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Abstract
The paralyzed musculoskeletal system retains a remarkable degree of plasticity after spinal cord
injury (SCI). In response to reduced activity, muscle atrophies and shifts toward a fast-fatigable
phenotype arising from numerous changes in histochemistry and metabolic enzymes. The loss of
routine gravitational and muscular loads removes a critical stimulus for maintenance of bone mineral
density (BMD), precipitating neurogenic osteoporosis in paralyzed limbs. The primary adaptations
of bone to reduced use are demineralization of epiphyses and thinning of the diaphyseal cortical wall.
Electrical stimulation of paralyzed muscle markedly reduces deleterious post-SCI adaptations.
Recent studies demonstrate that physiological levels of electrically induced muscular loading hold
promise for preventing post-SCI BMD decline. Rehabilitation specialists will be challenged to
develop strategies to prevent or reverse musculoskeletal deterioration in anticipation of a future cure
for SCI. Quantifying the precise dose of stress needed to efficiently induce a therapeutic effect on
bone will be paramount to the advancement of rehabilitation strategies.
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INTRODUCTION
Annually, spinal cord injury (SCI) occurs in 10,000 to 20,000 individuals and costs society
between $4 billion and $7 billion [1]. Secondary complications of SCI, including degradation
of the musculoskeletal system of the paralyzed limbs, contribute to these costs. Paralyzed tissue
below the level of a clinically “complete” SCI has enormous capacity to adapt. Rehabilitation
specialists must find innovative strategies to improve the health quality of people with SCI and
preserve the integrity of the musculoskeletal system in anticipation of a future cure. This review
describes (1) the adaptations that muscle and bone undergo after paralysis from SCI and (2)
recent findings suggesting that timely introduction of physiological stress will prevent
significant musculoskeletal deterioration. We highlight issues such as potential neural
contributions to bone and muscle remodeling and the need for dose-response relationships.
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GENERAL OVERVIEW: MUSCULOSKELETAL DETERIORATION AFTER SCI
All individuals with clinically complete SCI have some degree of musculoskeletal deterioration
[2]. One only needs to look closely enough to find various levels of muscle, bone, and
integument changes resulting from paralysis. For this review, we will focus on individuals with
complete SCI without lower motor neuron lesions.

As a result of paralysis, individuals with SCI enter a period of “metabolic chaos,” defined as
an extreme catabolic state triggered by the loss of physiological stress to tissue. Rapid atrophy
of paralyzed muscle floods the circulatory system with protein degradation by-products,
increasing the demands on the kidneys. The loss of muscle force contributes to bone
demineralization (as much as 2%–4% a month) [3]. The kidneys resorb and excrete large
quantities of calcium and other minerals from the blood. Not surprisingly, bone
demineralization after paralysis is associated with hypercalciuria [4-7], renal uretolithiasis
[4], and bladder stones [8]. A primary comorbidity in individuals with SCI is renal failure
[1], which may be related to high blood calcium levels and the incidence of ureter calculi [9].

As much as 50 percent of the mineral content of bones in paralyzed limbs may be lost within
the first 3 years after SCI [10-12]. Fractures may occur with minimal inciting trauma [13],
often during routine activities of daily living such as dressing, bathing, and transferring to and
from a wheelchair. Hence, the complications associated with a degenerating musculoskeletal
system are serious and widespread.

MUSCLE ADAPTATIONS TO SCI
Under normal conditions, the majority of whole human muscles are composed of a mixture of
fast and slow muscle fibers. Chronic SCI triggers a transformation from slow, fatigue-resistant
muscle to fast, fatigable muscle in humans [14-17] and rats [18]. These changes in contractile
properties covary with histochemical changes in myosin adenosine triphosphatase (ATPase)
[14] myosin light chains and/ or myosin heavy chains (MHCs) [16,19-22], sarcoplasmic
reticulum Ca2+ ATPase (SERCA) isoforms [19], oxidative capacity via nicotinamide adenine
dinucleotide [14] or succinate dehydrogenase (SDH) [21], and glucose transport proteins
GLUT1 and GLUT4 [23]. All these adaptations are consistent with faster fatigable muscle fiber
types. Conversely, no decrease [24], or even an increase [25], in oxidative enzyme capacity
(SDH) has occasionally been observed with MHC shifts to faster phenotypes after SCI. This
finding suggests a possible dissociation between oxidative capacity and other muscle fiber
type-specific factors. Further, the consistently observed MHC transition after SCI in multiple
species includes hybrid expression of MHC iso-forms [19,26-28], presumably because of
changes in MHC protein expression at the fiber level. Hybrid MHC expression is not typically
observed in muscle under normal neuromuscular conditions. However, whether fiber
hybridization is a transient phenomenon [16] or a steady state condition [26] after SCI is
unclear.

