Dietary correlates of urinary 6-sulfatoxymelatonin concentrations in the Nurses' Health Study cohorts^{1–3}

Eva S Schernhammer, Diane Feskanich, Caroline Niu, Regina Dopfel, Michelle D Holmes, and Susan E Hankinson

ABSTRACT

Background: Age and certain lifestyle factors, including a higher body mass index and exposure to light at night, are related to lower circulating concentrations of melatonin—a hormone with probable cancer-protective properties. Although melatonin is a direct derivative of the essential amino acid tryptophan, little is known about the relation of diet with melatonin concentrations.

Objective: The objective was to examine cross-sectional associations of various nutrients and dietary factors as well as food groups with creatinine-adjusted first morning urinary melatonin (6-sulfatoxymelatonin; aMT6s) concentrations.

Design: Participants were 998 healthy women from 2 independent cohorts: the Nurses' Health Study (NHS; n = 585) and NHS II (n = 413). We computed least-squares mean hormone concentrations across categories of dietary variables, with adjustment for total energy intake, age, and other nondietary factors known to be associated with aMT6s concentrations.

Results: In multivariate analyses, we found no significant associations between the intake of various nutrients, including tryptophan and urinary melatonin concentrations. A higher intake of meat, particularly red meat, was associated with lower concentrations of aMT6s (adjusted mean concentrations of aMT6s across increasing quartiles of red meat intake were 17.9, 17.0, 18.1, and 15.3 ng/mg creatinine; *P* for trend = 0.02). In contrast, neither poultry intake (including turkey) nor fish intake was associated with aMT6s concentrations.

Conclusion: Although no specific nutrients were associated with altered concentrations of melatonin, our findings raise the possibility that several specific foods, including red meat, could affect cancer risk through the lowering of melatonin concentrations. *Am J Clin Nutr* 2009;90:975–85.

INTRODUCTION

Melatonin (5-methoxytryptamine) has oncostatic properties (1–3) and is secreted by the pineal gland predominantly during the dark phase of the light-dark cycle, after a rhythm of ≈ 24 h (4). Serum melatonin is rapidly metabolized, mainly in the liver (5), and is excreted by the kidneys as melatonin's major urinary metabolite, 6-sulfatoxymelatonin (aMT6s). In contrast with single plasma or saliva melatonin measures, aMT6s measured in first morning samples accurately reflects peak plasma melatonin concentrations of the previous night (6, 7), which makes it a very practical marker, especially in large-scale epidemiologic studies.

Apart from circadian variation, there is also considerable interindividual variation in circulating melatonin. For example, night work, which (through exposure to light at night) appears to increase cancer risk (8-12), has been associated with lower melatonin concentrations (13-17). Other potentially modifiable factors that have been linked to lower melatonin concentrations include older age, a higher body mass index (BMI), nulliparity, and smoking (18-20).

Tryptophan, the precursor of melatonin, cannot be produced by humans and therefore must be part of their diet. Thus, foods high in tryptophan such as milk, poultry (including turkey), fish, sesame seeds, beans, lentils, rice, and certain nuts may be associated with variations in melatonin concentrations. Few studies have explored the influence of these and other nutritional factors on melatonin concentrations. The aim of our study was to examine dietary factors that were previously shown or seem likely to affect melatonin concentrations. We examined the crosssectional associations of food and nutrient intakes and dietary patterns with melatonin concentrations in 998 healthy women using 2 large prospective databases—the Nurses' Health Study (NHS) cohorts.

SUBJECTS AND METHODS

Study cohorts

Nurses' Health Study

In 1976, 121,700 female registered nurses from 11 large US states, ages 30–55 y and of primarily white descent, were enrolled in the NHS. Since baseline, they have completed biennial mailed questionnaires that comprise items about their health status, medical history, and known or suspected risk factors for cancer (21) and heart disease (22). Diet was assessed every 4 y with a food-frequency questionnaire (FFQ). Between 2000 and 2002, first spot morning urine samples without specifically requesting first voids were collected from 18,643 women. The samples were

First published online August 12, 2009; doi: 10.3945/ajcn.2009.27826.

¹ From the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (ESS, DF, CN, MDH, and SEH); the ²Department of Epidemiology, Harvard School of Public Health, Boston, MA (ESS and SEH); and LBI-ACR VIEnna & ACR-ITR VIEnna, Vienna, Austria (ESS); and Harvard University, A.L.M Program, Biological Sciences, Cambridge, MA (RD).

² Supported by National Cancer Institute grants CA67262 and CA50385.

³ Address correspondence to ES Schernhammer, Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115. E-mail: eva.schernhammer@ channing.harvard.edu.

Received March 24, 2009. Accepted for publication July 23, 2009.

returned by overnight mail, with a frozen water bottle to keep them cool. On arrival in the laboratory, the samples were separated into aliquots into labeled 4.5-mL cryotubes. The tubes were then stored in the vapor phase of liquid nitrogen freezers without preservative. Further details of the NHS were published previously (23, 24).

Nurses' Health Study II

NHS II is a prospective cohort study that started in 1989, when 116,430 registered female US nurses aged 25–42 y were enrolled. Similar to NHS, all participants have been followed biennially with the use of a mailed questionnaire and every 4 y with an FFQ. Further details of the cohort are described elsewhere (25). From 1996 to 1999, 29,616 of these women participated in the urine collection substudy for the NHS II cohort. For the women who participated in this study, a spot morning urine sample was collected a mean (\pm) SD of 7.4 \pm 3.1 d before the next menstrual cycle. Urine collection methods were identical to those used in the NHS.

Diet and covariate assessment

Dietary data were derived from the FFQ, which has been described in detail and its validity and reproducibility have been documented elsewhere (26). For food and nutrient intakes, we used the average of the 1998 and 2002 data in NHS and the 1995 and 1999 data in NHS II because in a previous study of dietary correlates of steroid hormone concentrations in NHS, we found that associations were stronger for the average of the 2 dietary assessments than for the 1 closest to urine collection (27), likely because averaging 2 measurements of dietary intake reduces random error. Only one FFQ contributed to the food and nutrient intakes in 6% of the study population because of a missing response. Nutrient intakes were total energy adjusted by using the residual method (28) and categorized into quintiles. We report results for the total nutrient (which includes supplement intake), because associations for nutrient intake from food sources only were very similar to those for total nutrient intake. Because the FFQ allows 9 choices of frequency of consumption for foods, the distribution of intake for a specific food is more discontinuous than that of nutrients because nutrients can come from many foods. Therefore, foods were divided into approximate quartiles or tertiles of intake. Generally, cohort-specific cutoffs for quantiles were created. Further details on specific categories and questions of the NHS questionnaires are available at http://www. channing.harvard.edu/nhs/questionnaires/index.shtml.

On the basis of the correlation of food, we determined dietary pattern factors by means of principal component analysis, as described in detail in earlier studies from the NHS cohorts (29–31). In brief, we collapsed 116 food items collected by FFQ in the NHS cohort to 38 foods or food groups on the basis of the similarity of nutrient composition and biological origin. Details of food groupings are described in detail elsewhere (32). We then used SAS PROC FACTOR to conduct a principal component analysis. For better interpretability, we used an orthogonal rotation procedure that results in factors (ie, dietary patterns) that are not correlated with each other. Based on the amount of variation explained by each pattern, we determined the number of factors to retain and identified 2 major dietary patterns: the "prudent" pattern and the "Western" pattern, as described pre-

viously (29–31). Using the average of data from 2 FFQs, each individual received a score for both patterns with a higher score suggesting better adherence to a certain dietary pattern.

All other covariates were assessed closest to the time of urine collection. Information on parity, age at first birth, age at menopause, smoking status, current weight, family history of breast cancer, personal history of benign breast disease, and physical activity were taken from the 2002 (NHS) and 1999 (NHSII) questionnaires. Physical activity was measured with a validated questionnaire (33) in MET-h/wk. BMI was calculated as weight (in kg) divided by height (in m) squared.

Urine collection

The vast majority (92% in NHS II and 95% in NHS) of all urine samples were first morning urine samples. After collection, the samples were returned by overnight mail, with a frozen water bottle to keep them cool. Women also noted the date of collection and the number of nights worked in the prior 2 wk. On arrival in the laboratory, the samples were portioned into aliquots and stored at ≤ -130 °C without preservative. We previously showed that concentrations of urinary aMT6s remain stable when processing is delayed for 24 and even 48 h (20).

Study population

Study participants were selected from among 1042 women for whom urinary melatonin was previously assessed: 376 NHS II control subjects who participated in a nested case-control study of urinary melatonin concentrations and breast cancer risk (1), 80 NHS II premenopausal women who took part in the previously described validation study (20), and 586 NHS women who participated in a nested case-control study of urinary melatonin concentrations and postmenopausal breast cancer risk (34). Of these, 40 women were excluded because they reported having worked a rotating night shift during the 2 wk preceding urine collection, and 4 women were excluded because of missing dietary information, which left 998 women with valid data for our analyses. Participants had no previously diagnosed cancer (except nonmelanoma skin cancer). A woman was defined as premenopausal if she had had at least one natural menstrual cycle during the previous 12 mo or was younger than 48 y (if she was a nonsmoker) or younger than 46 y (if a current smoker) after hysterectomy without bilateral oophorectomy. At these ages, <10% of the NHS cohort had had a natural menopause. A woman was defined as postmenopausal if she reported a natural menopause or bilateral oophorectomy. The study was approved by the Committee on the Use of Human Subjects in Research at the Brigham and Women's Hospital.

