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Abstract
Rationale—Central administration of corticotropin-releasing factor (CRF) elicits a specific pattern
of behavioral responses resembling a stress-like state, and is anxiogenic in rodent models of anxiety.

Objectives—Specific behaviors evoked by the administration of CRF were measured. The roles
of CRF receptor subtypes and that of serotonergic and noradrenergic systems in mediating these
responses were studied.

Methods—Burying, grooming and head shakes were quantified in rats following
intracerebroventricular administration of CRF and urocortin II and after pretreatment with
antagonists. The role of forebrain norepinephrine in the behavioral responses to CRF (0.3 μg) was
examined following pretreatment with the neurotoxin DSP-4 and that of serotonin after depletion
using systemic administration of para-chlorophenylalanine (p-CPA).

Results—CRF at 0.3 and 3.0 μg caused robust increases in burying, grooming and head shakes,
but urocortin II was ineffective. Pretreatment with either antalarmin or propranolol significantly
attenuated the CRF-evoked behaviors. Destruction of forebrain NE pathways blocked spontaneous
burying behavior elicited by CRF and conditioned burying directed towards an electrified shock
probe. In contrast, depletion of 5-HT selectively attenuated CRF-evoked grooming.

Conclusions—Overt behavioral responses produced by CRF, burying, grooming, and head shakes,
appeared to be mediated through the CRF1 receptor. Spontaneous burying behavior evoked by CRF
or conditioned burying directed towards a shock probe were disrupted by lesion of the dorsal
noradrenergic bundle and may represent anxiety-like behavior caused by CRF activation of the LC.
In contrast, CRF-evoked increases in grooming were dependent on serotonin.
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Introduction
Corticotropin releasing factor (CRF), a 41-amino acid neuropeptide, is the primary regulator
of adrenocorticotrophic hormone (ACTH) release from the anterior pituitary in response to
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stress (Vale et al. 1981). In addition to this role, CRF also acts as an extra-hypothalamic
neuromodulator and neurotransmitter, mediating adaptive behavioral responses to stress,
including increased arousal, suppression of appetitive and reproductive behaviors and an
increase in defensive responding and avoidance behaviors (Brown and Fisher 1985; Dunn and
Berridge 1990; Owens and Nemeroff 1993; Spina et al. 1996; Spina et al. 2000). These
behavioral activating effects have been shown to be independent of HPA axis activation, and
thus represent extra-hypothalamic actions of CRF in the CNS (Britton et al. 1986; Eaves et al.
1985).

Given the multiple roles of CRF in the mediation of the stress response, it has been hypothesized
that stress-related disorders may result from the exacerbated stimulation of one or more CRF-
regulated pathways (Koob and Heinrichs 1999; Owens and Nemeroff 1993; Risbrough and
Stein 2006). In rats, intracerebroventricular (i.c.v.) and site-specific administration of CRF
mimics behavioral responses to stressful stimuli (Campbell et al. 2004; Liang et al. 1992) and
produces anxiogenic effects in a number of behavioral tests of anxiety (Dunn and File 1987;
Zorrilla et al. 2002). Furthermore, CRF receptor antagonists are effective in blocking many of
the behavioral effects of CRF, and reverse the suppression and activation of behaviors observed
in response to stress (Basso et al. 1999; Heinrichs et al. 1992; Korte et al. 1994; Takahashi
2001; Zorrilla et al. 2002). Clinical findings have also implicated increased central CRF drive
in the etiology of anxiety and affective disorders and suggest significant potential for CRF
receptor antagonists in the treatment of anxiety disorders (Nemeroff 2004; Zobel et al. 2000).

Serotonin (5-HT) and norepinephrine (NE) are neurotransmitter systems that are implicated in
affective and anxiety responses and represent potential substrates on which CRF could act to
elicit stress-related behaviors and to mediate stress-related psychopathology (Valentino et al.
1983; Aston-Jones et al. 1996; Graeff 1997). CRF administration, i.c.v. and site-specifically,
alters the firing of NE and 5-HT neurons (Kirby et al. 2000; Price et al. 1998; Valentino and
Foote 1987), and modulates neurotransmitter release at their respective terminal fields (Curtis
et al. 1997; de Groote et al. 2005; Price and Lucki 2001). Evocation of anxiety responses by
CRF infusion is accompanied by concomitant changes in forebrain 5-HT (Kagamiishi et al.
2003) and NE (Matsuzaki et al. 1989) transmission. Moreover, stress-induced alterations in
extracellular 5-HT and NE are blocked by pretreatment with CRF receptor antagonists
(Isogawa et al. 2000; Price et al. 1998). Taken together, these findings suggest that CRF can
play a critical role in affective and anxiety disorders through its actions on 5-HT and NE
systems associated with anxiety and depression.

