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Abstract
Overadjustment is defined inconsistently. This term is meant to describe control (eg, by regression
adjustment, stratification, or restriction) for a variable that either increases net bias or decreases
precision without affecting bias. We define overadjustment bias as control for an intermediate
variable (or a descending proxy for an intermediate variable) on a causal path from exposure to
outcome. We define unnecessary adjustment as control for a variable that does not affect bias of the
causal relation between exposure and outcome but may affect its precision. We use causal diagrams
and an empirical example (the effect of maternal smoking on neonatal mortality) to illustrate and
clarify the definition of overadjustment bias, and to distinguish overadjustment bias from unnecessary
adjustment. Using simulations, we quantify the amount of bias associated with overadjustment.
Moreover, we show that this bias is based on a different causal structure from confounding or
selection biases. Overadjustment bias is not a finite sample bias, while inefficiencies due to control
for unnecessary variables are a function of sample size.

Epidemiologists often attempt to estimate the total (ie, direct and indirect) causal effect of an
exposure (compared with a reference level) on an outcome of interest. Although
confounding1 and selection biases2,3 have been discussed extensively in the epidemiologic
literature, the concept of “overadjustment” has had relatively little attention. The definition of
overadjustment remains vague and the causal structure of this concept has not been well
described.

The Dictionary of Epidemiology4 cites a seminal paper by Breslow5 in broadly defining
overadjustment as “Statistical adjustment by an excessive number of variables or parameters,
uninformed by substantive knowledge (eg, lacking coherence with biologic, clinical,
epidemiological, or social knowledge). It can obscure a true effect or create an apparent effect
when none exists.” Rothman and Greenland6 discuss overadjustment in the context of
intermediate variables: “Intermediate variables, if controlled in an analysis, would usually bias
results towards the null.…. Such control of an intermediate may be viewed as a form of
overadjustment.” One also finds reference to the term overadjustment in settings with
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unnecessary control for variables.7 In summary, overadjustment sometimes means control (eg,
by regression adjustment, stratification, restriction) for a variable that (a) increases rather than
decreases net bias or (b) affects precision without affecting bias.

In an attempt to clarify these concepts, we use causal diagrams to define overadjustment bias
and to distinguish overadjustment bias from confounding, selection bias, and unnecessary
adjustment. Furthermore, we define unnecessary adjustment as control for a variable that does
not affect bias but does affect precision. We illustrate these concepts with an example
estimating the total effect of maternal smoking on neonatal mortality, and simulations to
describe finite sample behavior.

CAUSAL DIAGRAMS
Ad-hoc causal diagrams have been used to encode investigators’ knowledge about systems of
variables in epidemiology and biologic sciences for decades (eg,5,8). Pearl9 formalized causal
diagrams as directed acyclic graphs (DAGs), providing investigators with powerful tools for
bias assessment. A set of rules for causal diagrams are succinctly described by Greenland et
al10 and in the appendix of Hernan et al.11 Briefly, causal diagrams link variables by single-
headed (ie, directed) arrows that represent direct causal effects. To represent chains of causation
in time, Pearl’s formalization of causal diagrams does not allow a directed path9 (ie, a trail of
arrows) to point back to a prior variable (ie, the diagrams are acyclic). For a diagram to represent
a causal system, all shared causes of any pair of variables included on the graph must also be
included on the graph. The absence of an arrow between 2 variables is a strong claim of no
direct effect of the former variable on the latter. We denote control (eg, regression adjustment,
stratification, restriction) by placing a box around the controlled variable.

Causal Diagrams for Overadjustment Bias
We define overadjustment bias as control for an intermediate variable (or a descending proxy
for an intermediate variable) on a causal path from exposure to outcome. DAG 1 provides a
causal diagram representing the simplest case of overadjustment bias. For example, Bodnar et
al12 evaluated the mediating role of triglycerides (M in our notation) in the association between
prepregnancy body mass index (E in our notation) and preeclampsia (D in our notation), which
is consistent with this causal diagram.