Laboratory methods

Urinary aMT6s was assayed by the Endocrine Core Laboratory of M Wilson (Yerkes National Primate Research Center, Emory University, Atlanta, GA) by using Bühlmann 6-SMT enzymelinked immunosorbent assay kits (ALPCO, Windham, NH). This commercially available aMT6s enzyme-linked immunosorbent assay kits is a competitive immunoassay using an antibodycapture technique with a lower detection limit of 0.8 ng/mL for aMT6s. Because urine samples were not collected over a 24-h period and total urinary output was unknown, creatinine concentrations were also measured for each sample by the same laboratory, using Sigma Diagnostics creatinine reagents. All aMT6s concentrations were creatinine-standardized (aMT6s concentration divided by concentration of creatinine) to account for differences arising from variations in urine concentrations. To assess the reproducibility of the laboratory methods, masked split specimens included within each batch (10% of the total samples) were used to calculate the CV within batches. Within-batch CVs among the case control samples ranged between 9.5% and 15% for urinary aMT6s and between 3.1% and 9% for creatinine (1, 20).

Urine samples were collected from 113 randomly selected participants in the NHS II cohort who were 1) premenopausal, 2) had not used oral contraceptives or other hormonal preparations (eg, for infertility) in the previous 6 mo, 3) had not been pregnant or lactating in the previous 6 mo, and 4) had no history of cancer (except nonmelanoma skin cancer). Samples consisted of 3 complete sets of luteal urine collected over a 3-y period: the initial sample collection in 1996 and 2 additional samples in 1998 and 1999. For a randomly selected 80 of these 113 women, aMT6s concentrations were assessed for all 3 samples and were found to be reasonably well correlated over time (intraclass correlation: 0.72; 95% CI: 0.65, 0.82) (20).

Statistical analysis

If aMT6s measurements were below the detection limit of the assay (0.8 pg/mL), which was the case for 10 women from NHS II and 27 from NHS, these measurements were set equal to the detection limit as a conservative estimate, before the value was normalized to creatinine concentrations. We used the natural logarithms of urinary aMT6s in the analyses because the transformed values were more normally distributed.

We categorized nutrient intakes, food consumption (reported in servings/d), and diet pattern factors into quartiles and quintiles. Because cohort-specific quantiles were almost identical to overall quantiles, we present quantiles based on all women combined. In multivariate analyses, we adjusted for cohort, total energy intake (kcal/d in quintiles), age in 8 categories (<45, 45–49, 50–54, 55– 59, 60–64, 65–69, 70–74, and \geq 75 y), parity (nulliparous, 1–2, 3-4, and ≥ 5), BMI (in kg/m²; <21, 21-22.9, 23-24.9, 25-29.9, and \geq 30), smoking status (never or past smoker and current smoker), and time of urine collection (first morning urine or not). We first evaluated the age- and total energy intake-adjusted associations of aMT6s with macronutrients, vitamins, several food groups, and the prudent and Western dietary patterns by cohort. Next, in models based on the combined data set, we included an indicator variable for type of cohort, time of urine collection, and other factors previously shown to be associated with urinary melatonin concentrations (age, parity, BMI, and smoking). Because the results of multivariate analyses were not vastly different, we chose to present only those here. Moreover, in secondary analyses, excluding the <8% of women whose urine samples were not first morning samples, the results were virtually unchanged; therefore, we kept them in our primary analyses. Because the findings were essentially the same between the 2 cohorts, we present results of both cohorts combined only.

Statistical analyses were performed with SAS software (version 9.1; SAS Institute, Cary, NC). To test for differences in aMT6s concentrations by categories of covariates, we used mixed-effects regression models for clustered data (PROC MIXED) with nurses' ID as the clustering variable, to adjust for possible confounding due to other lifestyle and reproductive factors (35). We report *P* values for the linear trend across food or nutrient intake calculated with median intake in each quintile as a continuous variable. All *P* values were based on 2-sided tests and were considered statistically significant if ≤ 0.05 .

RESULTS

There were 998 women included in the study. Participants ranged in age from 34 to 80 y at urine collection. Women in the NHS II were, on average, younger and more likely to be premenopausal (28.1% compared with 1.4%) than were women from within the NHS cohort. Other differences between the 2 cohorts were only modest. Across both cohorts, 19.3% of all women were obese (BMI \geq 30), with a median BMI of 24.9 (10th to 90th percentile: 20.5–33.0), and 4.9% were currently smoking. The median value for aMT6s was 19.1 ng/mg creatinine (10th to 90th percentile: 4.5–48.3). Median total energy intake was 1750 kcal/d (10th to 90th percentile: 1183–2444 kcal/d). The distributions of other covariates are described in **Table 1** and elsewhere (19).

Overall, there were no significant associations between the examined nutrient intakes and circulating melatonin (**Table 2** and **Table 3**). None of the individual fats examined, including total fat, were associated with aMT6s. Furthermore, none of the other vitamins and nutrients we examined or the total caloric intake or intake of caffeine appeared to be related to aMT6s. Also, dietary tryptophan intake was not associated with circulating aMT6s concentration (Table 2).

Next, we examined 10 different food groups (Table 3). Overall, neither fruit nor vegetable intake was related to aMT6s. When examining individual sources of fruit and vegetable consumption (data not shown), ≥ 1 small glass of orange juice/d appeared to be associated with higher aMT6s concentrations compared with no orange juice consumption, though the trend test was not significant (bottom compared with top quartile of orange juice/d: aMT6s = 14.9 compared with 18.4 ng/mg creatinine; *P* for difference = 0.01 and *P* for trend = 0.25). In contrast, increasing servings of tomato intake lowered aMT6s concentration (bottom compared with top quartile representing ≥ 1 tomato/d: aMT6s = 17.8 compared with 16.6 ng/mg creatinine; *P* for trend = 0.02). No other individual fruit or vegetable was associated with aMT6s.

Total meat intake (bottom compared with top quartile: aMT6s = 17.8 compared with 15.5 ng/mg creatinine; *P* for trend = 0.04), and specifically intake of red meat (bottom compared with top quartile: aMT6s = 17.9 compared with 15.3 ng/mg creatinine; *P* for trend = 0.02), were associated with significantly lower aMT6s concentrations, whereas intake of poultry (including chicken and turkey) showed no association with aMT6s (bottom compared with top quartile: aMT6s = 18.0 compared with 17.8 ng/mg creatinine; *P* for trend = 0.88).

Neither dairy products overall (data not shown) nor milk or cheese individually were associated with aMT6s (Table 3). However, women who reported a higher intake of dairy cream had significantly lower melatonin concentrations than did those

TA	BL	Æ	1

Characteristics at the time of urine collection for 998 healthy women from 2 large prospective cohorts¹

Characteristic	Nurses' Health Study $(n = 585)$	Nurses' Health Study II $(n = 413)$	P for difference ²
	$66.9 + 6.9^3$	437 + 32	< 0.001
Age at menarche <12 y (%)	14.0	45.7 ± 5.2 9.5	0.35
Premenopausal (%)	1.4	28.1	< 0.001
No. of births ⁴	3.1 ± 1.3	2.3 ± 1.0	< 0.001
BMI (kg/m ²)	26.5 ± 5.2	25.3 ± 5.6	0.001
Alcohol consumed (g/d)	5.4 ± 9.1	4.3 ± 6.2	0.02
Current smoker (%)	4.1	6.1	0.16
Energy intake (kcal/d)	1758 ± 476	1820 ± 481	0.04
First morning urine (%)	95.3	92.0	0.01
aMT6s concentration (ng/mg creatinine)	28.6 ± 37	20.8 ± 15	< 0.001
Urinary creatinine (mg/L)	638 ± 392	1020 ± 545	< 0.001

¹ aMT6s, 6-sulfatoxymelatonin.

² Derived with a chi-square test (proportions) or t test (continuous variables).

³ Mean \pm SD (all such values).

⁴ Among parous women only.

with lower intakes (bottom compared with top tertile of cream intake: aMT6s = 18.2 compared with 15.9 ng/mg creatinine; *P* for trend = 0.01). Last, in analyses evaluating whether a prudent or Western dietary pattern score was associated with aMT6s, neither of the 2 dietary patterns showed significant associations with aMT6s (data not shown).

DISCUSSION

In our evaluation of various nutrients and food groups and their association with circulating melatonin, we observed few significant associations. Besides marginal associations between orange juice, tomato, and dairy cream consumption and aMT6s, only meat consumption was significantly and inversely associated with aMT6s concentrations in these 2 cohorts of women.

