when no censoring is present. But the literature
on censored data seems limited. This issue is discussed briefly in Section 7.

When data are not homogeneous, the estimation problem becomes even more challenging. To
our best knowledge, Oakes and Dasu (1990) proposed the first two-sample proportional mean
residual life model
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(2)

where ψ > 0 represents the ratio of the two MRLFs. They gave a characterization theorem but
did not provide a method for estimating ψ. Later, in Maguluri and Zhang (1994), model (2)
was extended to incorporate covariates,

(3)

where m(t|Z) is the MRLF of the survival time T corresponding to a p × 1 vector covariate Z,
m0(t) is some unknown baseline MRLF, and β is an unknown p × 1 vector of regression
parameters. They also proposed two estimators for β in model (3) with complete data (i.e., no
censoring). Their approach was later modified to accommodate potential right censoring in
Chen et al. (2005). Under the same situation and for the same purpose, Chen and Cheng
(2005) developed another methodology by using generalized estimating equations. The latter
approach does not rely on modeling the censoring mechanism, but requires estimating the
baseline MRLF.

A new class of additive mean residual life model,

(4)

in which each component has a similar interpretation as their counterparts in model (3), was
also proposed by Chen and Cheng (2006) and Chen (2007). In these articles, the authors
discussed various estimation methodologies with or without right censoring.

In this article, we propose a more general family of regression models for the MRLF that take
the form

(5)

where g:ℜ ↦ ℜ+ is a prespecified “transformation” or “link” function, m0(t) is some unknown
function (note that unless g is the identity link, m0(t) is not necessarily the baseline MRLF,
whereas g{m0(t)} is), and β and Z are defined similarly as before. Some important features of
this model are outlined next.

First, we see that (5) defines a very rich family of models through the link function g, which
allows the models to be useful in applications such as treatment assessment, resource planning,
or short-term forecasting. In particular, it encompasses the Box-Cox transformation, in which
g is given by g(x) = [(x + 1)ρ − 1]/ρ, where ρ = 0 means that g(x) = log(x + 1). When g(x) = exp
(x), (5) reduces to (3), and if g(x) = x then (5) becomes (4). This means the proportional and
additive mean residual life models are special cases of our model.

Second, we should be careful about the choice of an appropriate link function g. Practically,
the choice may be based on prior data or the desiring interpretation of the regression parameters.
Notice that this choice will also affect the interpretation of the function m0(t). Theoretically,
however, there are some restrictions for choosing an appropriate g. In the following, we list
the requirements: (A) g is twice continuously differentiable, (B) g is strictly increasing, and
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(C) g{m0(t) + β′Z} is a proper MRLF for all possible values of Z (later we shall also assume
that t ∈ [0, τ] for some finite τ and Z is bounded). Condition (A) is a result of the fact that we
are dealing with absolutely continuous survival times. Condition (B) is required for technical
arguments in later sections. Roughly speaking, it guarantees the uniqueness of the estimate of
β0, true value of β. Condition (C) is obvious, because g{m0(t) + β′Z} is itself the MRLF of the
survival time T given Z. More comments on this are given in Section 7.

Third, as pointed out by a referee, model (5) may prove useful in model selection. Notice that
the Box-Cox transformation includes the additive model by letting ρ = 1. Thus, if we insist that
g lies in the family of Box-Cox transformation but allow ρ to be estimated, this would provide
a way in model selection between the additive mean residual life model and other models
contained by the Box-Cox family. We will give a brief discussion in Section 7 on this research
topic.

One important motivation behind model (5), in application, is certainly its flexibility in
modeling covariate effects. We now look at a real data example. A recent study conducted at
the Memorial Sloan-Kettering Cancer Center aims at investigating the potential effect of the
radiation therapy dose level on the relapse time of the prostate cancer-specific antigen (PSA).
Here, the relapse time, which is our survival time of interest, is defined from the end of the
radiation therapy treatment to the time when the PSA level of the patient has been observed to
cross a certain threshold value. Of course, this relapse time is sometimes censored by random
withdrawal or other reasons. A recent study (Zelefsky et al. 2008) has shown that the age of
the patient may also play an important role in predicting the PSA relapse time. Therefore, we
need to incorporate age as another covariate in the mean residual life regression model.
However, it may not be reasonable to postulate that the effect of age on the MRLF of PSA
relapse time is additive or multiplicative, because it would imply that a 5-year increase of age
from 60 to 65 would have the same effect as a 5-year increase of age, say, from 80 to 85 (either
additively or multiplicatively). As a matter of fact, it is more reasonable clinically to assume
that the effect of age phases out gradually as it increases. In other words, we may take g to be
the Box-Cox transformation with ρ as a fraction number like 0.5. More detailed discussion and
data analysis results are reported in Section 6.

The rest of this article is organized as follows. In the next section, we will first discuss the
situation in which the censoring time is independent of T and Z, and a general inference
procedure based on estimating functions is proposed. The procedure can be easily implemented
numerically and the asymptotic properties of the proposed estimators of regression parameters
are established. Section 3 extends the method to the situation in which the censoring time may
depend on Z through the proportional hazards model. Issues regarding efficiency and double
robustness are discussed in Section 4. Section 5 reports some results from simulation studies
conducted for evaluating the proposed methods. In Section 6, we apply the methodology to
two real-life datasets arising from clinical trials, and some concluding remarks are given in
Section 7. Regularity conditions and theoretical proofs are collected in the Appendix and a
supplemental technical report, respectively.

2. INFERENCE UNDER INDEPENDENT CENSORING
Let C be the potential censoring time, and assume that the support of C is longer than that of
the survival time T to ensure that the MRLF is estimable. In the technical arguments, this
assumption also saves us from lengthy technical discussion of the tail behavior of the limiting
distributions. In this section, we consider the situation when C is independent of both T and
Z. Let {Ti, Ci, Zi; i = 1, …, n} be independent replicates of {T, C, Z} and suppose that we
observe {Xi, Δi, Zi; i = 1, …, n}, where Xi = min(Ti, Ci) and Δi = I(Ti ≤ Ci). Here, I(·) is the
indicator function.
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Let G(t) be the survival function of C and Ĝ(t) the Kaplan-Meier estimator of G(t) based on
{Xi, 1 − Δi; i = 1, …, n}. Define

Under model (5), Mi(t) are zero-mean stochastic processes. Thus, for a given β, a reasonable
estimator for m0(t) is the solution to

(6)

where 0 < τ = inf {t: Pr(T ≥ t) = 0} < ∞. Note that, without censoring, (6) reduces to

, which is similar to the efficient nonparametric
estimator of the MRLF discussed in Bickel et al. (1993). The inverse probability of censoring
weighting (IPCW) technique has been extensively discussed in the literature. See, for example,
Robins and Rotnitzky (1992);Robins, Rotnitzky, and Zhao (1994); and van der Laan and
Robins (2003).