Muscle atrophy has long been recognized as a cardinal sequela of complete SCI [21]. Although
atrophy may preferentially occur in slow muscle fibers [29], others would conclude that muscle
atrophy is independent of fiber type [25,30]. Muscle protein transformations and fiber atrophy
after SCI may be dissociated from one another. Atrophy may occur more rapidly after SCI than
MHC isoform transformations [20]. Six weeks after SCI, human lower-limb muscles were 45
percent smaller than controls [31]. The timeline for MHC transition in humans is controversial.
At 4 weeks, minimal MHC transformation was observed [16]; an MHC hybrid state occurred
with a mean time constant of 4.7 months, followed by a transition to fast phenotypes by 17.0
months. Conversely, Talmadge et al. reported increased MHC IIx expression by 6 weeks,
whereas measurable hybrid MHCs were not observed until 24 weeks [32]. Further, SERCA
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protein isoforms began to adapt quickly but continued to transform gradually over time,
resulting in within-fiber mismatches between SERCA and MHC isoforms [19].

The physiological impact of these biochemical changes remains uncertain. Many questions
persist about the biochemical basis of fatigue, contractile speed, force potentiation, and other
phenomena, limiting the inferences that may be made between observed biochemical and
physiological adaptations to SCI. At present, research is focusing on characterizing timelines
for both types of adaptations. Definitive timelines for muscle protein adaptation are not yet
fully understood in humans after SCI. Timelines for physiological mechanical changes are
better characterized. The electrically elicited torque in recently paralyzed muscle (<6 weeks)
is quite low, reflecting the complete loss of muscle activity before segmental reflexes recover
[11]. By 6 months post-SCI, a slight increase in torque may be observed despite the persistence
of profound muscle atrophy [11]. We have previously suggested that connective tissue
extensibility may decrease after SCI, which acts to “take up the slack” in the musculotendinous
unit, allowing the atrophied muscle to function on a different part of the length-tension curve
[11]. Peak torques can only be maintained for a few contractions, however, and fatigue rapidly
ensues. In the soleus muscle, fatigue index, a measure of muscle endurance, declines rapidly
over the first year and afterward experiences minimal further declines [33]. Eventually,
chronically paralyzed (>2 years) soleus muscle generates only 20 to 30 percent of the initial
peak torque after a bout of repetitive activation [34]. Thus, chronically paralyzed muscle is
unable to generate high repetitive loads and deliver high repetitive stress to bone.

MUSCLE RESPONSE TO TRAINING
In addition to responding to reduced use (as a result of SCI), muscle contractile, metabolic,
and histochemical properties have been observed to adapt to chronically increased muscle
activation, in particular, electrical muscle stimulation. Low-resistance electrically stimulated
cycling [28,35-36] and isometric training of the quadriceps [37] and the tibialis anterior [30]
have shown that paralyzed human muscle adapts to increased use via hypertrophy and
improvements in fatigue resistance. Just 8 weeks of cycling increased average vastus lateralis
fiber area 23 percent and capillary number 39 percent [23]. Hypertrophy of stimulated muscles
has readily been observed after both short-duration [38-39] and long-duration [40] electrical
stimulation protocols. One year of cycle training elicited a 12 percent increase in whole-muscle
cross-sectional area of the thigh, as well as a shift away from fast-fatigable myosin and toward
fast fatigue-resistant myosin [36]. Sixteen weeks of training in people with acute SCI led to
partial preservation of type I fiber content and MHC I composition, as well as full preservation
of fiber cross-sectional area [41]. Oxidative capacity [30,42-43] and glycolytic capacity [44]
have also been shown to improve after training, often in the absence of fiber type alterations
[42]. Even after brief periods of training, calcium dynamics in paralyzed muscle may begin to
adapt [35]. These findings are consistent with animal studies, which have demonstrated that
electrical stimulation (in concert with loading) prevents atrophy [45] and may prevent muscle
fiber transformation [27,46].