(1)

In this scenario, one can consistently estimate the total causal effect of exposure E on outcome
D using common regression techniques by ignoring the intermediate variable M. However, if
one controls (ie, adjusts, stratifies, restricts) for the intermediate variable M, which is on a
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causal pathway between exposure and outcome, the total causal effect of the exposure on the
outcome cannot be consistently estimated. Yet, as Cole and Hernán et al11 and others have
noted, such adjustment can provide correct estimates of the controlled direct causal effect with
added assumptions.13–16 With control for M, the observed association between the exposure
E and outcome D will typically be a null-biased estimate of the total causal effect. In cases
where the only causal path between exposure E and outcome D is that path mediated through
M (ie, no direct effect of E on D, which requires a perturbation of DAG 1), the observed
association between exposure E and outcome D will typically be null in expectation,
conditional on the intermediate M.

DAG 2 provides a second causal diagram representing perhaps a more common case of
overadjustment bias. This diagram encodes the assumption that exposure E and unmeasured
intermediate U both affect the outcomes D and M. Weinberg17 described this case in her
example of adjusting for prior history of spontaneous abortion (M). An underlying abnormality
in the endometrium (U) is the unmeasured intermediate caused by smoking (E), and is a cause
of prior (M) and current (D) spontaneous abortion.

(2)

Note that in DAG 2 the measured variable M is a “descending” proxy for the intermediate
variable U, which itself is typically unmeasured; one can think of M as a mismeasured version
of U under a classic measurement error model, or as an event caused by U. One can again
consistently estimate the total causal effect of exposure E on outcome D using common
regression techniques by ignoring M, the imperfect proxy for the unmeasured intermediate
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variable U. However, if one controls (ie, adjusts, stratifies, restricts) for the variable M in DAG
2, which is a proxy for variable U (on a causal pathway between exposure E and outcome D)
the total causal effect of the exposure on the outcome again cannot be consistently estimated.
In such cases, one could place a half-box about U to imply the partial adjustment for the
unmeasured U that occurs with adjustment for the measured M.

In the cases described by DAG 2, the observed association between the exposure E and outcome
D will typically be biased toward the null with respect to the total causal effect. But in such
cases, the null-bias will be attenuated compared with DAG 1. Even in the (extreme) case where
the only causal path between exposure E and outcome D is mediated through the unmeasured
proxy U (ie, no direct effect of E on D, a perturbation of DAG 2), the observed association
between exposure and outcome will not be completely negated in expectation. Intuitively, one
can see that adjustment for M, where M is an imperfect measure of U, leaves a partially open
pathway from E through U to D. Because mismeasurement of exposures is ubiquitous in
general18,19 and with pathway markers in particular, it has become popular practice to try to
adjust for a proxy variable of the unmeasured intermediate variable in an attempt to decompose
the effect measure into direct and indirect components. Investigators employing such
approaches should be wary of the inability of proxies to completely close pathways for which
they proxy.11

Figure 1 quantifies the overadjustment bias (ie, bias in the total effect estimate) under general
linear models assumptions (ie, the direction of the bias will be the same under generalized
linear models assumptions but the magnitude may differ depending on the link function), where
we define (assuming no direct effect of E on D):

(1)

where U is an unmeasured intermediate effect, M is the measured descending proxy of the
unmeasured intermediate variable (U), E is the exposure of interest, and D is the outcome of
interest.

Estimating the unknown parameters in (1) is equivalent to estimating:

However, if one adjusts for M in estimating the effect of E, one would obtain approximately:

(2)

Therefore, the bias arising from using model (2) to estimate the total effect of E on D is

. One can see in Figure 1 that the bias is a linear function of βD, βU, and a
quadratic function of βM. In the case of joint continuously distributed variables, the bias for
the total causal effect of exposure E on disease D, conditioning on the measured proxy M, is
simply the difference in the partial Pearson correlation between exposure E and disease D,
controlling for M, and the simple Pearson correlation between exposure E and disease D.
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DAG 3 is a duplicate of DAG 2, except that the proxy variable M for unmeasured U is now an
“ascending” rather than a “descending” proxy.