Several studies have determined that tryptophan or melatonin is found in foods and edible plants. Melatonin was identified in the edible organs of wild tomato and domestic tomato, rice, orange, apple, banana, cucumber, cabbage, and beetroot, ranging between 2 and 5300 pg/g (36, 37). Concentrations were highest in seeds of *Poaceae* [eg, rice and oat (37)] and in fresh cherries (38), whereas they tended to be low in banana and pineapple (39, 40). Melatonin was also identified in 5 species of green algae (41)-foods that are commonly eaten in Asia. Seeds from 15 edible plants have further been found to have melatonin (39). Ranging between 2 and 190 ng/g dry weight of seed, the highest concentrations were found in black (Brassica nigra) and white (Brassica hirta) mustard, with 189 and 129 ng/g dry weight of seed, respectively. All other seeds contained melatonin at varying lower concentrations, including almond (39 ng/g dry seed), sunflower (29 ng/g dry seed), fennel (28 ng/g dry seed), and green cardamom (15 ng/g dry seed). Furthermore, 64 commonly used Chinese medicinal herbs assayed for presence of melatonin had melatonin concentrations >10 ng/g dry weight (42). Tryptophan, on the other hand, is contained by the medicinal plants feverfew (Tanacetum parthenium), St John's Wort (Hypericum perforatum), and Aloe vera (43-45). Feeding chicks with melatonin-rich plants was shown to increase their circulating melatonin concentrations (37).

The role of fasting in changing melatonin concentrations is not well understood. Whereas some animal models seem to suggest that caloric restriction can delay the age-associated decline of melatonin concentrations (46, 47), others describe an association of lower melatonin concentrations with caloric restriction (48). Moreover, a sharp decline in plasma melatonin concentrations under high-caloric diet conditions has been found among rats (49). More recently, fasting conditions were shown to up-regulate the expression of melatonin receptor MT1 mRNA in the rat intestine (50). Human studies that have tested these hypotheses have been small and inconclusive, but nonetheless support the hypothesis that fasting decreases melatonin concentrations (51) and seems to suggest that fasting can advance the circadian clock (52). None of our participants may have been truly calorie restricted, but our study does not support an association between caloric intake and circulating melatonin in these well-nourished women.

In prior animal studies, zinc (53) and folate (54) deficiency appeared to reduce melatonin concentrations, whereas supplementation of zinc (53), tryptophan, and vitamin B-6 (49) increased circulating melatonin concentrations. In humans, the role of minerals and vitamins in changing melatonin concentrations is less well studied. In Japanese perimenopausal women, folate intake as assessed via FFQ was not associated with urinary aMT6s concentrations (P = 0.10) (37). Similarly, we did not observe an association between folate intake, nor was zinc or vitamin B-6 intake significantly associated with urinary melatonin in our study.

The only other study, to date, to evaluate associations between plant intake and circulating melatonin in humans—a study of 289 community-dwelling Japanese women (mean age: 48 y)—found a higher intake of vegetables to be associated with higher urinary aMT6s concentrations (55). Specifically, mean aMT6s concentrations, as measured in first morning urine sample, were 32.7 ng/mg creatinine among the women with the lowest quartile of green and yellow vegetable intake and 38.3 ng/mg creatinine among women in the highest quartile, after adjustment for age, BMI, smoking status, and many other important covariates. Similar to our findings, the Japanese study did not observe an association

TABLE 2

Multivariate-adjusted mean concentrations of 6-sulfatoxymelatonin (aMT6s), by quintile (Q) of total energy and nutrient intakes, and *P* values for the linear trend across quintiles among 998 women from the Nurses' Health Study (NHS; n = 582) and NHS II (n = 413)^{*I*}

		aMT6s		
Dietary variable	C	Lerrer level of 05% CL	United and a f 050% CI	n ²
	Geometric mean	Lower level of 95% CI	Upper level of 95% CI	P
T-4-1		ng/mg creatinine		0.24
$c_1 < c_2 > c_1 < c_2 > c_2 $	17.6	15.5	20.0	0.24
$Q_{12} < 1555$ Kcal/d $Q_{22} = 1252 = 1(22) \frac{1}{1252} \frac{1}{125$	17.0	15.5	20.0	
Q2: 1353–1652 Kcal/d	18.3	10.2	20.7	
Q3: 1633–1882 Kcal/d	16.8	14.8	19.1	
Q4: $1883 - 2159$ kcal/d	10.3	14.4	18.5	
$Q_{5:} > 2159 \text{ kcal/d}$	16.4	14.5	18.6	0.97
	16.0	14.0	10.0	0.87
$Q_{12} < 44.9 \text{ g/d}$	10.9	14.9	19.2	
Q_{2} : 44.9–31.5 g/d	17.0	13.0	19.9	
Q3: 51.4–57.4 g/d	10.9	14.8	19.3	
Q4: 57.5-64.5 g/d	17.0	14.8	19.4	
Q5: >64.5 g/d	16.9	14.9	19.2	0.00
Animal fat	10.2	15.0	21.0	0.22
Q1: <19.2 g/d	18.3	15.9	21.0	
Q2: 19.2–23.9 g/d	16.2	14.2	18.6	
Q3: 24.0–28.2 g/d	17.8	15.6	21.3	
Q4: 28.3–34.3 g/d	17.8	15.9	20.0	
Q5: >34.3 g/d	15.4	13.3	17.7	
Vegetable fat				0.94
Q1: <21.7 g/d	17.7	16.1	20.2	
Q2: 21.7–25.4 g/d	17.6	15.5	19.9	
Q3: 25.5–29.1 g/d	15.4	13.4	17.7	
Q4: 29.2–33.7 g/d	16.7	14.7	19.1	
Q5: >33.7 g/d	17.9	15.7	20.4	
Saturated fat				0.43
Q1: <13.9 g/d	17.6	15.5	20.3	
Q2: 13.9–16.4 g/d	16.7	14.6	19.0	
Q3: 16.5–18.6 g/d	16.8	14.8	19.1	
Q4: 18.7–21.9 g/d	18.8	16.8	21.1	
Q5: >21.9 g/d	15.5	13.4	17.9	
Monounsaturated fat				0.79
Q1: <16.8 g/d	17.0	14.9	19.3	
Q2: 16.8–19.9 g/d	16.2	14.2	18.5	
Q3: 20.0–22.4 g/d	18.7	16.5	21.2	
Q4: 22.5–26.2 g/d	17.6	15.6	19.8	
Q5: >26.2 g/d	16.1	14.1	18.4	
Polyunsaturated fat				0.79
Q1: <9.55 g/d	16.9	15.1	19.0	
Q2: 9.55–11.05 g/d	17.6	15.6	19.7	
Q3: 11.06–12.58 g/d	16.7	14.7	18.9	
Q4: 12.59–14.65 g/d	16.4	14.3	18.8	
Q5: >14.65 g/d	17.8	15.5	20.4	
trans-Unsaturated fat				0.22
O1: < 1.3 g/d	18.7	16.2	21.6	
O2: 1.4–1.7 g/d	17.1	14.8	19.7	
$O_3: 1.8-2.1 \text{ g/d}$	17.5	15.6	19.7	
O4: 2.2–3.1 g/d	16.1	14.1	18.3	
$O_5: > 3.1 \text{ g/d}$	16.1	14.0	18.5	
Total omega-3 fats	10.1		10.0	0.82
$O1 \cdot < 0.91 \text{ o/d}$	173	15.1	10 0	0.02
$\Omega^2 \cdot \Omega = 0.91 \pm 0.08 \text{ g/d}$	16.5	14 7	18.5	
$O_3 \cdot 1.09 = 1.25 \text{ g/d}$	17.0	150	20.1	
Ω_4 1 26-1 54 g/d	17.2	15.7	10.2	
$\sqrt{1.120}$ 1.57 g/d 05: >1.54 g/d	16.9	14.6	10.2	
√2. ~1.24 g/u	10.0	14.0	17.2	

