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Abstract
In many biomedical applications, researchers encounter semicontinuous data where data are either
continuous or zero. When the data are collected over time the observations may be correlated.
Analysis of this kind of longitudinal semicontinuous data is challenging due to the presence of strong
skewness in the data. A flexible class of zero-inflated models in a longitudinal setting is developed.
A Bayesian approach is used to analyze longitudinal data from an acupuncture clinical trial, in which
the effects of active acupuncture, sham acupuncture and standard medical care is compared on
chemotherapy-induced nausea in patients who were treated for advanced breast cancer. A spline
model is introduced into the linear predictor of the model to explore the possibility of a nonlinear
treatment effect. Possible serial correlation between successive observations is also accounted using
the Brownian motion. Thus, the approach taken in this paper provides for a more flexible modeling
framework and, with the use of WinBUGS, provides for a computationally simpler approach than
direct maximum-likelihood. The Bayesian methodology is illustrated with the acupuncture clinical
trial data.

1. Introduction
1.1. Statistical background

In many biomedical applications, a longitudinal response variable may have a continuous
distribution with a large number of values clustered at zero. A longitudinal model with this
type of response has been referred to as a two-part model by Lachenbruch (2002) and as a
semicontinuous model by Olsen and Schafer (2001). Treating this kind of data using a normal
distribution is not suitable since ignoring the many zeros, especially when a sizeable proportion
of the data is zero, implies that the underlying parametric distributional assumptions will not
be met. This type of data may also be positively skewed for the nonzero values. Thus, in a two-
part model, zeros should be analyzed separately from the nonzero continuous data.

The two-part model which originated in econometrics (Heckman, 1976; Duan et al., 1983) is
based on two equations. One equation (logistic model) is used to predict the probability of
occurrence of a nonzero value, and a second equation (linear model) is used to predict the mean
of nonzero values. Recently, Zhou and Tu (1999) and Tu and Zhou (1999) have proposed
testing procedures for comparing different populations on the basis of a two-part model. More
recently, Welsch and Zhou (2006) proposed methodology which allowed for flexible modeling
of the continuous part of the data. However, a majority of the literature in this area is based on
cross-sectional data whereby only a single observation is measured on each individual. Excess
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zeros may also occur with longitudinal data, and in this scenario the correlation among
measurements on the same individual must be accounted for. Olsen and Schafer (2001) and
Tooze et al. (2002) have extended a two-part regression model to include random effects in
both the logistic and linear stages of the model to capture unexplained heterogeneity among
individuals in a longitudinal data. Albert and Shen (2005) developed a longitudinal two-part
model with both exchangeable random effect and a serial correlation. Lu et al. (2005) discuss
an estimating equations approach for a two-part model with application to clustered data, and
Li et al. (2005) introduced a measurement error model for semicontinuous longitudinal data.
While a majority of these approaches are based on maximum-likelihood estimation, Zhang et
al. (2006) developed a Bayesian two-part model to analyze health care data. Their two-part
hierarchical model is composed of a hierarchical probit model and a hierarchical linear
regression model, reflecting the hierarchical nature of their data (e.g., patients are nested within
their primary care physician). Another Bayesian approach is developed by Robinson et al.
(2006) who extended the two-part model to the case of charges of multiple services, using a
log-linear model and a general multivariate lognormal model.