(3)

In DAG 3, adjustment for M will not block the path from exposure E to outcome D, even
partially. This is because holding M constant does not alter the effect of exposure E on outcome
D through intermediate U. Therefore, ascending proxies should not be used as markers of
pathways when attempting to decompose total causal effects. DAG 3 could depict an alternate
conception of the study of the mediating effect of triglycerides20; here M would represent some
other cause of change in triglycerides, such as dietary or lifestyle factors. There is a lack of
bias under general or generalized linear models assumptions, where we defined (assuming no
direct effect of E on D):

(3)

In the M-adjusted model evaluating the effects of E on D, we would estimate:

and in the crude model, we would estimate:

Therefore, the bias of using the M adjusted model to estimate the effect of E on D is given by
. Bias is absent regardless of the magnitude of βUM. One

may note the similarity of DAG 3 to standard representations of instrumental variables.21,22
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Indeed, in DAG 3, M is an instrument for the effect of intermediate U on outcome D. However,
our focus here is the effect of exposure E on outcome D.

DAG 4 is a generalization of DAG 2. This illustrates a general problem with the control of
variables affected by exposure,13,16 such as U or M.

(4)

Adjusting for a descending proxy M of an unmeasured intermediate variable U (or U itself, if
it were measured), is susceptible to collider-stratification bias.23 In this instance, the
unmeasured common cause V of the proxy variable M and the outcome variable D causes
additional bias in the association between exposure E and outcome D within levels of M. DAG
4 is one of 10 possible cases extending DAG 2 to allow unmeasured common causes of any
pair or triad of variables on DAG 2.

Unnecessary Adjustment
We define unnecessary adjustment as occurring when controlling for a variable whose control
does not affect the expectation of the estimate of the total causal effect between exposure and
outcome. Unnecessary adjustment occurs in 4 primary cases represented in DAG 5, namely:
(a) adjusting for a variable completely outside the system of interest (C1), (b) adjusting for a
variable that causes the exposure only (C2), (c) adjusting for a variable whose only causal
association with variables of interest is as a descendent of the exposure and not in the causal
pathway (C3), and (d) adjusting for a variable whose only causal association with variables of
interest is as a cause of the outcome (C4). The result of adjustment for such variables is that
the total causal effect of exposure on outcome remains unchanged (in expectation). We denote
these cases as “bias-neutral adjustment.” However, there may be precision gain or loss which
depends on the relationship between the exposures of interest (E), the unnecessary adjustment
variable (C1–C4), the outcome of interest and the given sample size. Adjustment for these types
of variables could harm rather than improve one’s estimate in terms of the combination of bias
and variance.

We performed a simulation study with the goal of estimating the total effect between the
exposure variable E and the outcome variable D and adjusted for 5 factors including adjusting
for a variable whose only causal association with variables of interest is as a descendent of the
outcome (C5), to evaluate this trade-off in the linear setting. The causal relation among these
7 factors is depicted in DAG 5. For simplicity, we assumed that C1, C2, and C4 follow standard
normal distributions. E is also assumed to be normally distributed, with a mean 10 and a
standard deviation of 1. Moreover, we assume that all the relationships in this system are linear,
and we set the coefficients for all these associations at 0.5.
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(5)

We set C1–C5 to appear in the linear models one at a time, corresponding to lines C1–C5 in
Figure 2. Sample size varies according to the x axis. We vary the sample size of the study from
100 to 100,000 by orders of magnitude. For each sample size, 1000 iterations were implemented
and the Monte Carlo mean and variance were estimated.