TABLE 2 (C	Continued)
------------	------------

		aMT6s		
Dietary variable	Competition and a	L	Unner level of 050% CI	n ²
	Geometric mean	Lower level of 95% CI	Upper level of 95% CI	P
Total protein		ng/mg creatinine		0.76
O1: < 62.5 g/d	17.8	15.3	20.6	0.70
$Q_{1.} < 02.5 \text{ g/d}$ $Q_{2.} 62.5 - 69.9 \text{ g/d}$	16.7	14.6	19.0	
Q_{2}^{2} , $Q_{$	16.6	14.0	19.0	
Q_{3}^{\prime} , 70.0-77.0 g/d	10.0	15.6	10.7	
Q_{4} , 77.1-65.2 g/d Q_{5} : >85.2 g/d	16.7	14.6	19.9	
Animal protein	10.7	14.0	19.2	0.87
$\Omega_1 < 39.1 \text{ g/d}$	17.4	15.1	20.0	0.87
$O_2: 39.1 = 45.6 \text{ g/d}$	16.4	14.4	18.8	
Q_2 : 35.1–45.0 g/d Q_3 : 45.7–52.4 g/d	17.2	15.1	19.5	
Q_{3}^{-1} , q_{3}^{-1} , q_{3}^{-1} , q_{3}^{-1}	17.2	15.0	20.2	
Q_{4} . $52.5-01.4$ g/d	16.5	14.4	18.9	
Vegetable protein	10.5	17.7	10.9	0.75
O_1 < 10.0 g/d	16.8	14.8	10.1	0.75
$Q_{1.} < 19.9 \text{ g/d}$ $Q_{2.} 19.9 - 22.2 \text{ g/d}$	16.8	14.8	19.1	
Q_{2} : 17.7-22.2 g/d Q_{3} : 22.3-24.6 g/d	17.5	15.5	19.1	
Q_{3}^{2} , 22.3–24.0 g/d Q_{4}^{2} ; 24.7–27.9 g/d	17.5	14.9	19.7	
$Q_{4} = 27.9 \text{ g/d}$	17.0	15.3	19.4	
Q3. 227.9 g/u	17.5	15.5	19.0	0.65
O1: < 100.1 g/d	16.5	14.3	10.0	0.05
Q1. <199.1 g/d Q2: 100.1, 216.5 g/d	10.5	14.5	20.4	
Q_{2} , 199.1–210.5 g/d Q_{2} , 216.6, 222.5 g/d	17.9	13.7	19.6	
Q_{3}^{2} , 210.0–232.5 g/d Q_{4}^{2} , 222.6, 251.0 g/d	10.4	14.4	10.0	
Q4: 252.0-251.0 g/d	10.9	15.0	19.1	
Q3: >231.0 g/d	17.7	13.7	20.0	0.60
	16.0	14.9	10.2	0.09
Q1: <4.2 g/d	10.9	14.8	19.2	
Q_{2} : 4.2–4.9 g/d	17.1	13.1	19.4	
$Q_{3}: 5.0-5.6 \text{ g/d}$	10.7	14.8	18.8	
Q4: 5.7 = 0.0 g/d	17.5	15.2	19.7	
Q3: >0.0 g/d	17.4	15.5	19.9	0.74
	15.0	14.0	17.9	0.74
$Q_{12} < 213.7 \ 10/d$	13.8	14.0	17.8	
Q2: 213.7-303.5 10/d	17.4	15.4	19.7	
Q3: 505.4–514.8 IU/d	17.5	15.4	19.8	
Q4: 514.9 = 656.4 IU/d	19.0	10.7	21.7	
Q5: >656.4 IU/d	15.9	13.9	18.2	0.21
O_1 $< 820 m c/d$	16.6	14.6	18.0	0.51
Q1: <839 mg/d	16.0	14.0	18.9	
Q2: 839–1125 mg/d	16.8	14.9	18.9	
Q3: 1126–1386 mg/d	17.7	13.7	20.0	
Q4: $138/-1/63 \text{ mg/d}$	15.7	13.8	17.9	
Q5: >1/63 mg/d	18.8	16.4	21.5	0.(1
α-Carotene	17.1	15.0	10.2	0.61
Q1: $<415.5 \ \mu g/d$	17.1	15.3	19.3	
Q2: 415.5–615.9 µg/d	15.7	13.9	17.7	
Q3: 616.0–819.9 μ g/d	19.2	16.9	21.8	
Q4: 820.0–1170 µg/d	15.7	13.8	17.8	
Q5: >11/0 μ g/d	17.9	15.6	20.4	0 =0
p-Carotene			10.5	0.79
Q1: $<2549 \ \mu g/d$	16.8	14.9	18.8	
Q2: 2549–3546 μg/d	15.8	14.0	18.0	
Q3: 3547–4472 µg/d	18.8	16.6	21.3	
Q4: 4473–5959 μg/d	17.2	15.2	20.0	
Q5: >5959 μg/d	16.9	14.8	19.3	