1.2. Motivating example
Our method is motivated from an interesting longitudinal clinical trial on acupuncture (Shen
et al., 2000). Shen et al. (2000) presented the results of a clinical trial where daily emesis volume
(measured in cubic centimeters per day) was collected longitudinally over a two-week period
on breast cancer patients being treated with standard chemotherapy. All patients received
chemotherapy (cyclophosphamide, cisplatin, and carmustine) during the first 4 days of follow-
up. All patients were also given antiemetic agents (including prochlorperazine, lorazepam, and
diphenhydramine) to reduce nausea. The purpose of the trial was to examine the effect of
acupuncture on reducing emesis induced by the chemotherapy. Specifically, patients were
randomized to either an active acupuncture, sham acupuncture, or no acupuncture group and
followed longitudinally on daily emesis occurrences and volume. A total of 104 patients were
randomized between three groups: (i) patients treated with standard chemotherapy only (34
patients), (ii) patients treated with sham acupuncture (33 patients), and (iii) patients treated
with active acupuncture (37 patients). Further, acupuncture was given over the first 5 days of
the treatment period. Patients randomized to the sham acupuncture received minimal needling
acupuncture whereby needles were inserted minimally with no electrical stimulation at
locations that were thought not to affect nausea. Patients receiving standard care received
chemotherapy and medicine for nausea only. An important endpoint for this study was the
daily measurement of the volume of emesis over a 14 day follow-up period. Interest was
focused on comparing the longitudinal course of patients treated with sham acupuncture with
that of patients treated with active acupuncture. There are a large number of days with zero
emesis volume (Table 1). Albert and Shen (2005) used this dataset as motivation for a direct-
likelihood approach for fitting two-part models for longitudinal data. Their model assumed a
standard linear model for incorporating time effects on both the probability of a positive volume
and the mean volume given a positive volume.

There are a number of ways that the analysis presented in Albert and Shen (2005) can be
improved.

First, the time effect is an important factor in this study which needs to be modeled explicitly.
Albert and Shen (2005), considered dummy variables for each day as the time effect and then
treatment effect is assumed to be constant over the first 5 days after randomization and constant
over the remainder of the follow-up period (days 6 to 14). However, the piecewise constant
assumption may be too restrictive. Fig. 1 shows the nonlinearity of the longitudinal trajectory
of the mean emesis volume for patients over the weeks for each treatment. The figure suggests
that the mean structure described by Albert and Shen (2005) may not adequately capture the
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dynamics of the treatment effects across time. A spline (Ruppert et al., 2003) model is
introduced in both the logistic and linear predictor of the model to flexibly model the time
effect. Further, to capture the nonlinear trajectory of the different treatments over time, we
would be interested in fitting a separate mean curve for subjects receiving each treatment. Thus,
apart from modeling the time effect using splines, we also model the treatment-by-time
interaction nonparametrically. Second, computational efficiency is a continuing problem.
Albert and Shen (2005) estimated the model parameters using the Monte Carlo EM, which is
computationally intensive. Further, standard errors were estimated using the bootstrap, making
inference particularly computational. In this paper we estimate the model parameter in a
Bayesian paradigm using the freely available software WinBUGS (Spiegelhalter et al., 2005).
This is in contrast to a likelihood approach, where Monte Carlo EM (see McCulloch (1997),
for details) requires software development and is very computationally intensive. Apart from
computational simplicity, Bayesian modeling gives some additional advantages due to its
flexibility. It incorporates prior information and interval estimates for model parameters or
functions of model parameters. It also allows for full parameter uncertainty, and Bayesian
inference does not depend on asymptotic results Gelman et al. (2004).

In the next section we introduce a model which improves upon the existing model and discuss
the parametric Bayesian method. In Section 3 we illustrate the application of the proposed
method with an analysis of the acupuncture clinical trial data set. A discussion follows in
Section 4.

2. Bayesian model for longitudinal two-part model
In this section a two-part model for semicontinuous longitudinal data is introduced. We develop
our two-part model based on the model described by Albert and Shen (2005).

Let yij be the volume of emesis for subject i (i =, 2, …, n) at day j (j = 1, 2, …, m), where n is
the total number of subjects and m is the total number of follow-up times. For the acupuncture
clinical trial, n = 104 and m = 14. Let Rij be a random variable denoting the volume of daily
emesis where,

(1)

with conditional probabilities

(2)

where θ1 is a vector of parameters.

Let Sij ≡ [yij|Rij = 1], denote the mean transformed positive emesis volume for the ith subject
at jth week with p.d.f. f (sij|θ2) where f (sij) may be any distribution with yij > 0. As described
by Albert and Shen (2005), positive volumes were log(Y + 1) transformed since the data were
approximately normally distributed on this scale.