Denote this estimator by m ̂a0(t; β). To estimate β0, using the generalized estimating equation
approach (Liang and Zeger, 1986) and again the IPCW technique, we propose the following
class of estimating equations for β0:

(7)

where H(t) is an increasing weight function on [0, τ]. Let β ̂a denote the solution to Ua(β) = 0
and m ̂a0(t):= m ̂a0(t; β ̂a) the corresponding estimator of m0(t). Define

,

and

where ġ(x) = dg(x)/dx. We summarize the asymptotic properties of β ̂a and m ̂a0(t) in the
following theorem.
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Theorem 1
Under the regularity conditions (C1) through (C4) stated in the Appendix, we have the
following:

i. β ̂a and m ̂a0(t) always exist, and are unique and consistent.

ii. n1/2(β ̂a − β0) is asymptotically normal with mean zero and a variance–covariance

matrix that can be consistently estimated by Â−1ΣaÂ−1, where ,

and v⊗2 = vv′ for a column vector v.

iii. n1/2{m ̂a0(t) − m0(t)}(0 ≤ t ≤ τ) converges weakly to a zero-mean Gaussian process
with a covariance function that can be consistently estimated by

at (s, t), where

and .

The asymptotic normality for m ̂a0(t), together with the consistent variance estimator Γ ̂a, enables
us to construct pointwise confidence intervals for m0(t). To construct simultaneous confidence
bands for m0(t) over a time interval of interest [t1, t2], 0 < t1 < t2 ≤ τ, we need to evaluate the
distribution of the supremum of a related process over [t1, t2]. It is not possible to evaluate such
distributions analytically because the limiting process of n1/2{m ̂a0(t) − m0 (t)} does not have
an independent increments structure. To handle this problem, we can use a resampling scheme

to approximate the distribution of n1/2{m ̂a0(t) − m0(t)}. Define , where
(Ω1, …, Ωn) are independent, standard normal variables that are independent of the data {Xi,
Δi, Zi; i = 1, …, n}. According to the arguments of Lin et al. (2000), the distribution of the
process n1/2{m ̂a0(t) − m0(t)} can be approximated by that of the zero-mean Gaussian process
Ŵa(t). To approximate the distributions of n1/2{m ̂a0(t) − m0(t)}, we need to obtain a large
number of realizations from Ŵa(t) by repeatedly generating the normal random sample (Ω1,
…, Ωn) while fixing the data {Xi, Δi, Zi; i = 1, …, n} at their observed values. Using this
simulation method, we may determine an approximate 1 − α simultaneous confidence band
for m0(t) over the time interval of interest [t1, t2].

3. INFERENCE UNDER DEPENDENT CENSORING
We now consider the situation in which the censoring time C may depend on the covariate
Z. However, we assume that given Z, T is independent of C. This actually corresponds to the
scenario called “coarsening at random” in the literature of missing data. It has been pointed
out (Robins and Ritov 1997) that for such problems it is wise to postulate a model for the
censoring mechanism. Of course, if Z takes only finitely many values and the sample size n is
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large enough, we may be able to calculate the Kaplan-Meier estimates of the censoring
distribution for each value of Z. However, this is not feasible when Z (or at least one component
of Z) is continuous or the sample size is moderate. To this end, we assume that the hazard
function of C given Z has the form

(8)

where λ0(t) is an unspecified baseline hazard function and γ is a vector of unknown regression
parameters. Similar as before, we denote the true value of γ as γ0. We stress here that this model
may not always adequately capture the censoring mechanism. As a matter of fact, the purpose
of this modeling is merely to provide a platform for inference about β0 and m0(t). Later, we
shall consider efficiency and double robustness of our approach (Section 4), in which we will
derive more efficient and robust estimators, and show that even if this Cox model is incorrect,
we may still be able to obtain consistent and asymptotically normal estimators of β0 and
m0(t).

Note that the model from Section 2 is the model here with γ0 = 0. Of course, γ0, as well as
λ0(t), needs to be estimated. A natural estimator of γ0 under model (8) is given by the convenient
maximum partial likelihood estimator defined as the solution to

(9)

where , Z̄r(t; γ) = S(1)(t; γ)/S(0) (t;γ), and

for k = 0, 1. Let γ ̂ denote the estimator given by Ur(γ) =

0, and Λ̂0(t) be the Breslow estimator of —in other words,

Also, let Gi(t; γ0, Λ0) be the censoring survival distribution of Ci given Zi under model (8)—
that is, . For inference, motivated by the method given in
the previous section, we consider the following equation for estimating m0(t):

(10)

Denote this estimator by m ̂b0(t; β) for a given β. Again, using the generalized estimating
equation method, we propose the following class of IPCW estimating equations for β0 when
the censoring time Ci may depend on Zi via model (8):
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(11)

Let β ̂b denote the solution to Ub(β) = 0 and m ̂b0(t):= m ̂b0(t; β ̂b). Define

We summarize the asymptotic properties of β ̂b and m ̂b0(t) in the following theorem.

Theorem 2
Under the regularity conditions (C1) through (C3) and (C5) stated in the Appendix, we have

i. β ̂b and m ̂b0(t) always exist, and are unique and consistent.

ii. n1/2(β ̂b − β0) is asymptotically normal with mean zero and a variance–covariance

matrix that can be consistently estimated by B̂−1Σ̂bB̂−1, where ,

and D ̂ = −n−1∂Ur(γ ̂)/∂γ′.

iii. n1/2{m ̂b0(t) − m0(t)} (0≤ t ≤ τ) converges weakly to a zero-mean Gaussian process
with a covariance function at (s, t) that can be consistently estimated by

, where
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To construct a simultaneous confidence band for m0(t) over [t1, t2], we may again use the
resampling method mentioned in Section 2. Namely, we approximate the distribution of the
process n1/2{m ̂b0(t) − m0(t)} by that of the zero-mean Gaussian process Ŵb(t), where

and (Ω1, …, Ωn) are independent, standard normal variables that are
independent of the observed data.

4. EFFICIENCY AND DOUBLE ROBUSTNESS CONSIDERATIONS
Because estimating functions (7) and (11) are given in a somewhat ad hoc fashion using the
IPCW method, a question naturally arises regarding how efficient and robust the resulting
inference procedures are. Here we provide insights into these problems by using the
semiparametric efficiency theory developed by Bickel et al. (1993);Robins, Rotnitzky, and
Zhao (1994); and van der Laan and Robins (2003). For simplicity, we will only study the
efficiency and double robustness in the case of independent censoring. A discussion on the
case of dependent censoring, although similar to those given later conceptually, is much
messier algebraically and is thus omitted.

4.1 Efficiency Considerations
The fundamental idea of semiparametric efficiency is conveyed through the so-called “tangent
spaces” and orthogonal projections in Hilbert spaces. Normally, one makes enough regularity
assumptions in order for the problem to be meaningful practically and solvable theoretically
(Newey, 1990). For instance, it is usually insisted that we deal only with regular and
asymptotically linear estimators. This excludes superefficient estimators and allows us to
identify influence functions. Notice that this is exactly the situation we have here for β ̂a (see
Theorem 1 and its proof). Under these assumptions, the tangent space is taken to be the closed
linear span of the scores of the parametric submodels of the semiparametric model of interest.
One may then orthogonally project an arbitrary influence function onto this tangent space and
obtain the efficient influence function. Alternatively, if the parametric part and the
nonparametric part of the semiparametric model can be explicitly separated, it might be
possible to express the tangent space by the direct sum of two subspaces: one corresponding
to the parameter of interest and the other corresponding to the nuisance parameter. The latter
is sometimes referred to as the “nuisance tangent space.” One may then take the orthogonal
projection of the score of the parametric part onto the nuisance tangent space and obtain the
efficient score function.