TABLE 2 (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			aMT6s		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dietary variable within quintiles	Geometric mean	Lower level of 95% CI	Upper level of 95% CI	P^2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ng/mg creatinine		
Q1: $< 80.5 \ yg/d$ 16.3 14.4 18.5 Q2: $19.9 - 178.1 \ pg/d$ 17.6 15.6 20.0 Q4: $17.8 - 2.2457 \ pg/d$ 17.8 15.7 20.1 Q5: $24.57 \ pg/d$ 17.8 15.7 20.3 Lutein/zexanthin 0.46 0.47 18.7 Q2: $1587 - 2198 \ pg/d$ 18.1 16.0 20.5 Q3: $2199 - 2917 \ pg/d$ 18.1 13.3 17.2 Q4: $2187 - 2198 \ pg/d$ 18.1 13.3 17.2 Q3: $297 - 9379 \ pg/d$ 15.1 13.3 17.2 Q4: $2918 - 3959 \ pg/d$ 16.1 14.1 18.4 Q3: $3940 - 6517 \ pg/d$ 15.7 13.8 17.8 Q2: $4376 - 4939 \ pg/d$ 17.8 15.6 20.3 Total retinol 0.49 Q1: 4:518 - 01.3 19.5 Q3: $271.7 - 3913 \ U/d$ 16.3 14.4 18.6 Q4: 3914 - 5412 \ U/d 17.6 15.5 20.0 Total vitamin A ⁴ 0.20 Q2	β -Cryptoxanthin				0.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q1: $< 80.5 \ \mu g/d$	16.3	14.4	18.5	
Q3: 119.9-178.1 $\mu g d$ 17.6 15.6 20.0 Q4: 178.2-245.7 $\mu g d$ 17.9 17.5 20.1 Q5: > 245.7 $\mu g d$ 17.9 17.5 20.3 Lutein/zexambin 0.46 0.47 18.7 Q1: < (55.7 $\mu g d$ 16.6 14.7 18.7 Q2: 1587-2198 $\mu g d$ 18.1 16.0 20.5 Q3: 2199-217 $\mu g d$ 15.1 13.3 17.2 Q4: 2918-3959 $\mu g d$ 18.0 15.7 20.4 Q2: 3476-393 $\mu g d$ 17.9 15.6 20.2 Lycopen 0.96 Q2: 4376-393 $\mu g d$ 17.7 15.7 20.0 Q2 Q2: 4376-393 $\mu g d$ 17.8 15.6 20.3 Q4: 4314-333 $\mu g d$ 17.7 15.7 20.0 Q2: 553.53.53.53.53.64 0.49 Q1: <155.3	Q2: 80.6–119.8 μg/d	16.0	14.0	18.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q3: 119.9–178.1 µg/d	17.6	15.6	20.0	
$\hat{O}_{52}: > 245.7 \ \mu g/d$ 17.9 17.5 20.3 Lutein/zexanthim 0.46 0.47 18.7 Q1: <1587 \ \mu g/d	Q4: 178.2–245.7 µg/d	17.8	15.7	20.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q5: >245.7 μ g/d	17.9	17.5	20.3	
Q1: <1S87 µg/d	Lutein/zeaxanthin				0.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q1: <1587 μg/d	16.6	14.7	18.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2: 1587-2198 µg/d	18.1	16.0	20.5	
Q4: 2918-3959 µg/d 18.0 15.7 20.4 Q5: >3959 µg/d 17.9 15.6 20.2 Q6: <3476 µg/d	O3: 2199–2917 µg/d	15.1	13.3	17.2	
Q5: >3959 $\mu g/d$ 17.9 15.6 20.2 Lycopene 0.96 Q1: <3476 $\mu g/d$ 18.3 16.0 20.9 Q2: 3476 / $\mu g/d$ 16.1 14.1 18.4 Q3: 4940-6517 $\mu g/d$ 17.7 15.7 20.0 Q4: 6518-9153 $\mu g/d$ 15.7 13.8 17.8 Q5: >9153 $\mu g/d$ 17.8 15.6 20.3 Total retinol 0.49 0.44 18.6 Q1: <1553 IU/d	O4: 2918–3959 µg/d	18.0	15.7	20.4	
Lycopene 0.96 Q1: <3476 $\mu g/d$ 18.3 16.0 20.9 Q2: 3476-4939 $\mu g/d$ 16.1 14.1 18.4 Q3: 4940-6517 $\mu g/d$ 17.7 15.7 20.0 Q4: 6518-9153 $\mu g/d$ 17.8 15.6 20.3 Q5: >9153 $\mu g/d$ 17.8 15.6 20.3 Total retinol 0.49 0.49 0.49 Q1: <1553 $\mu g/d$ 17.2 15.3 19.5 Q2: 1553-2716 $\Pi J/d$ 17.6 15.5 20.0 Q3: 2717-3913 $\Pi J/d$ 16.3 14.4 18.6 Q4: 3914-5412 $\Pi J/d$ 17.6 15.5 20.0 Q1: <1258-1772 μg RAE/d 16.1 14.3 18.0 Q2: 1258-1772 μg RAE/d 16.6 14.1 18.1 Q2: 1258-1772 μg RAE/d 16.0 14.1 18.1 Q4: 2437-3068 μg RAE/d 19.2 16.8 21.9 O14 vitamin C 0.34 0.34 0.34 Q2: 137.0 $\mu g/d$ 16.2 14.4 18.2 Q2: 137.0 $\mu g/d$ 16.7 14.8 18.8 <t< td=""><td>$Q_{11} = 2310^{-1} \text{ error } \mu_{g}/d$</td><td>17.9</td><td>15.6</td><td>20.2</td><td></td></t<>	$Q_{11} = 2310^{-1} \text{ error } \mu_{g}/d$	17.9	15.6	20.2	
Operation Operation Operation Q1: <3476 $\mu g/d$ 18.3 16.0 20.9 Q2: 3476 $-4939 \ \mu g/d$ 16.1 14.1 18.4 Q3: 4940-6517 $\mu g/d$ 17.7 15.7 20.0 Q4: 6518-9153 $\mu g/d$ 17.8 15.6 20.3 Total retinol 0.49 0.49 0.49 Q1: <1553: TU/d	Lycopene	110	1010	2012	0.96
Q1: 3370-4939 μ_{gd} 16.1 14.1 18.4 Q2: 3370-4939 μ_{gd} 15.7 15.7 20.0 Q4: 6518-9153 μ_{gd} 15.7 13.8 17.8 Q5: >9153 μ_{gd} 17.8 15.6 20.3 Total retinol 0.49 0.49 0.49 Q1: <1553	$01: < 3476 \ \mu g/d$	18 3	16.0	20.9	0.70
Q3: 4940-6817 $\mu g/d$ 17.7 15.7 20.0 Q4: 6518-9153 $\mu g/d$ 15.7 13.8 17.8 Q5: >9153 $\mu g/d$ 17.8 15.6 20.3 Total retinol 0.49 Q1: <1553 1U/d	Ω^2 : 3476_4939 µg/d	16.1	14.1	18.4	
Q4: 6318-9153 $\mu g/d$ 17.7 12.7 13.8 17.8 Q5: >9153 $\mu g/d$ 17.8 15.6 20.3 Total retinol 0.49 Q1: <1553 IU/d	Q_2 : 5470 4959 µg/d Q_3 : 4940_6517 µg/d	17.7	15.7	20.0	
Q: 010^{-1} (123	$Q_{2}^{(3)}$	15.7	13.7	17.8	
Q3. 2913 µgu 17.8 15.8 20.3 Oul: <1553 IU/d	Q4. 0516-9155 μ g/d	17.9	15.6	20.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q5. $>9155 \mu g/d$	17.0	15.0	20.3	0.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_1 < 1552 \text{ H}/4$	16.5	14.6	10.7	0.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Q_{12} < 1553 10/d$	10.5	14.0	10.7	
Q4: $3914-5412$ IU/d 17.7 15.5 20.1 Q5: >5412 IU/d 17.6 15.5 20.0 Total vitamin A ³ 0.20 Q1: <1258 µg RAE/d 16.1 14.3 18.0 Q2: $1258-1772$ µg RAE/d 16.0 14.1 18.1 Q4: $2347-3068$ µg RAE/d 17.6 15.5 20.0 Q5: >3068 µg RAE/d 17.6 15.5 20.0 Q5: >3068 µg RAE/d 19.2 16.8 21.9 Total vitamin C 0.34 Q1: <137.0 mg/d 16.2 14.4 18.2 Q2: $137.0-198.9$ mg/d 17.1 15.0 19.4 Q3: $199.0-293.2$ mg/d 17.3 15.2 19.7 Q4: $293.3-614.4$ mg/d 18.1 15.7 20.9 Total vitamin E as tocopherol 0.85 Q1: <8.1 mg/d 16.6 14.6 18.8 Q2: $81-18.6$ mg/d 16.7 14.8 18.5 Q3: $187-108.1$ mg/d 16.7 14.8 18.5 Q3: $18.7-108.1$ mg/d 16.7 14.3 18.5 Q3: $18.7-108.1$ mg/d <td>Q2: 1555-2/16 IU/d</td> <td>17.2</td> <td>15.5</td> <td>19.5</td> <td></td>	Q2: 1555-2/16 IU/d	17.2	15.5	19.5	
Q4: 914-3412 10/d 17.7 15.5 20.1 Q5: >5412 10/d 17.6 15.5 20.0 Otal vitamin A ³ 0.20 Q1: <1258 μ g RAE/d 16.1 14.3 18.0 Q2: 1258-1772 μ g RAE/d 17.2 15.1 19.6 Q3: 1773-2346 μ g RAE/d 17.6 15.5 20.0 Q5: >3068 μ g RAE/d 19.2 16.8 21.9 Total vitamin C 0.34 Q1: <137.0 mg/d	Q3: 2/17–3913 IU/d	16.3	14.4	18.6	
QS: >>412 10/d 17.6 15.5 20.0 Total vitamin A^3 0.20 Q1: <1258 µ g RAE/d	Q4: 3914–5412 IU/d	17.7	15.5	20.1	
Total vitamin A* 0.20 Q1: <1258 μ g RAE/d 16.1 14.3 18.0 Q2: 1258-1772 μ g RAE/d 17.2 15.1 19.6 Q3: 1773-2346 μ g RAE/d 16.0 14.1 18.1 Q4: 2347-3068 μ g RAE/d 19.2 16.8 21.9 Total vitamin C 0.34 Q1: <137.0 mg/d	$Q_{5:} > 5412 IU/d$	17.6	15.5	20.0	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total vitamin A			10.0	0.20
Q2: 1258-17/12 μ g RAE/d 17.2 15.1 19.6 Q3: 1773-2346 μ g RAE/d 16.0 14.1 18.1 Q4: 2347-3068 μ g RAE/d 19.2 16.8 21.9 Total vitamin C 0.34 Q1: <137.0 mg/d	Q1: <1258 μ g RAE/d	16.1	14.3	18.0	
Q3: 1773-2346 μ g RAE/d 16.0 14.1 18.1 Q4: 2347-3068 μ g RAE/d 17.6 15.5 20.0 Q5: >3068 μ g RAE/d 19.2 16.8 21.9 Total vitamin C 0.34 Q1: <137.0 mg/d	Q2: 1258–1772 μg RAE/d	17.2	15.1	19.6	
Q4: 2347-3068 μ g RAE/d 17.6 15.5 20.0 Q5: >3068 μ g RAE/d 19.2 16.8 21.9 Total vitamin C 0.34 Q1: <137.0 mg/d	Q3: 1773–2346 µg RAE/d	16.0	14.1	18.1	
Q5: >3068 μ g RAE/d 19.2 16.8 21.9 Total vitamin C 0.34 Q1: <137.0 mg/d	Q4: 2347–3068 µg RAE/d	17.6	15.5	20.0	
Total vitamin C 0.34 Q1: <137.0 mg/d	Q5: >3068 µg RAE/d	19.2	16.8	21.9	
Q1:<137.0 mg/d16.214.418.2Q2:137.0-198.9 mg/d17.115.019.4Q3:199.0-293.2 mg/d17.315.219.7Q4:293.3-614.4 mg/d16.714.818.8Q5:>614.4 mg/d18.115.720.9Total vitamin E as tocopherol0.85Q1:<8.1 mg/d	Total vitamin C				0.34
Q2: 137.0-198.9 mg/d17.115.019.4Q3: 199.0-293.2 mg/d17.315.219.7Q4: 293.3-614.4 mg/d16.714.818.8Q5: >614.4 mg/d18.115.720.9Total vitamin E as tocopherol0.85Q1: <8.1 mg/d	Q1: <137.0 mg/d	16.2	14.4	18.2	
Q3: 199.0–293.2 mg/d17.315.219.7Q4: 293.3–614.4 mg/d16.714.818.8Q5: >614.4 mg/d18.115.720.9Total vitamin E as tocopherol0.85Q1: <8.1 mg/d	Q2: 137.0–198.9 mg/d	17.1	15.0	19.4	
Q4: 293.3–614.4 mg/d16.714.818.8Q5: >614.4 mg/d18.115.720.9Total vitamin E as tocopherol0.85Q1: <8.1 mg/d	Q3: 199.0–293.2 mg/d	17.3	15.2	19.7	
Q5: $>614.4 \text{ mg/d}$ 18.115.720.9Total vitamin E as tocopherol0.85Q1: $<8.1 \text{ mg/d}$ 16.614.618.8Q2: $8.1-18.6 \text{ mg/d}$ 16.214.318.5Q3: $18.7-108.1 \text{ mg/d}$ 18.416.220.8Q4: $108.2-189.9 \text{ mg/d}$ 18.116.120.4Q5: $>189.9 \text{ mg/d}$ 16.714.519.2Total zinc0.73Q1: $<10.4 \text{ mg/d}$ 16.314.418.5Q2: $10.4-13.6 \text{ mg/d}$ 17.515.619.7Q3: $13.7-19.0 \text{ mg/d}$ 16.814.819.1Q4: $19.1-24.9 \text{ mg/d}$ 17.715.720.0Q5: $>24.9 \text{ mg/d}$ 17.014.719.7Total selenium0.5414.419.1Q2: $0.01-0.50 \mu g/d$ 18.115.920.6Q3: $0.51-9.80 \mu g/d$ 17.114.819.9Q4: $9.81-20.5 \mu g/d$ 15.413.617.5Q5: $>20.5 \mu g/d$ 15.413.617.5	Q4: 293.3-614.4 mg/d	16.7	14.8	18.8	
Total vitamin E as tocopherol0.85Q1: <8.1 mg/d	Q5: >614.4 mg/d	18.1	15.7	20.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total vitamin E as tocopherol				0.85
Q2: $8.1-18.6 \text{ mg/d}$ 16.214.318.5Q3: $18.7-108.1 \text{ mg/d}$ 18.4 16.2 20.8 Q4: $108.2-189.9 \text{ mg/d}$ 18.1 16.1 20.4 Q5: $>189.9 \text{ mg/d}$ 16.7 14.5 19.2 Total zinc0.73Q1: $<10.4 \text{ mg/d}$ 16.3 14.4 18.5 Q2: $10.4-13.6 \text{ mg/d}$ 17.5 15.6 19.7 Q3: $13.7-19.0 \text{ mg/d}$ 16.8 14.8 19.1 Q4: $19.1-24.9 \text{ mg/d}$ 17.7 15.7 20.0 Q5: $>24.9 \text{ mg/d}$ 17.0 14.7 19.7 Total selenium0.54Q1: $<0.01 \mu g/d$ 16.5 14.4 19.1 Q2: $0.01-0.50 \mu g/d$ 18.1 15.9 20.6 Q3: $0.51-9.80 \mu g/d$ 17.1 14.8 19.9 Q4: $9.81-20.5 \mu g/d$ 15.4 13.6 17.5 Q5: $>20.5 \mu g/d$ 15.4 21.0	Q1: <8.1 mg/d	16.6	14.6	18.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q2: 8.1-18.6 mg/d	16.2	14.3	18.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q3: 18.7-108.1 mg/d	18.4	16.2	20.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q4: 108.2-189.9 mg/d	18.1	16.1	20.4	
Total zinc0.73Q1: <10.4 mg/d	Q5: >189.9 mg/d	16.7	14.5	19.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total zinc				0.73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q1: <10.4 mg/d	16.3	14.4	18.5	
Q3: $13.7-19.0 \text{ mg/d}$ 16.814.819.1Q4: $19.1-24.9 \text{ mg/d}$ 17.715.720.0Q5: $>24.9 \text{ mg/d}$ 17.014.719.7Total selenium0.54Q1: $<0.01 \mu \text{g/d}$ 16.514.419.1Q2: $0.01-0.50 \mu \text{g/d}$ 18.115.920.6Q3: $0.51-9.80 \mu \text{g/d}$ 17.114.819.9Q4: $9.81-20.5 \mu \text{g/d}$ 15.413.617.5O5: $>20.5 \mu \text{g/d}$ 18.215.821.0	Q2: 10.4–13.6 mg/d	17.5	15.6	19.7	
$ \begin{array}{ccccccccccccccccccccccccccccccc$	O3: 13.7–19.0 mg/d	16.8	14.8	19.1	
Q5: >24.9 mg/d17.014.719.7Total selenium0.54Q1: $< 0.01 \mu g/d$ 16.514.419.1Q2: $0.01-0.50 \mu g/d$ 18.115.920.6Q3: $0.51-9.80 \mu g/d$ 17.114.819.9Q4: $9.81-20.5 \mu g/d$ 15.413.617.5Q5: $> 20.5 \mu g/d$ 18.215.821.0	Q4: 19.1–24.9 mg/d	17.7	15.7	20.0	
Total selenium0.54 $Q1: < 0.01 \ \mu g/d$ 16.514.419.1 $Q2: 0.01-0.50 \ \mu g/d$ 18.115.920.6 $Q3: 0.51-9.80 \ \mu g/d$ 17.114.819.9 $Q4: 9.81-20.5 \ \mu g/d$ 15.413.617.5 $O5: > 20.5 \ \mu g/d$ 18.215.821.0	Q5: >24.9 mg/d	17.0	14.7	19.7	
Q1: <0.01 µg/d 16.5 14.4 19.1 Q2: 0.01-0.50 µg/d 18.1 15.9 20.6 Q3: 0.51-9.80 µg/d 17.1 14.8 19.9 Q4: 9.81-20.5 µg/d 15.4 13.6 17.5 Q5: >20.5 µg/d 18.2 15.8 21.0	Total selenium				0.54
Q2: 0.01-0.50 µg/d 18.1 15.9 20.6 Q3: 0.51-9.80 µg/d 17.1 14.8 19.9 Q4: 9.81-20.5 µg/d 15.4 13.6 17.5 Q5: >20.5 µg/d 18.2 15.8 21.0	01: <0.01 µg/d	16.5	14.4	19.1	
Q3: 0.51 -9.80 µg/d 16.1 15.9 20.9 Q3: 0.51 -9.80 µg/d 17.1 14.8 19.9 Q4: 9.81-20.5 µg/d 15.4 13.6 17.5 Q5: >20.5 µg/d 18.2 15.8 21.0	$O_2: 0.01-0.50 \text{ µg/d}$	18.1	15.9	20.6	
Q4: $9.81-20.5 \ \mu g/d$ 15.4 13.6 17.5 Q5: $>20.5 \ \mu g/d$ 18.2 15.8 21.0	O_3 : 0.51–9.80 µg/d	17.1	14.8	19.9	
Q1: D3: D3: D3: D3: Q5: >205 upd 182 158 210	$04.981-205 \mu g/d$	15.4	13.6	17.5	
	$05. > 20.5 \mu g/d$	18.7	15.0	21.0	