Stage one: We assume the following model for the two-part model:
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(3)

(4)

The logistic regression (3) models the probability of a positive volume and the linear mixed
model (4) models the mean transformed positive emesis volume. Here, βk (k = p, s) are qk
vectors of regression coefficients and Xkij is the corresponding nm × qk design matrices. The
nonparametric function of time fk(tij) is the spline model. In order to capture the nonlinear
trajectory of the different treatments over time, we use an arbitrary smooth function  (tij) to
model interaction of treatment with time, in which a categorical factor (treatment) interacts
with a continuous predictor (Coull et al., 2001;Durban et al., 2005;Ruppert et al., 2003). Here,
ci ∈ {1, 2, …, L} represents the treatment group index corresponding to subject i, and

 are L different functions depending on the values of ci. Note that  are the deviations

of the treatment group from the overall curve. The random effects  account for
the unobserved heterogeneity among the subjects, and Z1ij, Z2ij are the corresponding design
matrices of nm × p dimension. A random intercept in the logistic model allows some subjects
to have a consistently high or low probability of a positive volume, while a random intercept
in the lognormal part allows individuals to have a tendency to high or low mean volume given
that they have a positive volume. To account for the serial correlation in the data (Albert and
Shen, 2005), we include a stochastic process apart from the usual random effects to flexibly
model the semicontinuous longitudinal data. Thus, the process Wij = (Wijp, Wijs)T is similar to
the bivariate stochastic process model involving Brownian motion described by Sy et al.
(1997). However, because the measurements in our data were taken on a fixed schedule, rather
than irregularly as in the study data used by Sy et al. (1997), we instead use a bivariate random
walk as the stochastic process in our model. This Brownian motion Wij models the local
variation and departure from the polynomial trend, while the random effects bi account for the
variability of the trend across the subjects. The measurement error eij is assumed to have a N
(0, σ2) distribution.

Stage two: The second stage of the model (3–4) defines the distributional assumptions on the
random subject effects vector bi and the bivariate stochastic process Wij. We assume a first-
order random walk model (Zhou and Wakefield, 2006) for the stochastic process, with
increments at time 0 are fixed at 0. Thus, we assume,

(5)

(6)

For the first time point we assume the increments to be zero, i.e., (Wi1p ≡ 0) and (Wi1s ≡ 0).
Here, the Σw is multiplied by (tj − tj−1), so that observations closer in time are more likely to
be similar. However, since we have equally spaced data, tj − tj−1 is a constant for our application.
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We estimate the smooth functions  by penalized splines. Thus, following
Ruppert et al. (2003) we assume the linear spline estimator of the form

(7)

(8)

where zil = 1 if zil = l and 0 otherwise for l = 2, 3, …, L

and  are knots for the k = p, s. The choice of the knots 's will be described in the
data analysis section. We have assumed the same variance parameter for each curve, i.e.,

; l = 2, 3, …, L, and that the random effects are independent from function to function,
i.e., the curves are different but with the same amount of smoothing. In order for the fixed
effects to be identified, we need to put constrains on , we assume .

The specification of the treatment group curves is equivalent to  for l = 1 and

 for treatment l = 2, …, L. This avoids the nonidentifiability of
the slope and intercept parameters. A higher-degree spline may be used. However, the
motivating application did not benefit from this extension.

There is no clear rule on how many knot points to include or where to locate them in the spline
functions. More knots are needed in regions where the function is changing rapidly (Ruppert,
2002). Sometimes subject knowledge may be relevant in placing knots where a change in the
shape of the curve is expected. Using too few knots or poorly sited knots means that the
approximation to the curve will be degraded. By contrast, a spline using too many knots will
be imprecise. Conceptually, the methodology described here does not depend on the location
of knots. Eilers and Marx (2004) stated that “Equally spaced knots are always to be preferred.”
In contrast, Ruppert et al. (2003) used quantile-spacing in all of their examples, though they
did not make any categorical statement that quantile-spacing is always to be preferred. In the
acupuncture application, we choose knots at equal spacings over the 14 day follow-up.