Numerous studies have suggested that the dramatic training effects observed in electrically
stimulated paralyzed muscle largely depend on the stimulation parameters used. Low-
frequency (10 Hz) but not high-frequency (50 Hz) stimulation led to increased fatigue
resistance of the quadriceps muscle [42]. High-frequency stimulation is known to compromise
neuromuscular transmission (a depletion of neurotransmitters at the neuromuscular junction)
and therefore it does not adequately challenge other processes known to affect fatigue, notably
excitation-contraction coupling [11]. Repetitive stimulation in muscle's normal physiological
frequency range (15–50 Hz [47]) may offer a better stimulus for adaptation of muscle fatigue
resistance.
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The load developed during electrically elicited contractions also affects the magnitude of
training-related changes. In wrist extensors trained via either high or low resistance, only high-
resistance training yielded fatigue benefits and evidence of metabolic adaptation (as measured
by phosphocreatine recovery) [48]. Muscles trained with low loads displayed only small
increases [36] or no change [30,35] in cross-sectional area. Most tellingly, quadriceps muscles
trained with high load experienced significantly greater improvements in force, type 1 fiber
composition, fiber cross-sectional area, capillary-to-fiber ratio, relative oxygenation, and
citrate synthase activity than muscles trained with minimal load [49]. Thus, paralyzed muscle
continues to adapt according to principles of physical stress [50], in a manner reminiscent of
neurologically intact muscle.

Long-duration (>8 hours a day) electrical stimulation causes muscle transformation from fast
fatigable to slow or fatigue-resistant muscle properties [51-54]. While 8 hours or more of
electrical stimulation is feasible to maximize the muscle “effect” in an animal model, it is not
feasible in paralyzed human lower limbs. Over the past several years, our laboratory has
investigated an electrical stimulation protocol designed to elicit muscle adaptation while
remaining feasible for human use [11,14,34,55-56]. The protocol uses 15 Hz isometric muscle
activation to induce hypertrophy and fatigue-related changes in paralyzed soleus muscle.
Subjects performed the majority of stimulation at home using portable stimulators, joint
constraint devices, and a compliance monitor. This protocol took roughly 30 minutes a day,
and subjects were able to integrate it into their daily routines during a 3-year longitudinal study.
(Mean compliance with exercise recommendations was ∼80% over the course of the study.)
For each subject, one soleus muscle underwent training while the other remained as an
untrained within-subject control. In subjects with chronic SCI (>2 years), we demonstrated
that repetitive electrical stimulation of the soleus muscle in humans partially reverses the loss
of torque and fatigue resistance after SCI [34]. In subjects who began training within 6 weeks
post-SCI, torque and fatigue properties could be preserved for more than 3 years, while
untrained limbs experienced the expected declines over time [11]. At the end of the protocol,
trained limbs generated nearly 100 percent more torque than untrained limbs at the end of a
fatigue-inducing stimulation bout. Untrained limbs displayed considerable postactivation
potentiation of torque, a hallmark of excitation-contraction compromise [56]. Trained limbs
demonstrated almost no potentiation, suggesting that training triggered adaptations within the
excitation-contraction system.