	aMT6s			
Dietary variable within quintiles	Geometric mean	Lower level of 95% CI	Upper level of 95% CI	P^2
		ng/mg creatinine		
Total folate				0.23
Q1: <422 μg/d	17.5	15.6	19.7	
Q2: 422–587 µg/d	15.6	13.8	17.7	
Q3: 588–743 µg/d	16.7	14.6	19.2	
Q4: 744–874 μg/d	16.6	14.5	19.0	
Q5: >874 μg/d	19.2	16.9	21.8	
Total vitamin B-6				0.61
Q1: <2.12 mg/d	17.8	15.8	20.0	
Q2: 2.12-3.15 mg/d	14.9	13.2	16.8	
Q3: 3.16-4.28 mg/d	19.2	16.9	21.9	
Q4: 4.29-14.9 mg/d	17.2	15.3	19.4	
Q5: >14.9 mg/d	16.5	14.4	19.0	
Caffeine				0.86
Q1: <28.5 mg/d	17.2	15.1	19.6	
Q2: 28.5-113.0 mg/d	17.2	15.1	19.6	
Q3: 113.1-193.0 mg/d	16.7	14.7	19.1	
Q4: 193.1-331.5 mg/d	17.5	15.6	19.7	
Q5: >331.5 mg/d	16.7	14.8	18.9	
Tryptophan				0.93
Q1: <0.71 g/d	17.4	15.0	20.2	
Q2: 0.71–0.79 g/d	17.1	14.9	19.6	
Q3: 0.80–0.88 g/d	16.2	14.2	18.5	
Q4: 0.89-0.99 g/d	17.6	15.6	19.8	
Q5: >0.99 g/d	17.0	14.8	19.6	

¹ All nutrients were adjusted for total energy intake (quintiles), cohort (NHS or NHS II), age (<45, 45–49, 50–54, 55– 59, 60–64, 65–69, 70–74, and \geq 75 y), parity (nulliparous, 1–2, 3–4, and \geq 5), BMI (in kg/m²; <21, 21–22.9, 23–24.9, 25– 29.9, and \geq 30), smoking status (never or past smoker and current smoker), and time of urine collection. RAE, retinol activity equivalent.

 2 *P* values representing the linear trend in aMT6s across nutrient intake were calculated with median intake in each quintile as a continuous variable.

³ 1 μ g RAE corresponds to 1 μ g retinol, 2 μ g β -carotene from supplements, 12 μ g β -carotene from food, or 24 μ g other dietary provitamin-A carotenoids.

between fruit intake and aMT6s concentrations (55), although no breakdown by specific fruit is provided. When we examined individual fruit and vegetables, we observed a positive association between orange juice consumption and an inverse association between tomato intake and melatonin. As opposed to other fruit intake, orange juice is commonly fortified with vitamin D in the United States, but vitamin D was not independently associated with aMT6 in our study. The tomato finding is contrary to what one would have expected and requires confirmation.

Animal models have suggested that the ingestion of walnuts increases circulating concentrations of melatonin (56); however, in the only other study in humans to date, no association between nut intake and first morning aMT6s concentrations was observed (37), which agrees with our finding of no association between nut intake and melatonin.

Ours was the first study to examine associations between dairy intake and circulating melatonin concentrations. We observed significantly lower melatonin concentrations in women with higher dairy cream consumption, but more studies are needed to confirm our finding.