3. Prior specification

Let  be the set of parameters for model (3–4). In the
Bayesian framework we assume independent priors for these parameters. We assume
conditionally conjugate priors, which lead to simpler updating schemes in the Markov chain
sampling methodology. In particular, we assume a normal distribution for the location
parameters. Specifically, we assume that ; k = p, s. Note that
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 are assumed to be zero for identifiability and thus has no prior distribution. The
variance parameters are assumed to have an inverse gamma prior distribution where,

, and ; k = p, s. Here, IG(a, b) denotes an
inverse gamma distribution with density proportional to exp(−b/x)/xa+1. Note that small values
of a, b correspond to weak prior information. The variance–covariance matrices are assumed
to follow an inverse Wishart prior distribution, where Σ ∼ IW (H, η0), Σw ∼ IW (G, η1), and
where, Wishart(P−1, vb) denotes the Wishart distribution with vb degrees of freedom and scale
matrix P−1.

The posterior mean of the mean response can be computed easily from the MCMC output using
the above equation by:

where  denotes the lth posterior sample of pij and μij.

3.1. Model selection
We compare the performances of various models using the model selection criteria based on
Deviance Information Criterion (DIC) proposed by Spiegelhalter et al. (2002) and defined as

Here D (θ) = −2 log p(y|θ) is the deviance,  is the average posterior deviance,
 is what Spiegelhalter et al. (2002) termed the “effective dimension”, and  is

an estimate of θ based on the data y. Recently, Celeux et al. (2006) have pointed out that the
“effective dimension” pD can be negative in case of mixture of distributions. For models with
mixtures, Celeux et al. (2006) suggested eight different modifications of the DIC. The model
we propose utilizes mixture structures, and thus we choose DIC3 (based on terminology used
in Celeux et al. (2006)), defined as

as our model comparison criterion. Note that the second term is simply based on the predictive
distribution p(y|y) = Eθ[p(y|θ)|y]. The model with the smallest DIC is taken to be the best fitting
model.

4. Example
We analyze the clinical trial data on acupuncture for treating chemotherapy-induced vomiting
in patients being treated for advanced breast cancer (Shen et al., 2000; Albert and Shen,
2005). The only subject-specific covariate we consider is age. The data depict a large amount
of serial correlation which diminishes and levels off with increasing distance between
measurements (Albert and Shen, 2005). To account for this extra correlation, we consider the
random walk increments described in (5) and (6).
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Thus, we consider the following model for analyzing the data:

(9)

(10)

Since, knot spacing is not the main focus of this article we select knots among the existing
values. We select the knots among the existing values, and they are equally spaced within the
range [min(x), max(x)]. Thus we assume that there are 6 knots, and they are placed at time
points 2, 4, 6, 8, 10, 12.

Our available data set is not large enough to allow part of it to be used for prior elicitation.
Prior information based on expert opinion, even if available, is user specific. Hence, for our
data set we choose the prior distributions to be weakly informative, while making sure that the
models remain identifiable. For each β in the model we assume an N(0,1000) prior distribution.
Similarly, for each α component we assume an N(0,1000) prior distribution. For the variance
parameters we assume that IG(2.001, 1.001), resulting in a prior mean of 1 and prior variance
of 1000. Each of the variance–covariance matrices Σ, ΣW is assumed to follow a IW (diag(1,
1), 3) prior distribution.

The posterior distributions are analytically intractable. We use a Gibbs sampler (Gelfand and
Smith, 1990) to obtain samples from the posterior distribution. Thus, computations are done
via Monte Carlo approximations using the Markov chain Monte Carlo (MCMC) methodology.
The methods are implemented in the freely available software packages R (R Development
Core Team, 2004), and WinBUGS (2005). Our code uses the R package R2WinBUGS (Sturtz
et al., 2005) to execute WinBUGS while running a session in R. We ran a chain of 80 000
iterations with the first 30 000 discarded as burn-in. Convergence was assessed visually by
monitoring the dynamic traces of Gibbs iterations and by computing the Gelman–Rubin
(Brooks and Gelman, 1998) convergence statistic. The initial values for the fixed parameters
were selected by starting with the prior mean and covering ±3 standard deviations. Inferences
were insensitive to the choice of the initial values.