As can be seen in Figure 1, 3 years of stimulation with this protocol yielded hypertrophy of
the trained soleus muscle. The gastrocnemius, which received electrical current but no loading
(the knee was bent during stimulation, placing the gastrocnemius “on slack”), did not display
a similar training effect. This finding supports the contention that load, not just activation, is
a key factor triggering hypertrophy. Consistent with this premise, the deep flexors of the calf
(tibialis anterior, flexor hallicus longus, flexor digitorum longus) demonstrated the most
profound training effect (33% and 36% for trained and untrained, respectively). As single-joint
muscles (similar to the soleus), the deep flexors developed substantial isometric loading. This
finding again underscores the critical importance of muscular overload during therapeutic
electrical stimulation. However, we urge rehabilitation specialists to remember that these high
muscle forces transmit high loads to bones in the paralyzed limbs; the bones of individuals
with chronic paralysis are at an increased risk of fracture from disuse-related osteoporosis. For
this reason, establishing the optimal dose of physiological stress required to prevent
musculoskeletal deterioration early after SCI will become an even more critical priority as
spinal cord regenerative cures emerge. With a complete understanding of the adaptive
capabilities of paralyzed muscle and dose-response guidelines, we will be better prepared to
design functional electrical stimulation protocols that yield the optimal muscle strength and
endurance adaptations required for therapeutic loading of bone.
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BONE ADAPTATIONS TO SCI
As just described, skeletal muscle becomes highly fatigable and atrophied after SCI, with
limited functional usefulness for standing [57-60], grasping [59,61], or ambulating [59,
62-63]. Because muscle is the primary deliverer of loads to the skeletal system [64], the bones
of paralyzed limbs lack an important stimulus for maintenance of bone density. Post-SCI
osteoporosis has a multi-factorial pathophysiology; however, the diminution of mechanical
stimuli to bone is considered a powerful contributor to bone demineralization [65-66]. At the
lowest end of the activity spectrum, when weight-bearing and muscular contraction diminish
or cease after SCI, the loss of mechanical loading yields an imbalance between osteoclastic
and osteoblastic activity. Bone resorption outpaces bone formation, eventually yielding
neurogenic osteoporosis.

Complete unloading of the limbs, such as in SCI, yields bone loss that is 5 to 20 times greater
than losses from purely metabolic etiologies [67]. Within the first few months after SCI, bone
mineral density (BMD) begins to decline 2 to 4 percent a month [3], particularly at sites rich
in trabecular bone [68]. This decline usually continues for 2 to 8 years (depending on the
anatomical site and the method of measurement) [10], eventually reaching steady state values
50 to 60 percent lower than non-SCI values [10,12]. One small study of monozygotic twins
conversely suggests that bone loss may continue over the life span of people with SCI [69].
Trabeculae in the epiphyses become fewer in number [70-71] or may become perforated
[72]. Disuse remodeling gradually replaces the trabecular lattice with fatty marrow until, with
long-term SCI, very few trabeculae survive in the epiphysis [12]. This extensive destruction
of the trabecular lattice is likely to be irreversible [73]. In predominantly cortical regions such
as long bone diaphyses, BMD declines only minimally [68]. Instead, bone mass at these sites
is lost via thinning of the cortical wall [10,74], which reduces the bone's bending stiffness by
as much as 33 percent [75]. The thinness of the diaphyseal cortical wall severely reduces overall
bone strength, typically estimated by the second moment of inertia of the cortical shell or by
a BMD-normalized stress-strain index [76-79].

As primary sites of demineralization after SCI, the tibia and femur epiphyses [10,12] are also
primary sites for fracture [80-83]. Between 1 and 6 percent of people with SCI will sustain
fractures in their paralyzed limbs [84-86]. This estimate may be low because sensory
impairment in SCI may prevent fractures from being detected and reported [4,84-86]. The
fracture risk for people with SCI is approximately double the risk for the non-SCI population
[87]. The BMD level at which fracture risk increases is not known with certainty. However,
Eser and coauthors reported that fractures occurred in subjects with BMD less than 46 and 29
percent of non-SCI norms for the distal femur and distal tibia, respectively [83]. Up to 44
percent of reported fractures occur with minimal inciting trauma [85]. Fractures commonly
occur during routine, necessary activities of daily living, such as dressing, bathing, and
transferring to and from a wheelchair. Medical management of post-SCI fractures is
complicated by anesthetic skin; cast fixation carries an elevated risk of causing pressure ulcers.
Open reduction and internal fixation are therefore frequently required, with the attendant risks
of surgery and anesthesia.