The purpose of these studies was to characterize behaviors evoked by central administration
of CRF to rats that appear to represent an increase of defensive and avoidance responses
associated with a stress-like state. CRF administration in rodents has been shown to evoke a
specific pattern of behavioral activation, characterized by increased locomotor activity, rearing
and grooming (Dunn and Berridge 1990; Koob et al. 1984; Sherman and Kalin 1987), and head
shakes or wet dog shakes (Gargiulo and Donoso 1996; Price et al. 1998). The present study
focused on three prominent behavioral responses that were observed after intraventricular
injections of CRF in rats, burying behavior, grooming and head shakes. In addition to
characterizing and quantifying the CRF-evoked behaviors, the role of CRF receptor subtypes
in mediating these specific behavioral responses was examined. Given the evidence for a
neuromodulatory role for CRF on NE and 5-HT function, the roles of these neurotransmitters
in the elicitation of specific CRF-evoked behaviors were then investigated. Because CRF-
evoked spontaneous burying and conditioned burying of an electrified prod may have common
mechanisms, the contribution of NE as a common substrate for the two behaviors was
evaluated. Spontaneous burying behavior evoked by CRF and conditioned burying were found
to be associated with the NE pathways originating from the LC, whereas grooming behavior
evoked by CRF was found to be associated with 5-HT transmission.
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Materials and methods
Animals

Adult male Sprague Dawley rats (250-300 g; Charles River Laboratories, Wilmington, MA)
were initially housed two per cage in a temperature-controlled (22°C) colony room. The colony
was illuminated under a 12-hour alternating light/dark schedule with light onset at 07:00.
Standard rat chow and water were freely available. The care and use of animals was in
accordance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals.

Surgery
Animals were anesthetized by intraperitoneal (i.p.) injection of sodium pentobarbital (40 mg/
kg, i.p.). Guide cannulae aimed at the lateral ventricle were implanted surgically to facilitate
the i.c.v. injection of CRF. Cranioplastic cement and stainless steel anchor screws were used
to fix the guide cannula to the skull. A stainless steel obdurator was inserted into each guide
cannula to help prevent occlusions. Following surgery, animals were housed individually for
one week to allow for recovery prior to behavioral testing. Rats were handled 3 times prior to
testing to minimize potential disruptive behavioral effects of handling during the experiment.

Behavioral Testing
CRF-evoked behaviors—At 09:00 on the morning of testing, animals were placed in a
clear polycarbonate cylindrical chamber (37.5 cm high, 30 cm in diameter) containing bedding
(0.5 cm, Bed o’Cobs, The Andersons, Maumee, OH) spread 7.5 cm in depth evenly across the
chamber floor. Three hours were allowed for habituation to the testing chamber, after which
animals received an injection of vehicle or drug. Following injection, animals were videotaped
over a two-hour period for detailed behavioral analysis. The most prominent behavioral effects
produced by vehicle or CRF administration were subsequently quantified by an experimenter
blind to the treatment. The behaviors scored were: 1) time spent burying; 2) time spent
grooming; 3) total number of head shakes. Burying was defined as rapidly repeated forward-
and-backward movements of either a single forepaw or rapidly alternating bilateral forward-
and-backward movements of both forepaws, which pushed or sprayed bedding forward,
creating a mound of bedding in front of the animal. This was accompanied at times by hind
limb movements which pushed bedding back behind the rat as it progressed forwards. This
pattern of behavior has been previously described for increases of spontaneous burying
behavior induced by muscimol injected into the nucleus accumbens (Reynolds and Berridge
2001). Grooming was defined as licking of the forelimbs and body and/or paw strokes of the
face and body.

Defensive Burying
On the morning of testing, animals were transported to a room adjacent to the testing room to
habituate for 3 hours. Light levels in both rooms were maintained at 125 Lux. The shock-probe
defensive burying test, adapted from Pinel and Treit (1978), was conducted in a clear
polycarbonate cage, 25 × 45 × 20 cm, identical to the home cage with a 1 cm diameter hole
located 7 cm from the base at one end to accommodate the shock-probe. Fresh bedding (1/8
inch, Bed o’Cobs, The Andersons, Maumee, OH) lined the cage to a depth of 5 cm. The shock
probe was a 1.0 cm diameter glass rod wrapped with two alternating, non-touching 18 ga copper
wires, spaced 5 loops/cm. The probe extended 6 cm into one end of the cage, 2 cm above the
surface of the bedding. The probe was attached to a shock generator (SGS-004, BRS-LVE,
Laurel, MD) set to deliver 5.5 mA DC current when the probe was touched. Animals were
placed in the cage at the end opposite the shock probe, facing away from the probe. Rats
typically approached the probe to investigate within 10–15 seconds, making contact with their
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paw or snout. Upon contacting the probe a 15-min test period began. Test sessions were
videotaped for subsequent analysis. After each test, the cage was replaced with an identical
clean testing chamber, containing fresh bedding. Behaviors were evaluated by an experimenter
blind to the condition of the test animal using a method adapted from De Boer and Koolhaas
(2003). In addition to the total time spent burying, total immobility time and latency to contact
the probe were scored as indices of potential changes in locomotion or exploratory activity.
Burying consisted of burrowing into the bedding with the snout and upper body, then pushing
or flicking the bedding toward the probe using the forepaws. Each rat was also scored
subjectively for reactivity to the shock on a 4-point scale (Treit and Pesold 1990).