These approaches, although theoretically elegant, may not be computationally feasible. The
difficulty usually lies in two aspects: (1) finding the tangent space (or the nuisance tangent
space) and (2) calculating the orthogonal projection. The first difficulty is mostly the result of
the complicated structure of the semiparametric model, and thus the scores. The second
difficulty may be the result of several reasons. For example, the orthogonal projection might
be a conditional expectation that requires extra modeling and awkward numerical integration.
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When data are coarsened or censored and the coarsening or censoring mechanism needs to be
modeled, these difficulties multiply. For our problem, unfortunately, both difficulties exist.
Therefore, we take the following approach. First, because β ̂a has already been shown to be
regular and asymptotically linear, we will take advantage of its estimating function Ua(β) and
the influence function. We will rewrite it using a martingale integral expression for later
algebraic convenience. Next, we will add an extra term to this estimating function and, hence,
improve the efficiency. The intuitive idea behind this construction is that the estimator β ̂a is
based on an estimating function that only uses complete cases. Thus, it is reasonable to expect
that we can extract more information from the “incomplete” (i.e., censored) cases. We will
show that this is indeed the case by proving that the augmented IPCW (AIPCW) estimator is
always more efficient than the original, simple IPCW estimator. Additional issues like
information bound and double robustness will also be discussed at the end of this section.

First, notice that we have already derived the influence function for β ̂a in Theorem 1 and its
proof. Namely,

In other words, the influence function is A−1ξi. For a definition of A, see (C4) in the Appendix.
In the proof of Theorem 1, we also show that A is actually the limit of −n−1∂Ua(β0)/∂β′. For
the ease of later computations, we now give ξi (and hence the influence function) another
expression. Define

and D accordingly, where z̄a(t) and H ̃(t) are the limits of Z̄a(t;β0) and H(t). Let Λc(t) = −log
(G(t)) be the cumulative hazard function of the censoring time, and

Then are martingales with respect to the σ-filtration

Similar settings can be found in Zhao and Tsiatis (1999) and Bang and Tsiatis (2000, 2002).
Consider the martingale representation of the Kaplan-Meier estimator (Fleming and
Harrington, 1991, p. 97)

(12)
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and the result from Robins and Rotnitzky (1992) that

(13)

It then follows from (12), (13), and some algebraic manipulation that

where K(t; W) = E{WI(T ≥ t)}/F(t) for any random variable or functional W, and F(t) = P{T ≥
t} is the (marginal) survival function of T. This means the ith influence function of the regular
and asymptotically linear estimator β ̂a is

(14)

The alternative expression (14) for Ua(β0) (inside the bracket) has a nice interpretation. The
first term, Di, tells us the variability of our estimating equation if there were no censoring. The
second term represents additional variability when the censoring is present and its mechanism
needs to be estimated. Note that the covariance of these two terms is zero because Di and 
are uncorrelated.

We now seek an AIPCW estimator that is more efficient than β ̂a. Put another way, it should
have a smaller asymptotic variance than (14). Here, by convention, we say that a variance
matrix A is smaller than a variance matrix B if B – A is nonnegative definite. According to the
semiparametric efficiency theory for missing data (Robins, Rotnitzky, and Zhao 1994;van der
Laan and Robins, 2003), influence functions of the regression parameter may be expressed by
the sum of two (correlated) parts with all parameters taken to be their true values. The first part
is the projection of an IPCW-based complete case influence function onto the orthogonal space
of the nuisance tangent subspace induced by estimating the censoring mechanism (Ĝ, in our
case; see theorem 1.3 of van der Laan and Robins (2003)). The second part, an augmented
term, is a similar projection of a function based on observed data with a conditional expectation
that is zero given the (unobserved) complete data. It is this augmented term that results in
greater efficiency and/or provides double robustness when chosen properly. Motivated by the
previous idea, we consider the following class of (the ith) functions

(15)

where e(t; Zi) is an arbitrary p-dimensional vector of functions involving Zi. The fact that this
augmented term (third part of (15)) is indeed such a projection as mentioned earlier and has a
conditional expectation zero given the complete data follows from Tsiatis (2006, theorem 9.2

Sun and Zhang Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



on p. 208 and discussion on p. 217). Also, we note that this term takes into account censored
cases and hence includes more “information” than the simple IPCW device. Now, for any
chosen e(t; Zi), we can improve efficiency over the simple IPCW estimator by multiplying the
last term of (15) by a constant matrix , where

and

Note that V1 is actually the covariance of the second and the third terms in (15) whereas V2 is
the variance of the third term using the stochastic integration theory. With this modification,
the “improved” function (15) now becomes

(16)

with a variance that is

(17)

which is always smaller than that of the term in the bracket of (14). This implies that if we can
construct an estimating equation based on (16), then the resulting estimator should have a
smaller variance than β ̂a as a result of (17) and the fact that the augmented term in (16) is
independent of β. (This condition can actually be weakened, because the augmented term has
a zero conditional expectation, as noted later.) To illustrate this point further, we may construct
an AIPCW estimating equation in the following way. Define

A class of AIPCW estimating equations according to (16) is given by

(18)

where ,
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and

Let β̃a be the improved estimator—in other words, the solution to Ũa(β) = 0. Note that π̂ (t) =
F̂(t)Ĝ(t) where F̂(t) is the Kaplan-Meier estimator of F(t). Then the variance of n1/2(β̃a − β0)

can be consistently estimated by , where Ãa = −n−1∂Ũa(β̃a)/∂β′ = −
n−1∂Ua(β̃a)/∂β′ (hence also converges to A),

and for any random vector or matrix W.

This class of improved estimators is generated through the functional of e(t; Zi). In practice,
we can obtain an improved estimator by choosing any form of e(t; Zi) that has a positive
variance. Taking e(t; Zi) = 0, we get the simple IPCW estimator β ̂a. Within this class of all
regular and asymptotically linear estimators, the most efficient estimator is obtained by finding
the functional e(t; Zi) that minimizes the variance of (15). According to Robins, Rotnitzky,
and Zhao (1994, proposition 2.3 and (41)) and Tsiatis (2006, theorems 10.1 and 10.4, and
section 10.4), the minimum variance is attained when e(t; Zi) = E[Di|Ti ≥ t, Zi]. This is because
right censoring can be regarded as a special case of monotone missing data patterns. As a matter
of fact, this optimal estimator also provides double protection against model misspecifications,
as we shall discuss later. Computational issues such as how to estimate E[Di|Ti ≥ t, Zi] will be
addressed at the end of this section.

Remark—The augmented estimating function Ũa(β)in (18) may also be defined by using ϒ̂
(β) instead of ϒ̂(β ̂a). In other words, we may let the augmented term involve β as well. As
shown by Tsiatis (2006, theorem 10.3) and others, this will not affect the asymptotic variance
theoretically. The reason behind this remarkable property is that the augmented term has a
conditional expectation zero, as we discussed before (15). However, it is more computationally
expensive to implement this new augmented estimating function.

4.2 Double Robustness Study
In a censoring data problem, an estimator is double robust (DR) if it remains consistent when
either the model for the censoring mechanism or a model for the complete data distribution is
correctly specified (see Robins and Rotnitzky (2001) for an existence theorem). For our
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problem, we wish to provide such “double protection” because the censoring distribution might
be wrongly modeled. In general, double robustness may result in certain efficiency lost;
however, the AIPCW estimator does not have this shortcoming. As argued in a series of studies
(e.g., Scharfstein, Rotnitzky, and Robins 1999; van der Laan and Robins 2003; Rotnitzky and
Robins 2005), the optimal AIPCW estimator provides both efficiency gain and double
robustness.