Table 2 contains the posterior means, posterior standard deviations, and 95% credible intervals
for the parameters of interest. The covariate age has no significant effect on either the logistic
regression or the linear regression. The large significant random intercept variance (Σ11) for
the logistic part shows that after accounting for covariate differences among the subjects, some
subjects have a greater probability of positive emesis volume than others. The positive random
intercept variance (Σ22) shows that the subjects who are vomiting tend to have a larger mean
transformed emesis volume than others. The correlation between the random intercepts of the
model (Σ12) is positive, implying that the probability of positive volume and the mean emesis
volume are correlated. The estimated Σw suggests that there is significant autocorrelation in
both the occurrence of a nonzero emesis and the emesis volume given a positive volume.
However, there was little cross-autocorrelation between the two components, since 95%

credible intervals for  included zero.

Fig. 2 presents the mean profiles under our proposed model. The top panel shows the mean
profile for the logistic model, and the lower panel shows the profile for the log-normal part.
We focus on the logistic component (probability of a positive emesis volume), since this is
where treatment differences appear. There is a sizeable effect of treatment on the probability
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of a positive emesis during the first five days after randomization (comparing the dashed and
dotted lines), with the maximal treatment effect appearing at 4 days post randomization.
Further, the treatment effect appears to be diminished after day 5, with the treatment effect
disappearing by day 9. Since acupuncture was only provided over the first 5 days after
randomization, the results suggest that active acupuncture may be beneficial over sham
acupuncture while the acupuncture is given and for a few days after the cessation of
acupuncture.

Fig. 2 also shows the mean profile for the standard medical group (no acupuncture). A
comparison of the sham acupuncture (dashed line) with the standard medical arm (solid line)
is a measure of the placebo effect. As with the treatment effect, the placebo effect appears to
be substantial over the first 5 days after randomization and to diminish after day 5.

To gain further insight into the differences between the treatments, especially between the sham
acupuncture and acute acupuncture, we find the absolute difference between the nonparametric
curves in the logistic model and the corresponding posterior probability. Let ga(t) and gs(t) be
the two functions corresponding to acute acupuncture and sham acupuncture. We then define
the difference between the function as

where tM1, tM2 are two boundary points of interest. Then the posterior probability that |Λ| > 0
can then be approximated as:

where Λl is the lth iterate in the Gibbs sampler. We can then calculate the posterior probability
based on MCMC output.

We estimated the absolute difference between the active and sham acupuncture groups
separately over 1–5 days and 6–14 days. The estimated absolute difference between the active
and sham acupuncture groups during days 1–5 is 1.232 with the posterior probability of a
nonzero treatment difference 0.92, and that during days 6–14 is 0.471 with a posterior
probability 0.32. Thus, there is some evidence for an effect of treatment while acupuncture
treatment is ongoing but very little evidence for a treatment effect once acupuncture treatment
stops.

We compare among the following models using the DIC criteria as described in Section 3.1.

Model 1: Same as in Eqs. (12) and (13) without age.

Model 2: Model without Brownian motion:

(11)
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(12)

Model 3: Model without random effect :

(13)

(14)

Model 4: Model without spline :

(15)

(16)

Model 4 is similar in spirit to the model of Albert and Shen (2005).

Table 3 reports the DIC values. It can be seen that the DIC for the two-part models was
calculated separately for each part of the model as well as for the overall model. Overall, we
see that our proposed model fits better than the other parametric random effect models.

To assess the treatment effect, we also estimate the posterior mean of the mean response. Note
that the mean response is given by

where  and
.

We compute the posterior mean response under each treatment arm at day 5 and 14. The
estimated posterior mean responses at day 5 were 5.27, 4.91, and 4.69 for the standard medical,
sham acupuncture and active acupuncture groups, respectively. The estimated posterior mean
at day 14 were 3.62, 2.24, and 2.00 for the standard medical, sham acupuncture and active
acupuncture groups, respectively. The estimated value shows the benefit of acupuncture during
the 5 day treatment period. This result is in conformity with the previous findings in Albert
and Shen (2005).

5. Discussion
This paper presented a parametric Bayesian approach for modeling longitudinal
semicontinuous data. The approach allowed for flexible inference on the treatment effect over

Ghosh and Albert Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2009 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



time using a penalized spline model, as well as the incorporation of serial correlation using a
Brownian motion process. The approach is easily implemented in WinBugs (2005).