Histology
After behavioral testing, animals were sacrificed with a lethal dose of pentobarbital (100 mg/
kg, i.p.) and immediately microinjected with 3 μl of Fast Green dye (Sigma, St Louis). The
brains were removed, and cannula placement verified by presence of dye in the ventricular
system. Only animals with accurate cannula placement were included in statistical analyses.

Tissue analysis of norepinephrine and serotonin
Tissue content of NE and 5-HT was measured in the frontal cortex and hippocampus to provide
representative evidence for the depletion of 5-HT and NE by p-CPA and DSP-4. In order to
offset potential acute effects of CRF infusion on neurotransmitter levels, monoamine levels
were also measured 24 hours after behavioral testing. Animals were sacrificed with an overdose
of pentobarbital, and their brains removed. The frontal cortex and hippocampus were dissected
in a Petri dish over ice, quickly frozen on dry ice and stored at -80°C until preparation for
analysis.

Frozen tissue samples were thawed and homogenized in 0.1 N perchloric acid with 100 μM
EDTA (15 μl/mg of tissue) using a tissuemizer (Tekmar, Cleveland, OH, USA). Samples were
centri fuged at 15,000 rpm (23,143 × g) for 15 min at 2–8°C. The supernatants were filtered
using Costar Spin-X™ centrifugal filters (Fisher Scientific, Pittsburgh, PA, USA) and then
split into two aliquots. Samples (12 μl) were analyzed in separate assays for 5-HT and 5-HIAA
and for the catecholamines NE and DA using high performance liquid chromatography (HPLC)
coupled with electrochemical detection, as previously described (Mayorga et al., 2001).
Standard concentrations of 5-HT and 5-HIAA or NE and DA were prepared before injection
of tissue samples. Tissue concentrations of monoamines were determined using a linear
regression analysis of the peak heights obtained from a range of standards.

Drugs and injections
Ovine CRF or urocortin II (Dr. Jean Rivier, The Salk Institute, La Jolla, CA) were dissolved
in artificial cerebrospinal fluid (aCSF), which also acted as the vehicle. I.c.v. injections were
made using a 28 gauge stainless steel injector which extended 1 mm beyond the tip of the guide
cannula. Without handling the animal, the obdurator was removed, and the injector was inserted
into the guide cannula. CRF or vehicle (3 μl injections) was infused over a 3-min period using
a syringe pump (Instech, Plymouth Meeting, PA). After allowing 1 min for diffusion of the
drug, the obdurator was replaced.

In each of the combination blocker experiments, antagonists (or vehicle) were administered
systemically 30 min prior to CRF injection (0.3 μg i.c.v.) and the cumulative response to CRF
was measured for 2 hours. Antalarmin (Kenner C. Rice, Laboratory of Medicinal Chemistry,
NIH/NIDDK, Bethesda, MD) was suspended in a solution containing 24% cremaphor and 6%
ethanol and injected i.p. (20 mg/kg) in a volume of 1 ml/kg. Propranolol hydrochloride (Sigma,
St Louis, MO) was dissolved in 0.9% physiological saline and administered i.p. (5 and 10 mg/
kg) in a volume of 2 ml/kg.
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Yohimbine (Sigma, St Louis, MO), was dissolved in deionized water and administered i.p. in
a volume of 2 ml/kg. The tryptophan hydroxylase inhibitor para-chlorophenylalanine (p-CPA)
methylester HCl (Sigma, St Louis, MO) was used for whole-brain serotonin depletion. p-CPA
was dissolved in deionized water and injected i.p. in two 150 mg/kg doses, 3 and 2 days prior
to behavioral testing (Koe and Weissman, 1966). The noradrenergic neurotoxin N-(2-
Chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride or DSP-4 (Sigma, St Louis, MO)
was dissolved in deionized water and injected i.p. at 50 mg/kg 8 days prior to behavioral testing.
All rats were pretreated with the selective serotonin reuptake inhibitor paroxetine (10 mg/kg,
i.p.) 30 min prior to DSP-4 administration, in order to protect serotonergic nerve terminals
(Jonsson et al. 1981). Drug doses were determined by the base weight.