In the following, we consider the DR property of the optimal estimator derived in the last
subsection. The major mathematical tools can be found in van der Laan and Robins (2003,
chaps. 1 and 2) and Tsiatis (2006, section 10.3). Recall we have concluded that the efficient
influence function is obtained if we take e(t; Zi) = E[Di|Ti ≥ t, Zi] in (15). It can be easily
verified that in this case (15) simplifies to

(19)

For notational convenience we will now write Di as Di(Ti, Zi) to emphasize that Di depends
on Ti and Zi, but we suppress the subscript i for the rest of this section so there is no confusion.
Define

where F(t|Z) is the survival function of T given Z. Then (19) becomes

(20)

Equation (20) implies that the efficient influence function of the estimator depends on two
distribution functions, F(·|Z) and G(·), which, in practice, will both need to be modeled (in
contrast, the simple IPCW estimator only requires modeling G(·), which under independent
censoring assumption is the nonparametric Kaplan-Meier estimator). As in Rubin and van der
Laan (2006), where YF,G(X, Δ, Z) possesses the following double robustness property:

(21)

This means that we only need to model one of them correctly. That is, we get two chances of
obtaining a consistent estimator. This double robustness property implies that, in practice, a
minor misspecification of the model for G(·|Z) can be corrected by doing a good job in modeling
F(·|Z), and vice versa.

Writing D ̃i (β)as D ̃i(β;Ti, Zi) to emphasize that D ̃i also depends on Ti and Zi, the DR estimator
β ̂DR, which is also the efficient AIPCW estimator, can be given as the solution to UDR(β) =
0, where
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(22)

and F̂(t|Z) is an estimator of F(t|Z). This may seem like circular reasoning, because if we had
methods to estimate F(t|Z), we would not need to develop this whole theory in the first place.
The rationale here is that we can propose a simple working model for estimating F(t|Z). For
example, we may use a parametric model or a Cox model even if they are not correct. An
interesting fact is that we can even use model (5) for this purpose. That is, we try to obtain an
estimator of F(t|Z) under model (5) (note that this estimator cannot be based on the censoring
distribution assumption), plug it back to (22), and construct more efficient and robust
estimating equations. This way, the new estimator will be consistent and asymptotically normal
if either model (5) (or whatever models we may wish to posit as a working model for
approximating F(t|Z)) or the censoring mechanism assumption is correct.

5. SIMULATION STUDIES
In this section we report some results from simulation studies conducted to assess the
performance of the estimation procedures developed in Sections 2, 3, and 4 with the focus on
estimation of the scalar β0. For cases in which the censoring time C is independent of T and
Z, we let Z ~ Bernoulli{0, 1} with probability 0.5 and C follow a uniform distribution [0, V],
with V varying to yield desiring censoring percentages. For cases in which the censoring time
depends on the covariate Z, C is generated from the Cox model (8) with γ0 = 1 and λ0(t) being
various constants for generating different censoring percentages. In both cases, care is taken
to ensure the support of C is longer than the support of T for all Z. We considered several
transformation functions g, but for the purpose of comparison we will only report in this section
the results from g(t) = exp(t), which corresponds to the proportional mean residual life model
(3) and g(t) = t, which corresponds to the additive mean residual life model (4). Data analysis
results based on other choices of g can be found in Section 6. To generate T according to model
(5), the true β0 is chosen to be 0 or 0.5 and the baseline function m0(t) is taken from the Hall-
Wellner family—in other words, m0(t) = g−1{(D1t + D2)+}, where D1 > − 1, D2 > 0, and d+

denotes dI(d ≥ 0) for any quantity d. In our simulation, we consider two scenarios. One is that
D1 = − 0.5 and D2 = 0.5, which gives a uniform distribution [0, 1] when Z = 0. The other is
D1 = −1/3 and D2 = 1, which corresponds to the survival function F(t) = (1 − t/3)2, 0 ≤ t ≤ 3
when Z = 0 and mimics the exponential distribution resulting from the right skewness. When
Z = 0.5, one can use the formula

to compute the conditional survival function of T, where m(t|Z) follows model (5) and depends
on the choice of g.

Because it is difficult to evaluate the effect of the integrator H analytically, we compare
simulation results from different H with the focus on the variance of β ̂a and β ̂b. Notice that,
theoretically, any H that is increasing and converges almost surely to a deterministic function
—say, H ̃—should give an asymptotically unbiased point estimate of β0. Thus, the asymptotic
variance indicates the efficiency of the estimator. In our simulations, we compare three

different H functions: (1) , (2) H2 is a step function with jumps 1 at
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fixed time points (e.g., seven preselected time points), and (3) H3(t) = 0 if t < 0 and 1 otherwise.
Here, the first H takes into account all uncensored observations and assigns them equal weight.
The second one reduces computation needs and may avoid tail instability. The last H only has
a jump at t = 0 and may be used if one is only interested in knowing β0. All simulation studies
are based on 1,000 replications.

Table 1 shows the results from independent censoring. The censoring percentages are around
10% or 30% and the sample sizes are 100 or 200. It can be seen that the point estimates of β0
and their standard error estimates are very accurate. Besides, the 95% empirical coverage
probabilities based on normal approximation are reasonable. Table 2 shows similar results for
cases in which the censoring time depends on the covariate. For both cases, the baseline MRLF
with D1 = −0.5 and D2 = 0.5 mentioned earlier is used. Q-Q plots for the estimates indicate
that asymptotic normality is a good approximation (figures not shown). Therefore, we conclude
that the limiting distributions for the proposed estimators work quite well with moderate sample
sizes. We also considered other choices of the transformation function g and different
simulation setups, and obtained similar results.

In Table 3 we compare the performance of IPCW and two AIPCW estimators using H1(t).
Moreover, we program the quasi-partial score (QPS) estimators proposed in Chen and Cheng
(2005,2006) for the proportional mean residual life model and the additive mean residual life
model, respectively. To make our simulation results comparable with those of Chen and Cheng
(2005,2006), we mimic their simulation setup by letting the censoring be an independent
uniform random variable, covariate a Bernoulli random variable as before, and the baseline
T either uniform or right skewed as mentioned earlier. Because the validity of the IPCW and
QPS estimators have already been established earlier and in Chen and Cheng (2005,2006),
respectively, we only report their relative efficiency with respect to the AIPCW estimator
(AIPCW1, to be defined shortly). Here, by convention, the relative efficiency of an unbiased
estimator θ ̂1 with respect to another unbiased estimator θ ̂2 for the true parameter θ0 is defined
as var(θ ̂2)/var(θ ̂1), which in our simulations is approximated by their corresponding sample
estimates. In Table 3, the two AIPCW estimators are based on (22). That is, they are the efficient
and DR estimators. The difference between them is that one (denoted by AIPCW1 in Table 3)
uses the Kaplan-Meier estimator for calculating F̂(t|Z), which is applicable when the covariate
takes finitely many values. The other (denoted by AIPCW2 in Table 3) uses the estimate β ̂a,
m ̂a0(t), model (5), and the relationship between MRLF and the survival function described in
Section 1 for calculating F̂(t|Z). That is,

Note that this would be the choice when the covariate is continuous or takes too many values
compared with the sample size. It can be seen that both AIPCW estimators are quite accurate,
with AIPCW1 slightly more efficient. Moreover, the AIPCW estimators are more efficient
than the IPCW estimator as expected. The comparisons between our estimators and the QPS
estimators indicate that our estimators have greater efficiency in all scenarios.