We used this methodology to analyze data from an acupuncture clinical trial. A goal of the trial
was to compare daily emesis volume across a standard medical group, a sham acupuncture
group, and an active acupuncture group, with the major focus on comparing the active and
sham acupuncture groups to assess treatment effect. The results show some evidence that active
acupuncture reduced emesis relative to sham acupuncture over the period in which acupuncture
was administered. The treatment effect quickly diminished after acupuncture was stopped. The
difference between the active and sham curves over days 1 to 5 was substantial under our
model. Further, the posterior probability of the difference being greater than zero was 0.92.
The difference was substantially reduced for the period between days 6 and 14. These results
were similar to those reported by Albert and Shen (2005) in their likelihood analysis.

Albert and Shen (2005) presented a likelihood-based approach to this problem. A Monte Carlo
EM procedure was used for parameter estimation to deal with the random effects with serial
correlation. Unfortunately, this algorithm was very computationally intensive, requiring days
of computation on a cluster of processors in order to make inference. Specifically, the approach
took approximately one-week on a cluster of 50 processors. Using WinBugs, the Bayesian
approach was much more computationally feasible than the maximum-likelihood approach,
and it takes about 5 h to run the code on a PC(512 Mo RAM, 2.6 GHz CPU).

A few limitations of our methods must be emphasized. One major issue is the robustness of
the distributional assumption. In the presented application, we assume a parametric normal
distribution for the random effects. A broader class of distributions like the Dirichlet process
may be a viable alternative. Another issue is the fixed knot points. A random knot points would
be more flexible; however, such an approach would be numerically challenging in this
framework.

References
Albert PS, Shen J. Modelling longitudinal semicontinuous emesis volume data with serial correlation in

an acupuncture clinical trial. Journal of the Royal Statistical Society: Series C 2005;54:707–720.
Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. Journal of

Computational and Graphical Statistics 1998;9:262–285.
Celeux G, Forbes F, Robert CP, Titterington DM. Deviance information criteria for missing data models.

Bayesian Analysis 2006;1:651–674.
Coull BA, Ruppert D, Wand MP. Simple incorporation of interaction into additive models. Biometrics

2001;57:539–545. [PubMed: 11414581]
Duan N, Manning WG, Morris CN, Newhouse JP. A comparison of alternative models for the demand

for medical care. Journal of Business and Economic Statistics 1983;1:115–126.
Durban M, Harezlak J, Wand MP, Carroll R. Simple fitting of subject-specific curves for longitudinal

data. Statistics in Medicine 2005;24:1153–1167. [PubMed: 15568201]
Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the

American Statistical Association 1990;85:398–409.
Gelman, A.; Carlin, JB.; Stern, HS.; Rubin, D. Bayesian Data Analysis. Vol. second. Chapman & Hall/

CRC; 2004.
Heckman JJ. The common structure of statistical models of truncation, sample selection, and limited

dependent variables and a simple estimator of such model. Annals of Economic and Social
Measurement 1976;5:475–492.

Lachenbruch PA. Analysis of data with excess zeros. Statistical Methods in Medical Research
2002;11:297–302. [PubMed: 12197297]

Ghosh and Albert Page 10

Comput Stat Data Anal. Author manuscript; available in PMC 2009 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lu SE, Lin Y, Shih WJ. Analyzing excessive no changes in clinical trials with clustered data. Biometrics
2005;60:257–267. [PubMed: 15032797]

McCulloch CE. Maximum-likelihood algorithms for generalized linear mixed models. Journal of the
American Statistical Association 1997;92:162–170.

Olsen MK, Schafer JL. A two-part random-effects model for semicontinuous longitudinal data. Journal
of the American Statistical Association 2001;96:730–745.

R Development Core Team. A language and environment for statistical computing. R Foundation for
Statistical Computing; Vienna, Austria: 2004.

Robinson JW, Zeger SL, Forrest CB. A hierarchical multivariate two-part model for profiling providers'
effects on health care charges. Journal of the American Statistical Association 2006;101:911–923.

Ruppert D. Selecting the number of knots for penalized splines. Journal of Computational and Graphical
Statistics 2002;11:735–757.

Ruppert, D.; Wand, MP.; Carroll, RJ. Semiparametric Regression. Cambridge University; Cambridge:
2003.