Statistical analyses
In the CRF, urocortin II and yohimbine experiments, effects on each behavior were analyzed
using one-way analysis of variance (ANOVA). In the antagonist experiments (antalarmin,
propranolol), effects on each behavior were analyzed using a two-way ANOVA with
pretreatment (drug/vehicle) and i.c.v. infusion (CRF/vehicle) as the main factors. All statistics
were performed using Statview software (Adept Scientific Inc, Acton, MA). In all experiments,
a significant main effect or interaction was required for further examination using Fisher’s
PLSD test. Significance was established at p < 0.05.

Results
CRF-evoked behaviors

As shown in Figure 1, CRF administration produced dose-dependent increases in burying (a
and d), grooming (b and e) and head shakes (c and f). Both 0.3 μg and 3.0 μg CRF evoked a
similar duration of burying during the first hour post-infusion. However, the lower dose showed
a gradual reduction of burying during the second hour, while the higher dose displayed steadily
increased burying responses over the two hours. The cumulative duration of burying during
the study period shows that CRF infusion significantly increased burying behavior (F3, 28 =
3.75, p < 0.05).

A steady level of grooming was produced by 0.3 μg CRF over the two-hour period, while the
3.0 μg CRF dose evoked increased grooming levels only during the first hour (Figure 1b). The
cumulative duration of grooming during the study period (Figure 1e) showed a significant
increase in grooming behavior by CRF (F3, 23 = 17.81, p < 0.001). The increase in grooming
behavior at 0.3 μg was significantly greater than that at 3.0 μg (p < 0.05).

Head shakes (Figure 1c) were also greatly elevated by the 0.3 μg dose of CRF over the duration
of the observation period, whereas they were only modestly increased by the higher dose and
this effect diminished over the two-hour test period. Figure 1f shows that CRF infusion
significantly increased the cumulative total head shakes during the study period (F3, 21 = 5.81,
p < 0.005).

In contrast to ovine CRF, which binds preferentially to the CRF1 receptor, administration of
the selective CRF2 receptor agonist urocortin II (0.3 and 3.0 μg) caused no significant changes
in burying, grooming or head shakes as compared to aCSF infusion (data not shown, p > 0.05).
Taken together, these findings indicate that the behavioral changes elicited by CRF infusion
were likely mediated by activation of the CRF1, but not the CRF2 receptor.

To further examine the role of the CRF1 receptor in the observed behaviors, the effects of the
CRF1 receptor antagonist antalarmin on CRF-evoked behaviors were investigated (Figure 2).
Pretreatment with antalarmin reduced the frequency of CRF-evoked increases in burying
(Figure 2a), grooming (Figure 2b) and headshakes (Figure 2c). However, blockade of the
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burying and grooming behaviors was incomplete, as demonstrated by the significant difference
between the antalarmin/CRF groups and their respective control groups.

Behavioral effects of yohimbine
The effects of systemic administration of yohimbine, an α2 adrenergic antagonist and a known
anxiogenic compound, were measured on the same behaviors evoked by CRF administration
(Figure 3). Yohimbine produced a significant increase in spontaneous burying behavior
(F2, 23 = 4.02, p < 0.05). In contrast, yohimbine produced no significant changes in grooming
behavior (Figure 3b) or head shakes (Figure 3c).

Effects of propranolol pretreatment on CRF-evoked behaviors
To further investigate the role of NE in CRF-evoked behaviors, the effects of pretreatment with
the ß-adrenergic antagonist propranolol were assessed (Figure 4). Propranolol pretreatment
significantly attenuated the frequency of CRF-evoked increases in burying (Figure 4a),
grooming (Figure 4b) and headshakes (Figure 4c). However, the blockade of burying and
grooming was incomplete, as demonstrated by the significant difference between the
propranolol/CRF groups and their respective control groups.

Effects of lesion of forebrain NE on CRF-evoked behaviors
The role of the dorsal noradrenergic bundle in mediating CRF-evoked behaviors was examined
using the selective noradrenergic neurotoxin DSP-4 (50 mg/kg, i.p.) given 8 days prior to CRF
administration (0.3 μg i.c.v.). The depletion of NE content in forebrain structures targeted by
LC projections was confirmed by HPLC analysis of tissue homogenates from the frontal cortex
and hippocampus (Table 1). In the frontal cortex, DSP-4 produced a 78% and 79% depletion
of NE in the DSP-4/aCSF and DSP-4/CRF groups (F1, 24 = 50.67, p < 0.001). In the
hippocampus, DSP-4 produced an 84% and 86% decrease in NE in the DSP-4/aCSF and
DSP-4/CRF groups, (F1, 16 = 57.22, p < 0.001). No significant changes in the concentrations
of 5-HT, 5-HIAA and dopamine were measured in the frontal cortex or hippocampus after
DSP-4.