Whether meat consumption affects circulating melatonin in humans has also not been studied to date. Earlier evidence

supports a stronger association between red meat intake and premenopausal breast cancer risk than that in older women (57). That red meat consumption during early adult life increases breast cancer risk was previously described in the NHS II cohort (58), but there is now supportive new evidence from within the same cohort that red meat consumption, particularly if consumed during early adolescence, may increase the breast cancer risk later in life (59). Our findings of lower melatonin concentrations being associated with a higher intake of red meat could provide indirect mechanistic support for these associations, given prior evidence of an inverse association between circulating melatonin and breast cancer risk (1, 34, 60). Furthermore, although we observed no significant trend, the lower melatonin concentrations associated with a higher intake of animal and saturated fat in our data lend further support to this notion. Given ours is the first report on this association, again, confirmation is required.

The strengths of our study include its fairly large size and the extensive information on dietary and lifestyle factors collected over >30 y. A potential limitation of our study was its cross-sectional nature; there is no way to know whether factors associated with aMT6s concentrations determine those concentrations or are in fact determined by them. Moreover, because of

TABLE 3

Multivariate-adjusted mean concentrations of 6-sulfatoxymelatonin (aMT6s), by quartile (Q) or tertile (T) of food intake, and *P* values for linear trend across categories among 998 women from the Nurses' Health Study (NHS; n = 582) and NHS II (n = 413)^{*l*}

Dietary variable ²		aMT6s		
and range of intake				
within categories	Geometric mean	Lower level of 95% CI	Upper level of 95% CI	P^3
		ng/mg creatinine		
Fruit		0 0		0.97
Q1: <1.30 servings/d	17.5	15.6	19.7	
Q2: 1.30-2.05 servings/d	15.8	14.1	17.8	
Q3: 2.06–2.88 servings/d	17.6	15.7	19.7	
O4: > 2.88 servings/d	17.4	15.6	19.5	
Vegetables				0.66
Q1: <2.45 servings/d	17.8	16.0	19.8	
Q2: 2.45-3.46 servings/d	16.8	15.1	18.7	
Q3: 3.47–4.73 servings/d	16.9	15.1	18.9	
Q4: >4.73 servings/d	16.9	14.9	19.1	
Total meat				0.04
Q1: <0.53 serving/d	17.8	15.8	20.1	
Q2: 0.53–0.81 serving/d	18.1	16.2	20.2	
Q3: 0.82–1.21 servings/d	17.1	15.3	19.1	
O4: > 1.21 servings/d	15.5	13.8	17.3	
Red meat				0.01
Q1: <0.21 serving/d	17.9	15.9	20.2	
O2: 0.21–0.36 serving/d	17.0	15.2	19.1	
Q3: 0.37–0.60 serving/d	18.1	16.2	20.2	
O4: > 0.60 serving/d	15.3	13.7	17.2	
Poultry				0.88
O1: <0.25 serving/d	18.0	16.1	20.1	
$O_2: 0.25 - 0.39 \text{ serving/d}$	16.2	14.4	18.1	
$O_3: 0.40-0.57$ serving/d	16.3	14.7	18.2	
O4: > 0.57 serving/d	17.8	15.8	19.9	
Fish	1710	1010		0.53
$01^{\circ} < 0.14$ serving/d	17.1	15.3	19.1	0.000
O^2 : 0.14-0.18 serving/d	17.9	15.9	20.1	
O_3^{-1} : 0.19-0.32 serving/d	16.0	14.5	17.7	
$O4^{\circ} > 0.32$ serving/d	17.8	15.7	20.2	
Nuts	17.0	15.7	20.2	0.79
$01^{\circ} < 0.10$ serving/d	16.9	15.2	18.9	0.77
Ω^2 : 0.10-0.21 serving/d	17.5	15.6	19.5	
$O_3: 0.22 = 0.47 \text{ serving/d}$	17.3	15.3	19.5	
04: >0.47 serving/d	16.6	14.8	18 7	
Cheese	10.0	14.0	10.7	0.96
01: < 0.28 serving/d	16.8	15.1	18 7	0.70
O^2 : 0.28-0.46 serving/d	16.9	15.1	18.8	
$O_3: 0.47_0.68 \text{ serving/d}$	17.1	15.5	19.3	
04: >0.68 serving/d	17.1	15.1	19.5	
Milk	17.5	15.5	19.7	0.51
01: < 0.40 serving/d	17.2	15.4	10.1	0.51
Q_1 : <0.40 serving/d	17.2	15.4	19.1	
Q_{2}^{2} : 0.40-0.50 serving/d	17.5	15.5	19.0	
$Q_{3}^{(1)} = 0.91 - 1.72$ servings/d	16.9	15.0	10.9	
Croom	10.9	15.2	10.0	0.01
T1: < 0.03 serving/d	18.2	167	10.0	0.01
T1. ~ 0.03 serving/u	16.2	10.7	19.9	
12: 0.05-0.07 serving/d	10./	13.1	18.4	
15: >0.07 serving/d	13.9	14.2	1/./	0.45
	17 1	14.0	10.0	0.45
Q1: < 0.07 serving/d	1/.1	14.8	19.8	
Q_2 : 0.07–0.11 serving/d	17.3	15.8	19.0	
$Q_{3}: 0.12 - 0.22$ serving/d	1/.4	15.4	19.5	
Q4: >0.22 serving/d	10.4	14.6	18.4	

TABLE :	3 (Continue)	d)
---------	---------------------	----

Dietary variable ² and range of intake within categories	aMT6s			
	Geometric mean	Lower level of 95% CI	Upper level of 95% CI	P^{3}
	ng/mg creatinine			
Breads				0.88
Q1: <0.72 serving/d	16.8	15.0	18.8	
Q2: 0.72-1.11 servings/d	17.4	15.7	19.3	
Q3: 1.12-1.90 servings/d	16.9	15.1	19.0	
Q4: >1.90 servings/d	17.1	15.2	19.4	

¹ All dietary factors were adjusted for cohort (NHS or NHSII), age (<45, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, and \geq 75 y), parity (nulliparous, 1–2, 3–4, and \geq 5), BMI (in kg/m²; <21, 21–22.9, 23–24.9, 25–29.9, and \geq 30), smoking status (never or past smoker and current smoker), and time of urine collection.

² Serving sizes: fruit and vegetables, 1 serving \approx 1 piece, 1/2 cup (118.5 mL), or a small glass (of juice); meat, 1 serving \approx 4–6 oz; poultry, 1 serving \approx 3 oz; fish, 1 serving \approx 3–5 oz; nuts, 1 serving \approx small packet or 1 oz; cheese, 1 serving \approx 1 slice or 1 oz serving; milk, 1 serving \approx 8 oz glass; dairy cream, 1 serving \approx 1 Tbs (15 mL); rice, 1 serving \approx 1 cup; and bread, 1 serving \approx 1 slice. One ounce corresponds to 28.4 g.

 3 P values representing the linear trend in aMT6s across food intake were calculated with median intake in each category as a continuous variable.

the modest nature of our few significant P values and multiple comparisons, chance cannot be ruled out. In few instances, the collection of urine specimens may have preceded assessments of food and nutrient intakes. However, because we generally used the average of 2 assessments to reduce random error (1), it appears unlikely that both assessments would have preceded urine collection and we therefore do not expect this to have had a major affect on our results. Other limitations include the lack of information on the use of β -blockers and other drugs that may affect melatonin concentrations. Roughly 10% of the women in our study reported regular use of any antidepressants. We did not observe an association between antidepressants and aMT6s concentrations. However, assessment may have been incomplete; moreover, the type of antidepressant medication was unknown in our study. Another potential limitation is that we had only one measure of melatonin: although urinary aMT6s concentrations correlated well over time (20, 61, 62), the onetime measurement of melatonin limited our ability to take into account circadian phase, amplitude, and duration. Finally, it is conceivable that dietary tryptophan intake affects gastrointestinal production, but is not well reflected in circulating concentrations: administering tryptophan has induced melatonin synthesis and release in the gastrointestinal tract of chicks and rats (63), with the concentration of daytime melatonin in the gastrointestinal tissue surpassing blood concentrations by 10-100 times (64).

In summary, our data show a few associations between nutrients and food intake, requiring confirmation by other studies. Overall, they suggest that intake of meat may have the potential to alter circulating melatonin concentrations. Future studies should examine diet and melatonin associations in other populations, including Asians, because their diets may be richer in melatonin content than diets in the United States.

We express our deep gratitude for the continued and generous support of the devoted nurses participating in both Nurses' Health Studies. We also thank Susie Lackey and her colleagues at the Endocrine Core Laboratory, Yerkes Primate Research Center, Emory University, for collaboration on this project.

The authors' responsibilities were as follows—ESS: study concept and design, data collection, data analysis, statistical support, and manuscript writing; DF: study concept and design and manuscript writing; CN: data analysis and statistical support; RD: data analysis, study concept and design, and manuscript writing; MDH: data analysis and manuscript writing; and SEH: data collection and manuscript writing. None of the authors stated a potential conflict of interest.