BONE RESPONSE TO TRAINING
According to Wolff's hypotheses [88-89] (later refined by Frost [90-93] and Lanyon [94]),
bone is in a state of activity-dependent flux and biomechanical stresses have a powerful
influence on the structural properties of the skeletal system. Loads applied to bone create an
internal resistance called stress that is equal in magnitude and opposite in direction to the
applied load [95]. The geometric deformation of bone in response to applied stress is called
strain [66], defined quantitatively as the change in length as a percentage of the unloaded length.
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Strains due to normal activity generally range from 200 to 2,500 μstrain [96] and the ultimate
strength (fracture threshold) of healthy, young lamellar bone is approximately 25,000 μstrain
(equal to 2.5% change in length) [93], leaving a sizable safety margin for volitional activities.
Strains of about 1,500 to 2,500 μstrain trigger the mobilization of osteoclast and osteoblast
drifts at bone surfaces (a process called modeling [90]), leading to enhancements in cortical
thickness [78,97-100] and (to a lesser degree) trabecular BMD [78,97,99]. Routine strain levels
that are very low (100–300 μstrain) induce bone loss [101] via a process called remodeling
[90]. Remodeling removes more bone mineral via osteoclast activity than it replaces via
osteoblast activity. Because remodeling occurs on bone surfaces that are in contact with marrow
[102], adaptations to disuse appear at the endosteal surface and the trabecular lattice. This
process is clearly exemplified by the disuse-related deterioration of trabecular bone and cortical
thinning after SCI.

Animal studies have amply demonstrated the adaptive capacity of bone in response to
mechanical loading. Torsional loads [103], impact loading [104], and compressive loads
[103,105] have all elicited bone anabolism in animal models. Protocols using external
compressive loading of the rat or mouse ulna have explored the roles of strain magnitude
[106-107], strain rate [108], and loading bout frequency and duration [109]. In general, bone
formation exhibits a positive dose-response relationship with peak strain magnitude
[106-107,110-111]. However, peak strains need only approximate the high end of
physiological values (rather than be excessive) to trigger bone formation [106-107]. Short,
frequent loading bouts [109] conducted at a high strain rate [108] show particular osteogenic
potential. Some authors have theorized that bone most vigorously responds to the “error-rich”
components of the loading environment [65]; therefore, even small strains may engender an
osteogenic response if they are presented at a strain rate, distribution, frequency, or duration
that is novel within the bone's loading milieu [112-113].

For simulation of SCI, animal models of limb unloading have been developed, including hind
limb unloading [114-116] and the functionally isolated avian ulna [103]. Animal models of
SCI (contusion, transection) that examine bone loss are less common because of various
degrees of spontaneous recovery and the uncertainty of unloading muscle and bone in many
species [117-120]). In both the rat and avian non-SCI models, the pattern of bone loss (rapid
demineralization of trabecular bone, endosteal absorption of cortical bone) resembles the trends
observed in human long bones after SCI. Importantly, small doses of load interspersed within
prolonged unloading protocols appear sufficient to preserve BMD in both avian and rodent
models [103,121]. These results support the potential usefulness of reintroduction of load after
disuse-related BMD loss.

In humans with SCI, the search for an efficacious method for preserving or improving BMD
after SCI has been fraught with difficulty. Previous dual-energy X-ray absorptiometry
(DEXA)-based studies of passive standing [122], standing with low-level electrical stimulation
[123-124], and electrically stimulated cycling [125-126] revealed no BMD effects due to
resumption of loading. Trabecular bone, which is more metabolically active than cortical bone
[127], would be expected to respond readily to the loading stimulus. Because DEXA cannot
differentiate between cortical and trabecular bone, trabecular adaptations may have been
overlooked, if they did indeed occur. On the other hand, mechanical loads delivered during
these studies may have been insufficient to exceed bone's remodeling threshold (loads were
not quantified in these studies). Bloomfield and colleagues' investigation of electrically
stimulated cycling revealed a similar lack of responsiveness in the majority of subjects who
trained at a low work output [128]. However, a subset of subjects who worked at a higher
intensity (and ostensibly, a higher mechanical load) showed small BMD increases at the distal
femur, a predominantly trabecular site. Mohr and colleagues showed that subjects with SCI
who substantially increased their cycling work capacity over 1 year experienced a small (10%)
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increase in BMD at the proximal tibia, another trabecular region [129]. Again, without
quantification of mechanical loads or separate analysis of trabecular bone, whether the cycling
intervention induced trabecular anabolism that remained hidden or whether loads in previous
studies simply were sub-threshold is unclear.