The effects of DSP-4 pretreatment on CRF-evoked behaviors are shown in Figure 5. CRF-
evoked burying (Figure 5a) was completely blocked by DSP-4 pretreatment (DSP-4 × CRF
interaction, F1, 22 = 13.81, p < 0.05). In contrast, CRF-evoked grooming and head shakes were
unaffected by DSP-4 pretreatment, as shown in Figure 5b and 5c, respectively. These results
indicate that an intact dorsal noradrenergic bundle is necessary for the evocation of CRF-
evoked burying, but not grooming or head shakes.

Effects of 5-HT depletion on CRF-evoked behaviors
To investigate the role of 5-HT in mediating the behavioral effects of CRF, whole-brain 5-HT
was depleted using the tryptophan hydroxylase inhibitor p-CPA (300 mg/kg, i.p.) prior to
administration of CRF (0.3 μg i.c.v.). In the frontal cortex (Table 2), p-CPA produced a 94 %
and 95 % decrease in 5-HT in both p-CPA/aCSF and p-CPA /CRF groups, respectively, as
compared to relative controls (F1, 24 = 373.48, p < 0.001). In the hippocampus (Table 2), p-
CPA produced a 92.7% and 93.2% decrease of 5-HT in p-CPA/aCSF and p-CPA /CRF groups,
respectively, as compared to relative controls (F 1, 24 = 45.24, p < 0.001). p-CPA pretreatment
elicited similar decreases in 5-HIAA concentrations in both brain regions. Frontal cortex
concentrations were decreased by 94% and 96% in p-CPA/aCSF and p-CPA /CRF groups,
respectively, as compared to relative controls (F1, 24 = 755.51, p < 0.001). Hippocampal
concentrations of 5-HIAA were similarly decreased by 94% and 96% in p-CPA/aCSF and p-
CPA /CRF groups, respectively, as compared to relative controls (F1, 24 = 787.68, p < 0.001).
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No significant changes in dopamine concentrations were detected in either the frontal cortex
or the hippocampus following p-CPA pretreatment.

The effects of p-CPA on CRF-evoked behaviors are depicted in Figure 6. There was no overall
effect of p–CPA pretreatment on the duration of burying (Figure 6a) or the frequency of head
shakes (Figure 6c). In contrast, the duration of grooming following CRF (Figure 6b) was
significantly attenuated by p–CPA pretreatment (p-CPA × CRF interaction, F1, 51 = 7.46, p <
0.01). For all behaviors measured, no significant differences were found between aCSF-infused
groups, regardless of pretreatment (vehicle or p-CPA). Together, these results indicate that
CRF-evoked grooming, but not burying or head shakes, is dependent on serotonergic
transmission.

Effects of DSP-4 lesions on conditioned shock-probe burying
Given the role of the dorsal noradrenergic bundle in the effects of CRF infusion on spontaneous
burying, the effects of DSP-4 lesions were also assessed in the conditioned shock-probe
defensive burying paradigm. This commonly-used behavioral test of anxiety measures burying
behavior in rats that is directed towards an electrified probe (Treit et al. 1981). As shown in
Figure 7, DSP-4 pretreatment produced a significant decrease in time spent burying the shock-
probe (t(17) = 2.77, p = 0.01). Although the latency (s ± 1 SEM) to initiate burying for rats
treated with DSP-4 (313 ± 132) was about 70% longer than for vehicle (186 ± 36), the difference
between groups was not significant. The latency to approach the probe (Vehicle: 18.0 ± 5.0;
DSP-4: 19.2 ± 6.1) and the number of approaches (Vehicle: 4.6 ± 0.6; DSP-4: 4.6 ± 1.0) did
not differ significantly between groups, indicating that the reduced burying time was not caused
by a lack of exploration or probe contact. These findings implicate LC-NE pathways in the
mediation of burying responses evoked both by CRF infusion and shock-probe exposure.