6. APPLICATIONS
In this section, we apply the proposed methodology to two real-life datasets obtained from
clinical trials.
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6.1 Lung Cancer Study
The purpose of this clinical trial was to investigate the impact of the systematic combination
of chemotherapy with regular radiotherapy on survival and recurrence patterns in patients with
surgically resected lung cancer. In total, 172 patients were randomized between November
1979 and May 1985 with 86 in the radiotherapy (RT) group, 78 in the radio-therapy plus
chemotherapy (RT+CAP) group, and the remaining eight patients became ineligible for
statistical analysis. Both time to death and disease-free survival time are of interest in this study.
For the purpose of illustration, we consider only the disease-free survival time as the response
(T), which is subject to right censoring if the patient was alive and had never had a tumor
recurrence by the end of the study. In addition to the treatment factor, which is denoted by
Z1, we also consider another important histology factor, squamous versus non-squamous/
mixed cell type, and denote it by Z2. We define Z1 = 1 if the patient was in the RT+CAP group
and 0 otherwise, and Z2 = 1 if the patient had the squamous cell type and 0 otherwise. For a
detailed description and some preliminary statistical analysis results, see Lad, Rubinstein, and
Sadeghi (1988) and Piantadosi (2005).

To illustrate our method, we first apply the Cox regression model by using the censoring time
as the response and the two covariates mentioned earlier. It appears that the covariate effects
are not significant (both p-values > 0.50). However, we caution here that it is certainly possible
to apply other approaches to find better solutions for modeling the censoring mechanism.
Besides, it could be the case that the covariate effects (on censoring) are nonlinear or the
distributions are nonnormal so that the regression coefficients are zero but independence fails,
as pointed out by the editor. However, for purposes of illustration and for the time being, we
treat censoring as independent for simplicity. We then apply the proposed transformed mean
residual life model and estimate the regression parameter β0 (together with the baseline MRLF
g{m0(t)}) by using the estimating equations (6) and (7) with the integrator H1 and three different
choices of the transformation function g. It is seen (Table 4) that both covariates have a
significant impact on the mean residual life. Namely, with adjuvant chemotherapy, the
expected residual disease-free time is significantly longer. Also, patients in the nonsquamous/
mixed cell-type group tend to have longer expected residual disease-free time.

Notice that the magnitudes of the parameter estimates are quite different for various choices
of the link function g. This is because the parameters have different interpretations for different
g. For instance, if g(t) = t (i.e., model (5) reduces to the additive model (4)), then the parameter
estimate means that the adjuvant chemotherapy increases the expected residual disease-free
time by approximately 383 days when compared with radiotherapy alone. On the other hand,
when g(t) = exp(t), which yields model (3), the parameter estimate should be interpreted as the
ratio of the mean residual function between the two groups. In other words, the adjuvant
chemotherapy doubles (e0.726 ≈ 2) the mean residual disease-free time when compared with
radiotherapy alone. Also using the proportional mean residual life model and their estimation
approach, Chen et al. (2005) obtained similar results.

An interesting phenomenon is that if we use the Cox proportional hazards model for this
problem we will get a different interpretation on the effect of cell type (although for the effect
of treatment, the interpretations are in the same direction). The Cox model indicates that both
treatment and cell type are significant covariates (p-values are 0.001 and 0.003, respectively),
but the coefficient for cell type is −0.570, which means patients in the nonsquamous/mixed
cell-type group have a higher risk. A closer examination of the data reveals the reason. The
largest uncensored observation (recurrence time) in the squamous group is only 1,388 days,
whereas the largest three uncensored observations in the nonsquamous/mixed group are 1,577,
2,375, and 2,566 days. In other words, the mean residual time for the nonsquamous/mixed
group is greatly inflated by these extremely large values. One can also see this from the fact
that the Cox proportional hazards model and most other survival regression models based on
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the hazard function essentially measure the instantaneous risk for failure, which might be
explained as a conditional probability, whereas the mean residual lifetime measures some
conditional average life span and thus can be heavily affected by extreme values. As is well
known, the Cox model parameter estimate is rank invariant, but that of the mean residual
lifetime model is not.

Theoretically, it has been pointed out (Shaked and Shantikhumar, 1993) that the ordering of
the MRLF is weaker than the ordering of the hazard function. Namely, if two MRLFs ma(t)
and mb(t) have the relationship that ma(t) ≥ mb(t) for all t, then their corresponding hazard
functions, denoted by λa(t) and λb(t), respectively, need not necessarily follow that λa(t) ≤
λb(t) for all t. The inverse, however, is always true. This implies that modeling the MRLF can
be an attractive alternative when the ordering assumption (for instance, the proportional
hazards assumption) on the hazard function is violated. For the lung cancer study considered
here, graphical partial residual diagnostics according to Grambsch and Therneau (1994)
suggest that the proportional hazards assumption is questionable for the covariate cell type as
a result of the quite obvious systematic pattern of the residuals.

6.2 Prostate Cancer Study
The interest of a recent study conducted at the Memorial Sloan-Kettering Cancer Center is to
examine the effect of the radiation therapy dose level and patient age on the PSA relapse time
(see the Introduction for the definition). Let Z1 denote the age of the patient before the initial
treatment, which ranges from 42 to 87 years continuously, and Z2 denote dose, which takes
two values: 1 = low dose (≤70.2 Gy) and 2 = high dose ((75.6 Gy, 81 Gy]) (these cutoffs are
suggested by experienced radiotherapists). In total, 191 patients underwent radiotherapy. These
patients were all classified as high risk based on their baseline PSA value, Gleason score, and
T-stage. They also all had adjuvant hormonal therapy. In this analysis, we first apply a Cox
model on the censoring time using age and dose level as covariates. It turns out that both are
significant and thus we have the situation discussed in Section 3 (i.e., the censoring mechanism
depends on covariates and needs to be modeled). Again, we emphasize here that a more
comprehensive study may be conducted to fine-tune the modeling approaches for the censoring
distribution. However, for the time being, we shall use the Cox model for such a purpose.
Implementing (10) and (11) gives us coefficient estimates of age and dose level of 14.60 and
127.47, respectively. The standard errors for these two point estimates, based on Theorem 2,
are 8.61 and 68.12. These results suggest that higher doses significantly elongate the residual
PSA relapse time, whereas age has only a marginal effect. An interesting issue is that older
patients tend to have longer relapse times, which is somewhat counterintuitive, but agrees with
a previous study using the Cox model for assessing hazards (Zelefsky et al. 2008). Note here
that, as discussed in the Introduction, we used the Box-Cox transformation for the link function
g with ρ = 0.5 because neither the additive nor the multiplicative modeling assumption sounds
natural for this clinical problem. However, one can certainly enjoy other choices of g, and thus
the flexibility of our approach, based on prior data information or physicians’ assertions if they
are available.