Three-dimensional densitometric techniques (such as peripheral quantitative computed
tomography [pQCT]) can clarify the differential responses of trabecular and cortical bone to
restoration of loading after SCI. Recent work from our laboratory shows that trabecular bone
vigorously responds to the reintroduction of physiological mechanical load after SCI [11].
Subjects with SCI completed up to 3 years of unilateral soleus electrical stimulation training.
Compressive loads delivered to the tibia via muscle contraction were approximately 1.5 times
body weight. At the end of the study, pQCT revealed that trabecular BMD at the distal tibia
was 31 percent higher in trained limbs than in untrained limbs (Figure 2) [11]. No BMD
difference was apparent in cortical bone, in accordance with previous studies [68]. Sites that
experienced no mechanical loading (hips and untrained tibia) experienced the expected degree
of post-SCI demineralization [11,130]. These results underscore the importance of dose of
loading in protocols designed to address bone demineralization after SCI. A physiological
magnitude of load, delivered in a manner that subjects could administer independently, was
useful for attenuating the normally occurring decline in bone density. Additional studies are
underway in our laboratory to determine the optimal loading conditions for preserving bone
density in the entire paralyzed lower limb.

The precise combination of mechanical stimuli required to elicit bone adaptation is unknown.
Because the cellular and molecular responses to mechanical stimulation are incompletely
understood, numerous modes of input remain viable candidates for osteoregulatory signals.
First, as related in the previous section, the maximal strains in a bone's loading milieu may
trigger anabolism (in athletes, for instance) or catabolism (as in SCI). Support exists for this
viewpoint at both ends of the loading continuum [83,131]. Other researchers, however, point
out that low-intensity and usually imperceptible vibratory loads predominate bone's daily strain
history [132]. Thus, in the absence of postural contractions after SCI, neurogenic osteoporosis
may develop because pervasive low-magnitude strains are lost, rather than because a few large
strains each day are absent. This hypothesis is supported by the finding that routine postural
contractions in the 30 to 50 Hz range decline in older adults (both sexes) [47], a group that
undergoes serious bone demineralization over time. In our laboratory, we are investigating the
reintroduction of low-magnitude mechanical signals (vibration) as a way to preserve BMD
after SCI.

NEURAL CONTRIBUTIONS TO MUSCULOSKELETAL DETERIORATION
While we generally understand the role of mechanical loading (compression and vibration) in
paralyzed bone, we know very little about the effects of lost neural connectivity to the
musculoskeletal system. Bone has an extensive sympathetic and sensory nerve supply,
particularly in metabolically active regions [133]. These nerve fibers may sense local
mechanical loads [134] or may stimulate bone remodeling via several locally acting
neuropeptides [135-136]. Because sympathetic adrenergic nerves accompany intraosseous
blood vessels, bone's nerve supply may also allow communication between the autonomic and
skeletal systems [137]. The disruption of sympathetic nerve activity after SCI exerts an
unknown influence on bone. Although a link between autonomic disruption, intramedullary
venous stasis, and osteoporosis has been hypothesized [138-139], it has not been rigorously
studied. Clinically, disruptions of neural input (and likely the accompanying vascular
derangements) have been seen to positively and negatively affect bone mineralization, as in
Charcot neuropathy and in exuberant callus formation in people with head injuries and limb
fractures [137]. In SCI, however, a dearth of knowledge exists about the effects of lost neural
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connectivity independent from the influence of lost mechanical loading. Whether therapeutic
electrical muscle stimulation, compressive loading, and/or vibration training induce training
effects upon bone via neural and not just mechanical processes remains to be seen.

The reciprocal interactions between the paralyzed nervous and muscular systems are much
more thoroughly understood. After SCI, if lower motor neuron injury does not occur, the spinal
circuits, peripheral nerves, and muscles below the level of injury retain their normal
connections. New evidence suggests that neuromuscular activity at one link of this chain can
strongly influence other connected components, even in the absence of supraspinal control. In
response to cycling exercise, rat soleus muscles up-regulated the expression of brain-derived
neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) [140].
During development, GDNF is a motor neuron survival factor [141]. In the adult nervous
system, BDNF may foster neuromuscular connectivity as well as have a role in neuroprotection
and regeneration [142]. Both BDNF and GDNF are transported retrogradely from the periphery
to the spinal cord, as is neurotrophin 3 (NT-3) [143], another promoter of spinal cell
proliferation and survival [144]. NT-3 expression is also modulated by exercise in the
spinalized rat [145].