REFERENCES

- Schernhammer ES, Hankinson SE. Urinary melatonin levels and breast cancer risk. J Natl Cancer Inst 2005;97:1084–7.
- Vijayalaxmi, Thomas CRJ, Reiter RJ, Herman TS. Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 2002;20:2575– 601.
- Reiter RJ. Mechanisms of cancer inhibition by melatonin. J Pineal Res 2004;37:213–4.
- 4. Arendt J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev Reprod 1998;3:13–22.
- Lane EA, Moss HB. Pharmacokinetics of melatonin in man: first pass hepatic metabolism. J Clin Endocrinol Metab 1985;61:1214–6.
- Baskett JJ, Cockrem JF, Antunovich TA. Sulphatoxymelatonin excretion in older people: relationship to plasma melatonin and renal function. J Pineal Res 1998;24:58–61.
- Graham C, Cook MR, Kavet R, Sastre A, Smith DK. Prediction of nocturnal plasma melatonin from morning urinary measures. J Pineal Res 1998;24:230–8.
- Schernhammer ES, Laden F, Speizer FE, et al. Rotating night shifts and risk of breast cancer in women participating in the Nurses' Health Study. J Natl Cancer Inst 2001;93:1563–8.
- Schernhammer ES, Laden F, Speizer FE, et al. Night-shift work and risk of colorectal cancer in the Nurses' Health Study. J Natl Cancer Inst 2003;95:825–88.
- Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 2001;93:1557–62.
- Hansen J. Increased breast cancer risk among women who work predominantly at night. Epidemiology 2001;12:74–7.
- Viswanathan AN, Hankinson SE, Schernhammer ES. Night shift work and the risk of endometrial cancer. Cancer Res 2007;67:10618–22.
- Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science 1980;210:1267–9.
- Bojkowski CJ, Arendt J, Shih MC, Markey SP. Melatonin secretion in humans assessed by measuring its metabolite, 6-sulfatoxymelatonin. Clin Chem 1987;33:1343–8.
- Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 2000;526:695–702.
- Skene DJ, Lockley SW, Thapan K, Arendt J. Effects of light on human circadian rhythms. Reprod Nutr Dev 1999;39:295–304.

- Aoki H, Yamada N, Ozeki Y, Yamane H, Kato N. Minimum light intensity required to suppress nocturnal melatonin concentration in human saliva. Neurosci Lett 1998;252:91–4.
- Travis RC, Allen DS, Fentiman IS, Key TJ. Melatonin and breast cancer: a prospective study. J Natl Cancer Inst 2004;96:475–82.
- Schernhammer ES, Kroenke CH, Dowsett M, Folkerd E, Hankinson SE. Urinary 6-sulfatoxymelatonin levels and their correlations with lifestyle factors and steroid hormone levels. J Pineal Res 2006;40:116–24.
- Schernhammer ES, Rosner B, Willett WC, Laden F, Colditz GA, Hankinson SE. Epidemiology of urinary melatonin in women and its relation to other hormones and night work. Cancer Epidemiol Biomarkers Prev 2004;13:936–43.
- Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Hennekens CH, Speizer FE. Dietary fat and the risk of breast cancer. N Engl J Med 1987; 316:22–8.
- Stampfer MJ, Willett WC, Colditz GA, Rosner B, Speizer FE, Hennekens CH. A prospective study of postmenopausal estrogen therapy and coronary heart disease. N Engl J Med 1985;313:1044–9.
- Hankinson SE, Willett WC, Manson JE, et al. Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 1998;90:1292–9.
- Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 1998;351:1393–6.
- Rockhill B, Willett WC, Hunter DJ, et al. Physical activity and breast cancer risk in a cohort of young women. J Natl Cancer Inst 1998;90:1155–60.
- Willett WC. Nutritional epidemiology. New York, NY: Oxford University Press, 1998:101–47.
- Holmes MD, Spiegelman D, Willett WC, et al. Dietary fat intake and endogenous sex steroid hormone levels in postmenopausal women. J Clin Oncol 2000;18:3668–76.
- Willett WC, Sampson L, Stampfer MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122:51–65.
- Fung TT, Willett WC, Stampfer MJ, Manson JE, Hu FB. Dietary patterns and the risk of coronary heart disease in women. Arch Intern Med 2001;161:1857–62.
- Lopez-Garcia E, Schulze MB, Fung TT, et al. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 2004;80:1029–35.
- Gao X, Chen H, Fung TT, et al. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr 2007;86:1486–94.
- Hu FB, Rimm E, Smith-Warner SA, et al. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 1999;69:243–9.
- Wolf AM, Hunter DJ, Colditz GA, et al. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 1994;23:991–9.
- Schernhammer ES, Hankinson SE. Urinary melatonin levels and postmenopausal breast cancer risk in the Nurses' Health Study cohort. Cancer Epidemiol Biomarkers Prev 2009; (in press).
- Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988;44:1049–60.
- Dubbels R, Reiter RJ, Klenke E, et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 1995;18:28–31.
- Hattori A, Migitaka H, Iigo M, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 1995;35:627–34.
- Burkhardt S, Tan DX, Manchester LC, Hardeland R, Reiter RJ. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J Agric Food Chem 2001;49: 4898–902.
- Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W. High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 2000;67:3023–9.
- Reiter RJ, Kim SJ. Phytochemicals: melatonin. New York, NY: Wiley, 1999.

- Balzer I, Hardeland R. Melatonin in green plants. In: Hardeland R, ed. Cellular rhythms and indolamines. Göttingen, Germany: University of Göttingen, 1995:152–61.
- Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin. FEBS J 2006;273:2813–38.
- Murch SJ, Simmons CB, Saxena PK. Melatonin in feverfew and other medicinal plants. Lancet 1997;350:1598–9.
- Reiter RJ, Tan DX, Burkhardt S, Manchester LC. Melatonin in plants. Nutr Rev 2001;59:286–90.
- Reiter RJ, Tan DX. Melatonin: an antioxidant in edible plants. Ann N Y Acad Sci 2002;957:341–4.
- Mattison JA, Lane MA, Roth GS, Ingram DK. Calorie restriction in rhesus monkeys. Exp Gerontol 2003;38:35–46.
- Roth GS, Lesnikov V, Lesnikov M, Ingram DK, Lane MA. Dietary caloric restriction prevents the age-related decline in plasma melatonin levels of rhesus monkeys. J Clin Endocrinol Metab 2001;86:3292–5.
- Selmaoui B, Oguine A, Thibault L. Food access schedule and diet composition alter rhythmicity of serum melatonin and pineal NAT activity. Physiol Behav 2001;74:449–55.
- 49. Tavartkiladze AG, Simoniia GV, Kolbaia DT, Shalashvili AG, Petriashvili TG. Biochemical, pharmacological and clinical aspects of influencing methioninc, tryptophan, pyridoxine (vitamin B6), Ca2+ and high-calorie food on the synthesis and intensity of the secretion of melatonin. Georgian Med News 2006;132:121–3.
- Sotak M, Mrnka L, Pacha J. Heterogeneous expression of melatonin receptor MT1 mRNA in the rat intestine under control and fasting conditions. J Pineal Res 2006;41:183–8.
- Michalsen A, Schlegel F, Rodenbeck A, et al. Effects of short-term modified fasting on sleep patterns and daytime vigilance in non-obese subjects: results of a pilot study. Ann Nutr Metab 2003;47:194–200.
- 52. Berga SL, Loucks TL, Cameron JL. Endocrine and chronobiological effects of fasting in women. Fertil Steril 2001;75:926–32.
- Bediz CS, Baltaci AK, Mogulkoc R. Both zinc deficiency and supplementation affect plasma melatonin levels in rats. Acta Physiol Hung 2003;90:335–9.
- Fournier I, Ploye F, Cottet-Emard JM, Brun J, Claustrat B. Folate deficiency alters melatonin secretion in rats. J Nutr 2002;132:2781–4.
- Nagata C, Nagao Y, Shibuya C, Kashiki Y, Shimizu H. Association of vegetable intake with urinary 6-sulfatoxymelatonin level. Cancer Epidemiol Biomarkers 2005;14:1333–5.
- Reiter RJ, Manchester LC, Tan DX. Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005;21:920–4.
- Missmer SA, Smith-Warner SA, Spiegelman D, et al. Meat and dairy food consumption and breast cancer: a pooled analysis of cohort studies. Int J Epidemiol 2002;31:78–85.
- Cho E, Chen WY, Hunter DJ, et al. Red meat intake and risk of breast cancer among premenopausal women. Arch Intern Med 2006;166: 2253–9.
- Linos E, Willett WC, Cho E, Colditz G, Frazier LA. Red meat consumption during adolescence among premenopausal women and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2008;17:2146–51.
- Schernhammer ES, Berrino F, Krogh V, et al. Urinary 6-sulfatoxymelatonin levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 2008;100:898–905.
- Davis S, Kaune WT, Mirick DK, Chen C, Stevens RG. Residential magnetic fields, light-at-night, and nocturnal urinary 6-sulfatoxymelatonin concentration in women. Am J Epidemiol 2001;154:591–600.
- Travis RC, Allen NE, Peeters PHM, van Noord PAH, Key TJ. Reproducibility over 5 years of measurements of 6-sulphatoxymelatonin in urine samples from postmenopausal women. Cancer Epidemiol Biomarkers Prev 2003;12:806–8.
- Huether G, Poeggeler B, Reimer A, George A. Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci 1992;51:945–53.
- 64. Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 2002;47:2336–48.