7. CONCLUDING REMARKS
In this article we proposed a class of transformation mean residual life models. This very
general class of models encompasses some previously established models. For example, the
proportional mean residual life model and the additive mean residual life model are special
cases of our model. IPCW-based generalized estimating equation approaches are used to
estimate the regression parameters of interest. We also considered efficiency and double
robustness properties of our estimators and suggested improved (AIPCW) estimators. Both
asymptotic theory and simulation studies show that the IPCW and the AIPCW estimators
perform well.
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Notice that, unlike some previously established methods, the proposed estimating equations
here have intuitive meanings. They essentially yield the weighted least-square-type estimators,
with the weight determined by the censoring probability. Therefore, although our approaches
are proposed for regression purposes, they can be very easily modified for one-sample
problems. Our approaches provide a nice platform for obtaining efficient estimators (without
censoring, our approaches naturally reduce to that of Bickel et al. (1993)), and our efficiency
and double robustness arguments also seem to be the first for the MRLF estimation problems
under right censoring.

As we saw in both theory and applications, understanding and modeling the censoring
mechanism is important for our approaches. Even though the double robustness property
provides us a certain amount of luxury of misspecifying the model of censorship, we should
make every effort to find a good approximation. In our numerical studies, when the censoring
time may depend on Z, the Cox proportional hazards model was used as the working model
for the censoring time. Of course, we can also choose some other semiparametric regression
models as the working model for censoring. For example, we may use the proportional mean
residual life model or the additive mean residual life model and obtain the estimators of the
censoring model parameters using the approach of Chen and Cheng (2005) or Chen and Cheng
(2006). Then the estimator of the censoring survival distribution G(t; Z) can be obtained using
the inversion formula as before. Thus, the unknown parameter in model (5) can be estimated
by using the procedures in Sections 3 and 4.

For the examples, various models with different choices of the link function g were considered.
It would be helpful to provide a method for selecting or comparing different link functions.
For a given link function, following Lin et al. (2000), we can use a residual-based procedure
for checking the adequacy of the model. If, on the other hand, we restrict the function g to the
Box-Cox transformation family but allow ρ to be estimated from the observed data, then it
would provide a way in model selection between the additive mean residual life model and
other alternatives. Let gρ(x) = [(x + 1)ρ − 1]/ρ. For parameter estimation, similar to (7) and (11),
we may use the following class of estimating equations for β0 and ρ:

under independent censoring and

under dependent censoring, where , Wi(t) is a known bounded function of t,
Zi, and Ci, and and are the solutions to (6) and (10) by replacing g with
gρ. The asymptotic properties of the estimators for β0 and ρ can be obtained along the lines of
this article, and will be reported elsewhere.

One important issue with the mean residual life model is the embedded model constraint. That
is, m(t) + t should be nondecreasing in t. Chen and Cheng (2005, 2006) discussed this constraint
for the proportional mean residual life model (3) and the additive mean residual life model (4).
For the class of transformed mean residual life model (5), however, m(t|Z) + t = g{m0(t) + β′
Z)} + t may not always satisfy this constraint for certain β unless m0(t) itself is nondecreasing.

Sun and Zhang Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The necessary condition for this constraint is that g{m0(t)} + t is nondecreasing. Further
research is needed to provide a necessary and sufficient condition for this constraint under
model (5) with a general transformation function g.

Another interesting issue is the effect of the integrator H, which essentially plays the role of a
weight function. Our simulation results seem to suggest that estimating the baseline function
m0(t) at all uncensored observations does not necessarily improve either the accuracy of the
point estimate or its efficiency. Here we refer interested readers to Lin, Wei, and Ying
(2001), where they also pointed out the difficulty of finding an optimal H analytically and thus
compared different H by simulation in dealing with point processes.
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APPENDIX: REGULARITY CONDITIONS
The proofs of asymptotic properties and double robustness are provided in the supplemental
technical report. Here, we only outline the regularity conditions.

(C1) H(t) converges almost surely to a nonrandom and bounded function H ̃(t) uniformly
in t ∈ [0, τ].

(C2) Z is bounded and G is continuous.

(C3) m0(t) is continuously differentiable on [0, τ].
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(C4) is nonsingular where z̄a(t) is
the limit of Z̄a(t; βo).

(C5) is nonsingular where z̄b(t) is the
limit of Z̄b(t; βo).

Sun and Zhang Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sun and Zhang Page 23

Ta
bl

e 
1

Si
m

ul
at

io
n 

re
su

lts
: I

PC
W

 e
st

im
at

or
, i

nd
ep

en
de

nt
 c

en
so

rin
g.

g(
t) 

= 
ex

p(
t)

H
1(

t)
H

2(
t)

H
3(

t)

β 0
n

C
%

β̂̄ a
SE

SE
E

C
P

β̂̄ a
SE

SE
E

C
P

β̂̄ a
SE

SE
E

C
P

0
10

0
10

−0
.0

06
0.

12
30

0.
12

00
0.

94
4

−0
.0

01
0.

11
62

0.
11

62
0.

95
3

−0
.0

01
0.

12
12

0.
12

26
0.

95
3

0
10

0
30

−0
.0

07
0.

16
11

0.
15

31
0.

93
4

−0
.0

04
0.

14
98

0.
14

80
0.

94
7

−0
.0

01
0.

15
57

0.
14

78
0.

93
7

0
20

0
10

−0
.0

05
0.

08
56

0.
08

43
0.

95
4

0.
00

1
0.

08
16

0.
08

20
0.

95
0

0.
00

5
0.

08
57

0.
08

67
0.

95
6

0
20

0
30

−0
.0

02
0.

11
15

0.
10

85
0.

94
5

0.
00

5
0.

10
82

0.
10

49
0.

94
1

−0
.0

00
0.

10
62

0.
10

40
0.

94
7

0.
5

10
0

10
0.

49
9

0.
09

19
0.

09
17

0.
95

1
0.

50
7

0.
09

20
0.

08
97

0.
94

3
0.

50
2

0.
09

62
0.

09
62

0.
95

4

0.
5

10
0

30
0.

50
2

0.
10

55
0.

10
60

0.
94

9
0.

50
7

0.
10

83
0.

10
43

0.
94

4
0.

50
5

0.
10

89
0.

10
81

0.
94

4

0.
5

20
0

10
0.

50
2

0.
06

41
0.

06
48

0.
95

1
0.

50
3

0.
06

43
0.

06
33

0.
95

1
0.

50
5

0.
06

86
0.

06
84

0.
95

3

0.
5

20
0

30
0.

50
1

0.
07

63
0.

07
55

0.
95

0
0.

50
3

0.
07

36
0.

07
36

0.
95

1
0.

50
3

0.
07

62
0.

07
60

0.
95

1

g(
t) 

= 
t

H
1(

t)
H

2(
t)

H
3(

t)

β 0
n

C
%

β̂̄ a
SE

SE
E

C
P

β̂̄ a
SE

SE
E

C
P

β̂̄ a
SE

SE
E

C
P

0
10

0
10

0.
00

2
0.

04
21

0.
04

07
0.

94
1

0.
00

2
0.

04
25

0.
04

18
0.

94
8

−0
.0

02
0.

06
05

0.
06

07
0.

94
8

0
10

0
30

−0
.0

02
0.

05
70

0.
05

38
0.

94
0

−0
.0

03
0.