Although post-SCI exercise appears to yield a retrograde effect on spinal circuitry, the
physiological manifestation of this effect remains uncertain. In the non-SCI model, various
modes of exercise clearly influence monosynaptic reflex pathways [146-147]. Various studies
of monosynaptic spinal reflexes after SCI suggest that short-and long-term training regimens
may partially restore normal suppression of H reflexes. Three months of hind limb cycling led
to restoration of H reflex suppression in spinal rats [148]. In a single human subject with
incomplete SCI, 4 months of treadmill ambulation yielded H reflex suppression values nearer
to nondisabled values than before training [149]. Most recently, our laboratory demonstrated
that 2 years of unilateral soleus electrical stimulation led to a moderate shift toward normal H
reflex suppression values in trained limbs, while untrained limbs demonstrated a highly
variable and unpredictable pattern of suppression.*

SUMMARY AND CONCLUSIONS
An important goal for rehabilitation specialists in the next decade will be to minimize the
deleterious metabolic chaos that results from the immediate and extensive loss of stress to the
musculoskeletal system after SCI. Scientifically grounded therapeutic interventions that
quantify the dose of stress required to sustain musculoskeletal integrity will need to advance
in step with spinal cord regeneration studies. New electrical stimulation technologies designed
to capitalize on the extensive plasticity of paralyzed muscle and bone must emerge. However,
these technologies must be feasible so that the individual with SCI can comply with a prescribed
dose of stress. Home-based stimulation systems that allow subjects to integrate frequent
training into their daily lives appear important as we translate knowledge about post-SCI
musculoskeletal plasticity.
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Abbreviations
ATPase, adenosine triphosphatase
BDNF, brain-derived neurotrophic factor
BMD, bone mineral density
DEXA, dual-energy X-ray absorptiometry
GDNF, glial cell line-derived neurotrophic factor
MHC, myosin heavy chain
NT-3, neurotrophin 3
pQCT, peripheral quantitative computed tomography
SCI, spinal cord injury
SDH, succinate dehydrogenase
SERCA, sarcoplasmic reticulum Ca2+ ATPase.
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Figure 1.
Magnetic resonance imaging of subject who performed >3 years of soleus electrical stimulation
training. In stack of 20 such images, trained soleus was substantially larger (∼28%) than
untrained soleus (“S” labels in image). Gastrocnemius area (“G”) did not appreciably differ
between limbs. Because gastrocnemius is placed on slack during training in knee-bent position,
it received electrical current but little isometric loading. Note that all single-joint muscles in
deep posterior compartment (“D”) also hypertrophied (tibialis posterior, flexor hallicus longus,
flexor digitorum longus). L = left, R = right.
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Figure 2.
(a) Peripheral quantitative computed tomography (pQCT) imaging of distal tibia of same
subject in Figure 1. (Image is viewed from cephalad rather than caudad direction. In this subject,
right leg underwent training.) Note extensive loss of trabecular lattice in untrained limb. L =
left, R = right. (b) Distal tibia trabecular bone mineral density (BMD) for 3 subjects who trained
>3 years was 30% higher in trained than untrained limbs (p < 0.05). Typical non-spinal cord
injury BMD at this site is 250 mg/cm3. Source: Eser P, Frotzler A, Zehnder Y, Wick L, Knecht
H, Denoth J, Schiessl H. Relationship between the duration of paralysis and bone structure: A
pQCT study of spinal cord injured individuals. Bone. 2004;34(5):869–80 [PMID:
15121019]; Shields RK, Dudley-Javoroski S, Boaldin KM, Corey TA, Fog DB, Ruen JM.
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Peripheral quantitative computed tomography: Measurement sensitivity in persons with and
without spinal cord injury. Arch Phys Med Rehabil. 2006;87(10):1376–81. [PMID: 17023249]
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