Figure 2 depicts the relative bias and variance of total effect estimates after adjusting for
unnecessary variables (C1–C4). The relative bias is null for both large and small samples (Fig.
2A, C). We observed a small reduction in variance (gain in efficiency) in the specific simulated
situation described here for the estimated total effect depicted in Figure 2B and D when
estimating the total effect when adjusting for C1–C4.

The pursuit of unbiased effect estimates is the primary concern when evaluating the presence
or absence of overadjustment bias. On the other hand, in the case of unnecessary adjustment
effect estimates are unbiased, and the focus turns then to the effect of adjustment on precision.
These scenarios have been studied extensively in the literature, especially the case of C4. As
noted above, the gain or loss of efficiency is based on the type of model (linear or nonlinear).
In the linear setting (shown above), the inclusion of extraneous determinants of the outcome
(a predictor, but not a confounder of the outcome) will result in gains in efficiency for the
estimation of the association of interest. In particular, a strong association of C4 with outcome
(D) improves precision, whereas in the confounding case (not shown here) a strong association
of C4 with exposure (E) alone may have a detrimental effect. This is caused by a reduction in
the residual sums of squares after the extraneous variable is accounted for.

Robinson and Jewell showed no similar practical gain in nonlinear settings, and one must pay
for the inclusion of the extraneous determinant with (at least) 1 degree of freedom.24

Specifically, in the logistic model, associations of both exposure and outcome with C4 have
detrimental effects on precision for logistic regression estimators of the total effect. Thus,
although adjustment for predictive covariates in classic linear regression can result in either
increased or decreased precision, adjustment by logistic regression will result in a loss of
precision.

In addition, when the measure of association is noncollapsible (eg, odds,25 incidence density,
26 or hazard ratios6), adjusted analyses of C4 may provide different results compared with crude
analyses and thus confuse interpretation, because the conditional and marginal causal effects
may differ in nonlinear models due to noncollapsibility. Robinson and Jewell24 discussed this
topic in detail. They demonstrated that the asymptotic relative precision of β* to β̂ is less than
or equal to 1, where β* (estimator of the total effect) is the estimator of the β coefficient from
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a crude logistic regression and β̂ is the analogous estimator from a model adjusting for a
determinant of outcome that is unassociated with exposure. Therefore, in this case the standard
error for the crude association is smaller than or equal to the adjusted. However, the adjusted
point estimate (an estimate of the covariate-conditional effect) will be larger than or equal to
the crude (an estimate of the marginal effect) and biased (very slightly if the disease is rare).
The relatively small decrease in the standard error with adjustment is typically outweighed by
the relatively large increase in the point estimate with adjustment. Thus, statistical power to
test β = 0 using the adjusted estimand is increased, but it is for a different estimand (ie, the
covariate-conditional effect rather than the marginal effect).

In the linear model, and as depicted in Figure 2, bias is introduced in C5 when the association
between the outcome and the extraneous variable is strong relative to the error in the extraneous
variable; adjustment in this case is unwarranted and in extreme cases can cause large bias and
loss of precision. Furthermore, this scenario is especially susceptible to collider stratification
by an unmeasured variable.27

Example: The Effect of Maternal Smoking and Neonatal Mortality—As an example
to illustrate overadjustment bias, we examine the often-studied relation between birth weight
and neonatal mortality. Investigators have speculated for decades on possible causes of
neonatal mortality, and have consistently demonstrated that birth weight is a strong predictor
of neonatal and infant mortality.28,29 When assessing the effect of possible risk factors for
neonatal and infant mortality (eg, maternal smoking,28 multiple pregnancies,30 placenta
previa31), birth weight stratification or adjustment is frequently undertaken. We follow the
premises for a causal diagram as proposed by Basso et al.32 They demonstrated that it is
plausible for the observed association between birth weight and neonatal mortality to be due
to an unmeasured confounder. Under this conjecture, adjustment for birth weight in the study
of neonatal mortality would represent overadjustment.