05
52

0.
05

32
0.

94
1

0.
00

3
0.

07
36

0.
07

20
0.

94
1

0
20

0
10

0.
00

0
0.

02
91

0.
02

87
0.

94
3

−0
.0

01
0.

03
01

0.
02

84
0.

94
9

−0
.0

02
0.

04
25

0.
04

31
0.

95
1

0
20

0
30

0.
00

0
0.

03
98

0.
03

81
0.

94
0

0.
00

0
0.

03
88

0.
03

78
0.

94
3

−0
.0

01
0.

05
20

0.
05

14
0.

94
1

0.
5

10
0

10
0.

50
2

0.
07

48
0.

07
49

0.
95

0
0.

49
8

0.
07

73
0.

07
69

0.
94

1
0.

50
2

0.
09

51
0.

09
46

0.
93

9

0.
5

10
0

30
0.

49
0

0.
09

73
0.

09
08

0.
92

4
0.

48
9

0.
09

91
0.

09
24

0.
91

6
0.

48
6

0.
11

17
0.

10
81

0.
94

0

0.
5

20
0

10
0.

50
3

0.
05

32
0.

05
28

0.
94

9
0.

49
9

0.
05

37
0.

05
43

0.
94

3
0.

49
9

0.
06

74
0.

06
71

0.
95

1

0.
5

20
0

30
0.

49
8

0.
06

58
0.

06
46

0.
93

1
0.

49
5

0.
06

46
0.

06
57

0.
94

8
0.

49
9

0.
07

88
0.

07
70

0.
94

1

N
O

TE
: 

re
pr

es
en

ts
 th

e 
m

ea
n 

of
 th

e 
(1

,0
00

) p
oi

nt
 e

st
im

at
es

 o
f β

0.
 S

E 
re

pr
es

en
ts

 th
e 

sa
m

pl
e 

st
an

da
rd

 e
rr

or
 o

f t
he

 e
st

im
at

es
. S

EE
 re

pr
es

en
ts

 th
e 

m
ea

n 
of

 th
e 

st
an

da
rd

 e
rr

or
 o

f β
̂ a.

 C
P 

re
pr

es
en

ts
 th

e 
em

pi
ric

al
no

rm
al

 9
5%

 c
ov

er
ag

e 
pr

ob
ab

ili
ty

.

J Am Stat Assoc. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sun and Zhang Page 24

Ta
bl

e 
2

Si
m

ul
at

io
n 

re
su

lts
: I

PC
W

 e
st

im
at

or
, d

ep
en

de
nt

 c
en

so
rin

g.

g(
t) 

= 
ex

p(
t)

H
1(

t)
H

2(
t)

H
3(

t)

β 0
n

C
%

β̂̄ b
SE

SE
E

C
P

β̂̄ b
SE

SE
E

C
P

β̂̄ b
SE

SE
E

C
P

0
10

0
10

0.
00

9
0.

12
40

0.
12

03
0.

94
6

0.
00

8
0.

11
91

0.
11

72
0.

94
4

0.
01

6
0.

11
51

0.
12

27
0.

96
2

0
10

0
30

−0
.0

01
0.

15
32

0.
15

35
0.

94
9

0.
00

3
0.

15
70

0.
15

00
0.

93
2

0.
00

1
0.

14
46

0.
14

89
0.

95
3

0
20

0
10

0.
00

7
0.

08
36

0.
08

50
0.

95
0

0.
00

9
0.

08
21

0.
08

27
0.

94
7

0.
00

7
0.

08
55

0.
08

63
0.

95
3

0
20

0
30

0.
00

0
0.

10
76

0.
10

93
0.

94
7

0.
00

3
0.

10
46

0.
10

72
0.

94
3

0.
00

8
0.

09
57

0.
10

59
0.

96
9

0.
5

10
0

10
0.

50
5

0.
08

79
0.

08
90

0.
95

7
0.

50
5

0.
08

95
0.

08
65

0.
94

2
0.

50
2

0.
09

37
0.

09
38

0.
95

0

0.
5

10
0

30
0.

50
4

0.
09

70
0.

09
92

0.
95

5
0.

50
5

0.
10

77
0.

09
64

0.
94

1
0.

50
2

0.
09

94
0.

10
10

0.
95

3

0.
5

20
0

10
0.

50
4

0.
06

28
0.

06
32

0.
95

2
0.

50
7

0.
06

14
0.

06
17

0.
95

3
0.

50
5

0.
06

62
0.

06
69

0.
95

2

0.
5

20
0

30
0.

50
4

0.
07

10
0.

07
00

0.
94

8
0.

50
2

0.
06

68
0.

06
88

0.
96

0
0.

50
7

0.
07

05
0.

07
18

0.
95

7

g(
t) 

= 
t

H
1(

t)
H

2(
t)

H
3(

t)

β 0
n

C
%

β̂̄ b
SE

SE
E

C
P

β̂̄ b
SE

SE
E

C
P

β̂̄ b
SE

SE
E

C
P

0
10

0
10

0.
00

3
0.

04
22

0.
04

12
0.

94
6

0.
00

3
0.

04
12

0.
04

08
0.

94
7

0.
00

6
0.

06
09

0.
06

15
0.

94
3

0
10

0
30

0.
00

2
0.

05
55

0.
05

51
0.

94
7

0.
00

0
0.

05
22

0.
05

29
0.

95
2

−0
.0

07
0.

07
37

0.
07

44
0.

94
9

0
20

0
10

0.
00

1
0.

02
83

0.
02

90
0.

95
6

−0
.0

02
0.

02
87

0.
02

88
0.

94
8

0.
00

4
0.

04
40

0.
04

35
0.

94
8

0
20

0
30

−0
.0

01
0.

03
80

0.
03

93
0.

95
9

0.
00

4
0.

03
75

0.
03

77
0.

95
2

0.
00

2
0.

05
23

0.
05

32
0.

95
2

0.
5

10
0

10
0.

52
5

0.
09

09
0.

08
04

0.
91

4
0.

51
9

0.
10

15
0.

08
31

0.
92

4
0.

53
9

0.
11

87
0.

10
11

0.
90

3

0.
5

10
0

30
0.

51
8

0.
11

93
0.

11
48

0.
92

8
0.

49
4

0.
13

99
0.

11
47

0.
91

2
0.

52
0

0.
14

56
0.

13
61

0.
92

5

0.
5

20
0

10
0.

51
7

0.
05

93
0.

05
66

0.
93

5
0.

51
7

0.
06

18
0.

05
96

0.
93

9
0.

52
4

0.
07

56
0.

07
18

0.
92

8

0.
5

20
0

30
0.

51
6

0.
07

93
0.

08
32

0.
95

0
0.

51
0

0.
09

06
0.

08
84

0.
95

0
0.

51
7

0.
09

52
0.

10
00

0.
95

5

N
O

TE
: 

re
pr

es
en

ts
 th

e 
m

ea
n 

of
 th

e 
(1

,0
00

) p
oi

nt
 e

st
im

at
es

 o
f β

0.
 S

E 
re

pr
es

en
ts

 th
e 

sa
m

pl
e 

st
an

da
rd

 e
rr

or
 o

f t
he

 e
st

im
at

es
. S

EE
 re

pr
es

en
ts

 th
e 

m
ea

n 
of

 th
e 

st
an

da
rd

 e
rr

or
 o

f β
̂ b.