Discussion
Characterization of CRF-evoked behaviors

The robust increases in burying, grooming and head shakes produced by CRF are consistent
with the role of CRF in facilitating the emission of defensive behaviors. Rodent burying
behavior has long been described as a defensive coping strategy in natural habitats (Calhoun
1962; MacClintock 1970; Owings and Coss 1977). Furthermore, in the context of defensive
avoidance, this proactive form of stress management provides an index of anxiety when
directed at an electrified probe (Bondi et al. 2007; De Boer et al. 1990; Korte et al. 1992; Treit
et al. 1981), and is enhanced and attenuated by anxiogenic and anxiolytic drugs, respectively
(De Boer and Koolhaas 2003; Diamant et al. 1992). To the best of our knowledge, the present
studies are the first to specifically characterize and quantify the burying response to i.c.v. CRF
administration, though this response has been previously reported in mice (Litvin et al. 2007)
and rats (Korte et al. 1993; Price et al. 1998; Wiersma et al. 1995) and could only be seen if
bedding material were present. Although the burying response evoked by CRF appeared almost
identical to behaviors directed towards the electrified probe in the defensive burying response,
the occurrence of burying in the absence of a specific aversive stimulus made the behavior
appear spontaneous as reported following muscimol injected into the nucleus accumbens
(Reynolds and Berridge, 2001). Bedding was pushed or sprayed in front of the rat by vigorous
and repetitive movement of the forelimbs, and the formation of multiple elevated mounds of
bedding distinguished the behavior from nest building or burrowing. In accord with previous
findings (Abrams et al. 2005), burying was also evoked by systemic administration of
yohimbine, an adrenergic acting compound with anxiogenic effects both in humans (Charney
et al. 1983) and in rodent models (Graeff et al. 1998). Together, these findings provide support
for the interpretation of burying as a potential index of anxiety-like behavior.
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Doses of CRF which evoked burying behavior also produced robust increases in grooming, in
line with previous reports (Diamant et al. 1992; Dunn et al. 1987). Grooming behavior is highly
sensitive to stressful stimuli and has been previously used as an indicator of a stress-like state
in rodents (Choleris et al. 2001; Dunn et al. 1987; Kalueff and Tuohimaa 2005; To et al.
1999). The attenuation of both stress- and CRF-induced grooming by anxiolytic drugs supports
the hypothesis of grooming as an anxiety-associated behavior (Lazosky and Britton 1991;
Spruijt et al. 1992).

The evocation of burying, grooming and head shakes to i.c.v. CRF appeared to reflect specific
activation of the CRF1 receptor. The ovine CRF used in this study binds preferentially to the
CRF1 receptor, with a considerably lower affinity for the CRF2 receptor (Dautzenberg et al.
2001). The attenuation of all behaviors by blockade of the CRF1 receptor using antalarmin
further supported mediation by the CRF1 receptor. Moreover, no effect of CRF2 receptor
stimulation with the selective agonist urocortin II was observed on any of the behaviors, with
doses that are reported to affect feeding behvior (Zorilla et al., 2004). The role of CRF1
receptors in grooming is supported by evidence from previous investigations (Bressers et al.
1995; de Groote et al. 2005; Drago et al. 1999; Dunn et al. 1987; Lumley et al. 2001; Ohata
and Shibasaki 2004). Taken together, these findings are consistent with the proposed role of
CRF1 receptors in mediating stress-like behavioral responses and anxiogenic effects of CRF
(Arborelius et al. 2000; Gehlert et al. 2005; Griebel et al. 2002; Zorrilla et al. 2002). The
attenuation of behaviors following antalarmin pretreatment was only observed in CRF-infused
animals and not in aCSF-infused controls indicating that they are likely not due to non-specific
effects on locomotion or exploratory behavior. Previous studies have reported anxiolytic
effects of CRF1 receptor antagonists only in pre-stressed animals, or in those tested under
stressful conditions, pointing to a possible necessity of a high endogenous CRF tone for the
efficacy of CRF receptor antagonists (Dunn and File 1987; Liebsch et al. 1998; Menzaghi et
al. 1994). The findings reported here may describe such an effect, with the anxiolytic efficacy
of antalarmin evident on behaviors caused by exogenous CRF administration.

Burying behavior is mediated by forebrain NE
The present findings support an interaction between CRF and noradrenergic systems in the
mediation of CRF-evoked burying. First, burying behavior was evoked by yohimbine, which
blocks α2 autoreceptors to increase NE cell firing and release (Aghajanian and VanderMaelen
1982; Abercrombie et al. 1988). Second, administration of the non-selective ß-adrenergic
antagonist propranolol significantly attenuated CRF-evoked burying, as well as grooming and
head shakes, implicating the ß-adrenergic receptor in these behavioral responses. Propranolol
has been shown to attenuate the anxiogenic effects of CRF in the defensive withdrawal and
conditioned fear paradigms (Cole and Koob 1988; Gorman and Dunn 1993; Yang and Dunn
1990). Third, CRF-evoked burying, but not grooming or head shakes, was attenuated by
pretreatment with DSP-4, which selectively lesions the dorsal noradrenergic bundle arising
from nucleus locus ceruleus, thereby implicating this specific NE circuit in that behavior. None
of the noradrenergic interventions had any effect on baseline behavioral activity in aCSF-
infused animals. While considerable differences were noted between control groups in the
yohimbine and CRF-evoked behavioral studies, this is likely accounted for by the different
routes of drug administration involved, (i.c.v. versus i.p.)