We identified all infants born alive in the United States in 1999–2001 (n = 11,597,620) through
the national linked birth/infant death data sets assembled by the National Center for Health
Statistics.33 These records contain information on dates and causes of death, birth weight,
maternal smoking, and other medical and sociodemographic characteristics systematically
recorded on the US birth certificates. Neonatal mortality rates (denoted by the variable D in
the causal diagram) were defined as the number of deaths within the first 28 days of life per
100,000 live births. Maternal smoking (denoted by the variable E in the causal diagram) was
defined by self-report of prepregnancy smoking. Unmeasured fetal development during
pregnancy is denoted by the variable U in the causal diagram. Birth weight can be thought of
as a descending proxy for the unmeasured fetal development measured with error (denoted by
the variable M in the causal diagrams). Following Basso et al,28 we assume that the relation
between birth weight and infant mortality is due to unmeasured confounding by a condition
such as malformation, fetal or placental aneuploidy, infection, or imprinting disorder (denoted
by the variable V in DAG 6).
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(6)

E = Prepregnancy maternal smoking

D = Neonatal mortality

U = Unmeasured fetal development during pregnancy

V = Unmeasured confounder, such as imprinting disorder

M = Birth weight

Our analysis excluded data from California (due to lack of smoking information), as well as
data from infants with missing information on birth weight or maternal smoking, resulting in
10,035,444 live births. We used risk ratios and differences to quantify the association between
maternal smoking and neonatal mortality, and 95% confidence intervals (CIs) to quantify
precision.

The neonatal mortality rate was 219 per 100,000 live births, and 12% of mothers reported
smoking. The unadjusted risk ratio for the association between maternal smoking and neonatal
mortality was 2.49 (95% CI = 2.41–2.56). Adjustment for birth weight (M in the graph) by
stratification attenuated the risk ratio to 2.03 (1.97–2.09). Therefore, control (ie, adjustment)
for birth weight resulted in a risk ratio 18% smaller (1–2.03/2.49) than the unadjusted risk ratio.

The unadjusted risk difference for the association between maternal smoking and neonatal
mortality was 274 per 100,000 (95% CI = 262–287). Adjustment for birth weight by
stratification attenuated the risk difference to 228 per 100,000 (216–247). Therefore, control
(ie, adjustment) for low birth weight resulted in a risk difference 17% smaller (1–228/274) than
the unadjusted risk difference. This difference in the measure of association is likely due to the
fact that smoking causes changes in U (changes in fetal growth), which affect birth weight and
neonatal mortality separately. Using empirical methods for confounding adjustment, the
differences between the estimated crude and adjusted risk ratios and differences from this data
support the premise of adjusting for birth-weight when looking at the total causal effect of
smoking on neonatal mortality. However, the data and prior knowledge are consistent with the
change in estimate being due to overadjustment bias; and therefore adjustment may be unwise.
Instead, clearly stating a causal question to be addressed, depicting the possible data generating
mechanisms using causal diagrams, and measuring indicated confounders (or conducting a
sensitivity analysis) are paramount for such cases.

One situation that is prone to create confusion is based on the fact that the adjusted model in
this case for birth weight would not be considered overadjustment bias when estimating indirect
and direct effects. Such conjectures beg redrawing of DAG 6 to allow a direct causal effect
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form birth weight to neonatal mortality. In summary, the data alone do not identify causal
relationships.

CONCLUSION
The term overadjustment is sometimes used to describe control (eg, regression adjustment,
stratification, restriction) for a variable that increases rather than decreases net bias, or that
decreases precision without affecting bias. In many situations adjustment can increase bias;
this may be, for example, due to a reduction in the total causal effect by controlling for an
intermediate variable or due to an induction of associations by collider-stratification3,23 (ie,
selection bias arising due to conditioning on a shared effect). In the second case (which we
term unnecessary adjustment), noncollapsibility1 of an effect estimate may cause a difference
between the uncontrolled and controlled effect estimates, even though no systematic error is
present. Moreover, adjusting for surrogates (proxies) of intermediate variables, either
ascending or descending, when the desired intermediate variable itself is unmeasured, can have
different effects on measures of association depending on the nature of the proxy.