 C
P 

re
pr

es
en

ts
 th

e 
em

pi
ric

al
no

rm
al

 9
5%

 c
ov

er
ag

e 
pr

ob
ab

ili
ty

.

J Am Stat Assoc. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sun and Zhang Page 25

Ta
bl

e 
3

Si
m

ul
at

io
n 

re
su

lts
: c

om
pa

ris
on

 o
f I

PC
W

, A
IP

C
W

, a
nd

 Q
PS

 e
st

im
at

or
s.

g(
t) 

= 
ex

p(
t)

B
as

el
in

e 
H

W
 (D

1 =
 −

0.
5,

 D
2 =

 0
.5

)
B

as
el

in
e 

H
W

 (D
1 =

 −
1/

3,
 D

2 =
 1

)

A
IP

C
W

1
A

IP
C

W
2

IP
C

W
Q

PS
1

A
IP

C
W

1
A

IP
C

W
2

IP
C

W
Q

PS
1

β 0
n

C
%

β̂̄ 1
β̂̄ 2

R
E

R
E

R
E

β̂̄ 1
β̂̄ 2

R
E

R
E

R
E

0
10

0
10

−0
.0

04
−0

.0
07

1.
01

0.
95

0.
62

−0
.0

13
−0

.0
18

0.
99

0.
92

0.
79

0
10

0
30

−0
.0

13
−0

.0
30

0.
76

0.
76

0.
47

−0
.0

30
−0

.0
49

0.
88

0.
67

0.
66

0
20

0
10

−0
.0

04
−0

.0
06

1.
00

0.
94

0.
56

−0
.0

08
−0

.0
11

1.
00

0.
90

0.
82

0
20

0
30

−0
.0

09
−0

.0
17

0.
92

0.
76

0.
45

−0
.0

18
−0

.0
31

0.
84

0.
67

0.
61

0.
5

10
0

10
0.

50
1

0.
50

0
0.

99
0.

98
0.

51
0.

49
9

0.
49

6
0.

97
0.

95
0.

63

0.
5

10
0

30
0.

50
8

0.
50

6
0.

97
0.

93
0.

32
0.

49
3

0.
48

4
0.

95
0.

81
0.

53

0.
5

20
0

10
0.

50
0

0.
50

0
1.

00
0.

98
0.

48
0.

50
1

0.
50

0
0.

99
0.

96
0.

64

0.
5

20
0

30
0.

50
4

0.
50

3
1.

00
0.

92
0.

32
0.

50
0

0.
49

6
0.

97
0.

80
0.

50

g(
t) 

= 
t

B
as

el
in

e 
H

W
 (D

1 =
 −

 0
.5

, D
2 =

 0
.5

)
B

as
el

in
e 

H
W

 (D
1 =

 −
 1

/3
, D

2 =
 1

)

A
IP

C
W

1
A

IP
C

W
2

IP
C

W
Q

PS
2

A
IP

C
W

1
A

IP
C

W
2

IP
C

W
Q

PS
2

β 0
n

C
%

β̂̄ 1
β̂̄ 2

R
E

R
E

R
E

β̂̄ 1
β̂̄ 2

R
E

R
E

R
E

0
10

0
10

−0
.0

03
−0

.0
04

0.
99

0.
96

0.
42

−0
.0

13
−0

.0
18

0.
98

0.
91

0.
69

0
10

0
30

−0
.0

04
−0

.0
10

0.
91

0.
74

0.
44

−0
.0

15
−0

.0
33

0.
84

0.
73

0.
86

0
20

0
10

−0
.0

02
−0

.0
03

1.
00

0.
96

0.
36

−0
.0

11
−0

.0
14

0.
99

0.
90

0.
77

0
20

0
30

−0
.0

04
−0

.0
07

0.
96

0.
82

0.
39

−0
.0

12
−0

.0
25

0.
61

0.
68

0.
81

0.
5

10
0

10
0.

50
2

0.
50

1
1.

00
1.

00
0.

53
0.

51
1

0.
50

8
1.

00
0.

95
0.

62

0.
5

10
0

30
0.

49
1

0.
49

1
0.

99
0.

94
0.

50
0.

52
2

0.
51

1
0.

91
0.

86
0.

62

0.
5

20
0

10
0.

49
8

0.
49

8
1.

00
0.

99
0.

56
0.

51
8

0.
51

7
1.

00
0.

95
0.

65

J Am Stat Assoc. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sun and Zhang Page 26

g(
t) 

= 
ex

p(
t)

B
as

el
in

e 
H

W
 (D

1 =
 −

0.
5,

 D
2 =

 0
.5

)
B

as
el

in
e 

H
W

 (D
1 =

 −
1/

3,
 D

2 =
 1

)

A
IP

C
W

1
A

IP
C

W
2

IP
C

W
Q

PS
1

A
IP

C
W

1
A

IP
C

W
2

IP
C

W
Q

PS
1

β 0
n

C
%

β̂̄ 1
β̂̄ 2

R
E

R
E

R
E

β̂̄ 1
β̂̄ 2

R
E

R
E

R
E

0.
5

20
0

30
0.

49
5

0.
49

5
0.

99
0.

96
0.

54
0.

52
6

0.
52

2
0.

97
0.

82
0.

63

N
O

TE
: A

IP
C

W
1 

an
d 

A
IP

C
W

2 
ar

e 
bo

th
 b

as
ed

 o
n 

(2
2)

, b
ut

 w
ith

 F̂
(t|

Z
) e

st
im

at
ed

 b
y 

K
ap

la
n-

M
ei

er
 a

nd
 b

y 
as

su
m

in
g 

m
od

el
 (5

), 
re

sp
ec

tiv
el

y.
 IP

C
W

 is
 e

qu
iv

al
en

t t
o 
β̂ a

 (i
.e

., 
th

e 
so

lu
tio

n 
of

 (7
))

. Q
PS

1 
an

d 
Q

PS
2

ar
e 

th
e 

qu
as

i-p
ar

tia
l l

ik
el

ih
oo

d 
es

tim
at

or
s i

n 
C

he
n 

an
d 

C
he

ng
 (2

00
5)

 a
nd

 C
he

n 
an

d 
C

he
ng

 (2
00

6)
, r

es
pe

ct
iv

el
y.

 R
E,

 re
la

tiv
e 

ef
fic

ie
nc

y 
of

 th
e 

es
tim

at
or

 w
ith

 re
sp

ec
t t

o 
A

IP
C

W
1.

J Am Stat Assoc. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sun and Zhang Page 27

Table 4

Regression parameter estimates with standard errors for the lung cancer clinical trial data.

Regression parameter estimates

Treatment (Z1) Cell type (Z2)

Model β ̂1 SE β ̂2 SE

Transformed mean residual life model:
g(t) = exp(t)

0.726 0.278 −0.524 0.257

Transformed mean residual life model:
g(t) = t

383.220 180.169 −275.804 160.738

Transformed mean residual life model:
g(t) = ((t + 1)2 − 1)/2

11.768 4.892 −8.602 4.592

NOTE: g(t) = exp(t) corresponds to the proportional mean residual life model, g(t) = t corresponds to the additive mean residual life model, and g(t)

= ((t + 1)2 − 1)/2 corresponds to the Box-Cox transformed mean residual life model. SE, standard error estimate.
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