These findings are consistent with a broader literature that have implicated CRF, and activation
of noradrenergic neurons at the LC in particular, in the mediation of responses to stress and
anxiety (Carrasco and Van de Kar 2003; Koob 1999; Matsuzaki et al. 1989; Melia and Duman
1991; Reyes et al. 2006; Weiss et al. 1994). The LC is a major target of CRF neurotransmission
in the brain (Van Bockstaele et al. 1996) and is positioned to influence the functioning of the
entire nervous system though modulation of noradrenergic activity (Abercrombie and Jacobs
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1988; Curtis et al. 1997; Valentino et al. 1993). Intraventricular or intra-LC administration of
CRF increases LC neuronal activity (Valentino and Foote 1987; Valentino et al. 1983),
forebrain NE release, and activates forebrain electroencephalographic activity (Curtis et al.
1997). Moreover, intra-LC CRF administration produces anxiogenic behavioral effects in the
open field activity and defensive withdrawal paradigms, thereby linking CRF-evoked
anxiogenesis and LC activation (Butler et al. 1990; Matsuzaki et al. 1989).

In agreement with its attenuation of burying responses to CRF administration, DSP-4
pretreatment also decreased the duration of probe burying in the conditioned defensive burying
test, which is considered a validated rat test of anxiety (Treit et al. 1981). No differences in the
latency to contact the probe were observed between DSP-4-treated and control animals,
indicating that the attenuation of burying was not due to an overall decrease in locomotion or
exploratory activity. CRF administration has been shown to increase probe burying, while this
behavior was blocked by CRF antagonists (Basso et al. 1999; Diamant et al. 1992; Korte et al.
1994). Furthermore, shock-probe burying is accompanied by increases in NE transmission
(Bondi et al. 2007; Korte et al. 1992) and attenuated by pretreatment with noradrenergic
antagonists (Morilak et al. 2005). Taken together, these data suggest that burying by rodents
may be a model response for stress associated with the activation of NE pathways from the
LC.

CRF-evoked grooming behavior and head shakes
CRF-evoked grooming was attenuated following the depletion of 5-HT by p-CPA, but not after
NE depletion produced by DSP4. Thus the ability of CRF to increase grooming behavior
appears to be mediated at least in part by serotonergic transmission, and occurred independently
of activation of the dorsal noradrenergic bundle. CRF-evoked grooming was also attenuated
by propranolol but this could not distinguish between a role for NE and 5-HT due to the
nonselective effects of this antagonist. Studies of intraventricular and intra-raphe CRF
administration provide substantial evidence for CRF-mediated modulation of serotonergic
transmission (de Groote et al. 2005; Kirby et al. 2000; Price et al. 1998; Price and Lucki
2001). The anxiogenic effects of CRF, including increased grooming behavior, have been
linked with its activation of serotonergic transmission (Kagamiishi et al. 2003; Lazosky and
Britton 1991). An extensive literature on grooming behavior proposes the involvement of
multiple neuromediators and brain regions in this behavior (Bressers et al. 1995; Drago et al.
1999; Lumley et al. 2001). The specific circuitry that could underlie the involvement of 5-HT
in grooming behavior has not been elucidated.

Head shakes are elicited by a variety of neuromediators and have been suggested as useful
quantitative indices of neurotransmitter system interactions and receptor function (Handley
and Singh 1986). While both noradrenergic and serotonergic transmission have been
implicated in the evocation of head shakes (Tricklebank 1985; Vetulani et al. 1980), neither
the DSP-4 nor p-CPA treatments altered CRF-evoked head shakes in the present study.
Propranolol attenuated CRF-evoked head shakes, suggesting a potential contribution of
noradrenergic pathways outside the dorsal bundle. However, multiple neurotransmitter
systems have been implicated in the evocation of head shakes (Singh et al. 1986; Turski et al.
1981), and may do so through independent mechanisms (Drust and Connor 1983). As such,
the neurochemical substrate(s) underlying CRF-evoked head shakes remains unclear.

In summary, these studies characterized three behaviors prominently emitted following the
i.c.v. administration of CRF in rats that are mediated by the activation of CRF1 receptors. The
robust burying behavior evoked by CRF was likely caused by activation of the LC and dorsal
noradrenergic bundle, whereas the increases in grooming behavior appeared to involve
modulation of serotonergic transmission. These quantitative measures of CRF-evoked
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responses will be useful for examining the role of CRF in specific neural circuitry associated
with anxiety and in studying the regulation of the effects of CRF.
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Figure 1.
Time-course of CRF-evoked (a) burying, (b) grooming and (c) head shakes over a two-hour
period following i.c.v. CRF infusion are shown in panels a and b, respectively. Points represent
mean values with error bars indicating SEM. aCSF n = 9, CRF 0.1 μg n = 6, CRF 0.3 μg n =
6, CRF 3.0 μg n = 10. Cumulative behavioral responses for 2 hours following CRF are shown
in panels (d), (e) and (f) illustrating burying and grooming, respectively. Bars represent mean
values with error bars indicating SEM. aCSF n = 9, CRF 0.1 μg n = 6, CRF 0.3 μg n = 6, CRF
3.0 μg n = 10. Pound sign indicates group that differed significantly from the Vehicle (aCSF)
group, p < 0.05.
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Figure 2.
Effect of pretreatment with the CRF receptor antagonist antalarmin (20 mg/kg i.p.) given 30
min prior to injection of CRF (0.3 μg, i.c.v.). Behaviors evoked by CRF were: (a) burying, (b)
grooming and (c) head shakes. V/aCSF n = 4, V/CRF n = 4, Antalarmin/aCSF n = 5,
Antalarmin/CRF n = 6. ANOVA revealed a significant interaction between antalarmin and
CRF for burying (F1, 15 = 6.64, p < 0.05), grooming (F1, 15 = 5.76, p < 0.05) and head shakes
(F1, 15 = 7.99, p < 0.05). Bars represent mean cumulative values for 2 hours with error bars
indicating SEM. Pound sign indicates group that differed significantly from Vehicle/aCSF
group, p < 0.05; Asterisk indicates group that differed significantly from Vehicle/CRF group
p < 0.05; † indicates group that differed significantly from relative control group, p < 0.05.