For estimation of total causal effects, it is not only unnecessary but likely harmful to adjust for
a variable on a causal path from exposure to disease, or for a descending proxy of a variable
on a causal path from exposure to disease. As previously discussed,13,34 estimation of direct
effects of exposures (such as maternal smoking) on outcomes (such as infant mortality) by
controlling for an intermediate variable (such as low birth weight) are not valid when there are
unmeasured shared causes of low birth weight and infant mortality. Such estimates are
vulnerable to collider-stratification bias or exposure interactions with the intermediate variable.
14

Overadjustment bias is not induced by effect decomposition per se when the proper statistical
methods are applied. Robins and Greenland,16 and Joffe et al35 provided the conditions by
which the estimation of the direct and indirect effects can be separated, and the proper
derivation to do so nonparametrically. Overadjustment bias is induced in the estimation of the
total effect by adjusting for an intermediate variable or a descendent of the unmeasured
intermediate variable. In this paper, we focused on the estimation of the total causal effect,
however, overadjustment bias or unnecessary adjustment may also occur while attempting to
decompose the effects; the principles described in this paper are still valid. Here, we have
attempted to clarify the concept of overadjustment bias and to separate overadjustment bias
from the concept of unnecessary adjustment using DAGs. The nonparametric nature of causal
diagrams is their strength and at the same time their pitfall, in that they provide an easy way
to identify the source of bias but not the magnitude. After describing the overadjustment causal
structure and demonstrating the source of bias, we made linear assumptions to quantify the
bias. Our simulation study was not comprehensive to evaluate the effects on efficiency, in that
it did not cover all scenarios of effect size, type of outcome and type of mode. This has been
extensively studied by others.24 We demonstrated that, even in the linear case, the
overadjustment bias is structural and not negligible, and therefore overadjustment is
unwarranted (even when by a descending proxy). On the other hand, when estimating total
effects, sometimes one can improve (or harm) efficiency without affecting bias by adjusting
for variables we defined as unnecessary, or by increasing the study sample size. As an
alternative, in these cases one might refer to it as “bias-neutral adjustment.”

In conclusion, when estimating the total effect, we define overadjustment bias as control for
an intermediate variable (or a descending proxy for an intermediate variable, but not an
ascending proxy) on a causal path from exposure to outcome. We define unnecessary
adjustment as any adjustment for variables that does not alter the expectation of the average
causal effect of interest but may affect precision. Moreover, overadjustment is a type of bias
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that is based on a different structure from confounding or selection biases and is not removable
in an infinite sample, while inefficiencies due to control for unnecessary variables are a function
of sample size.

An important point is that ascending proxies of unmeasured intermediate variables are of little
use in decomposing total causal effects into direct and indirect components. The present work
reinforces the notion that one is fairly well-protected from particular analytic pitfalls if one
follows the mantra not to control for factors affected by exposure.

For analytical proof of the results presented in this paper in the linear case see the Online
Appendix (http://links.lww.com/A1099).
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FIGURE 1.
Bias estimating the total effect of exposure of interest E on the outcome D as a function of the
direct effect of the unmeasured intermediate (U) variable (βD) on the outcome D and the direct
effect of the unmeasured intermediate (U) variable on another independent descendent (M) of
U denoted by βM.
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FIGURE 2.
Large and small sample size properties on Monte Carlo relative bias and variance of total effect
estimates after adjusting for unnecessary variables.

Schisterman et al. Page 14

Epidemiology. Author manuscript; available in PMC 2009 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