Shen J, Wenger N, Glaspy J, Hays R, Albert P, Choi C, Shekelle P. Electroacupuncture for control of
myeloablative chemotherapy-induced emesis: A randomized controlled trial. Journal of the American
medical Association 2000;284:2755–2761. [PubMed: 11105182]

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit
(with discussion). Journal of the Royal Statistical Society, B 2002;64:583–639.

Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. MRC Biostatistics Unit Institute of Public Health and
Department of Epidemiology & Public Health, Imperial College School of Medicine; 2005.
WinBUGS User Manual, Version 1.4. Available at: http://www.mrc-bsu.cam.ac.uk/bugs

Sturtz S, Liggers U, Gelman A. R2WinBUGS: A package for running WinBUGS from R. Journal of
Statistical Software 2005;12:1–16.

Sy JP, Taylor JMG, Cumberland WG. A stochastic model for the analysis of bivariate longitudinal AIDS
data. Biometrics 1997;53:542–555. [PubMed: 9192450]

Tooze JA, Grunwald GK, Jones RH. Analysis of repeated measures with clumping at zero. Statistical
Methods in Medical Research 2002;11:341–355. [PubMed: 12197301]

Tu W, Zhou XH. A Wald test comparing medical costs based on log-normal distributions with zero value
costs. Statistics in Medicine 1999;18:2749–2762. [PubMed: 10521864]

Welsch A, Zhou XH. Estimating the retransformed mean in a heteroscedastic two-part model. Journal of
Statistical Planning and Inference 2006;36:860–880.

Zhang M, Strawderman RL, Cowen ME, Wells MT. Bayesian inference for a two-part hierarchical model:
An application to profiling providers in managed health care. Journal of the American Statistical
Association 2006;101:934–945.

Zhou X, Tu W. Comparison of several different population means when their samples contain log-normal
and possibly zero observations. Biometrics 1999;55:645–651. [PubMed: 11318228]

Zhou C, Wakefield J. A Bayesian hierarchical mixture model for curve partitioning. Biometrics
2006;62:515–526. [PubMed: 16918916]

Ghosh and Albert Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2009 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.mrc-bsu.cam.ac.uk/bugs


Fig. 1.
Mean.
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Fig. 2.
The top panel is a comparison of the logit transformed proportion of a positive volume over
time across the three treatment arms of the acupuncture clinical trial. The lower panel compares
the mean non-negative measurement over time across the treatment arms. “–” denotes the
standard medical group; “.-.-” denotes the sham acupuncture group; “…” denotes the active
acupuncture group.
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Table 1
Number of zeros for each treatment

Standard medical group (n
= 34)

Sham acupuncture Active (n = 33) acupuncture (n
= 37)

Day 1 6 6 14

Day 2 11 13 29

Day 3 9 12 27

Day 4 3 2 5

Day 5 6 14 27

Day 6 13 20 19

Day 7 18 13 19

Day 8 18 13 23

Day 9 17 17 19

Day 10 21 18 24

Day 11 23 18 22

Day 12 20 21 23

Day 13 21 23 30

Day 14 22 21 29
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Table 2
Parameter estimates

Parametric model

Parameter Mean SD 95% CI

β1
p 2.09 0.24 (0.19, 2.31)

β1
s 2.279 0.14 (2.01, 3.16)

β2
p −7.34E−04 0.0033 (−0.0072, 0.0057)

β2
s −0.0229 0.0135 (−0.05, 0.001)

Σ11 0.65 0.161 (0.3843, 1.012)

Σ12 0.17 0.028 (−0.281, 0.661)

Σ22 0.0402 0.0074 (0.0278, 0.0569)

∑W
11 0.017 0.0085 (0.0076, 0.0384)

∑W
12 0.0024 0.003 (−0.0032,0.0103)

∑W
22 0.0116 0.0034 (0.0067, 0.02)

σ 0.1337 0.007 (0.1197, 0.1493)
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Table 3
DIC values

Model 1 Model 2 Model 3 Model 4

DIClogistic 1747.81 1937.1 1974.77 1912.7

DIClog-normal 689.72 762.5 749 694.1

Overall DIC 2437.53 2699.6 2723.77 2606.8

Comput Stat Data Anal. Author manuscript; available in PMC 2009 September 16.