Howard et al. Page 16

Psychopharmacology (Berl). Author manuscript; available in PMC 2009 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Effects of yohimbine on (a) burying, (b) grooming and (c) head shakes. Doses were
administered to separate groups of animals: Vehicle (V) n = 8, Yohimbine 2.5 mg/kg n = 10,
Yohimbine 5 mg/kg n = 10. Bars represent mean cumulative values for 2 hours with error bars
indicating SEM. Pound sign indicates group that differed significantly from the Vehicle group,
p < 0.05.
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Figure 4.
Effect of pretreatment with propranolol on behaviors produced by injection of CRF (0.3 μg,
i.c.v.): (a) burying, (b) grooming and (c) head shakes. Propranolol was administered 30 min
prior to CRF. V/aCSF n = 7, V/CRF n = 6, Prop 5 mg/kg/aCSF n = 7, Prop 5 mg/kg/CRF n =
6, Prop 10 mg/kg/aCSF n = 6, Prop 10 mg/kg/CRF n = 7. Bars represent mean cumulative
values for 2 hours with error bars indicating SEM. ANOVA revealed a significant interaction
between propranolol and CRF for burying (F2, 32 = 5.25, p < 0.05), grooming (F2, 32 = 5.52,
p < 0.01) and head shakes (F2, 32 = 9.79, p < 0.001). Pound sign indicates group that differed
significantly from Vehicle/aCSF group, p < 0.05; Asterisk indicates group that differed
significantly from Vehicle/CRF group p < 0.05; † indicates group that differed significantly
from their corresponding control group, p < 0.05.
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Figure 5.
Effects of pretreatment with DSP-4 on behaviors elicited by injection of CRF (0.3 μg, i.c.v.):
(a) burying, (b) grooming and (c) head shakes. DSP-4 (50 mg/kg) was given 8 days prior to
testing to deplete forebrain NE. V/aCSF n = 7, V/CRF n = 5, DSP-4/aCSF n = 7, DSP-4/CRF
n = 7. Bars represent mean cumulative values for 2 hours with error bars indicating SEM.
ANOVA revealed a significant interaction between DSP-4 and CRF for only burying (F1, 22
= 13.81, p < 0.05). Pound sign indicates group that differed significantly from Vehicle/aCSF
group, p < 0.05; Asterisk indicates group that differed significantly from Vehicle/CRF group
p < 0.05; † indicates group that differed significantly from corresponding control group, p <
0.05.
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Figure 6.
Effect of p-CPA pretreatment on behaviors evoked by administration of CRF (0.3 μg, i.c.v.):
(a) burying, (b) grooming and (c) head shakes. p-CPA (150 mg/kg × 2 days) was given 72 and
48 h prior to testing to deplete 5-HT. V/aCSF n = 11, V/CRF n = 13, p-CPA/aCSF n = 10, p-
CPA/CRF n = 15. Bars represent mean values with error bars indicating SEM. Bars represent
mean cumulative values for 2 hours with error bars indicating SEM. ANOVA revealed a
significant interaction between p-CPA and CRF for only grooming (F1, 51 = 7.46, p < 0.01).
Pound sign indicates group that differed significantly from Vehicle/aCSF group, p < 0.05;
Asterisk indicates group that differed significantly from Vehicle/CRF group p < 0.05; †
indicates group that differed significantly from corresponding control group, p < 0.05.
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Figure 7.
Effect of pretreatment with DSP-4 (50 mg/kg) on time spent burying the probe in the
conditioned burying test. Vehicle, n = 12, DSP-4, n = 8. Bars represent mean cumulative values
for 15 min after probe contact with error bars indicating SEM. Pound sign indicates significant
difference from Vehicle group, p < 0.05.
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