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Abstract
To understand the increase in age-related incidence and frequency of absence seizures in the rat brain,
we investigated the effect of these seizures on brain dynamics. This paper puts forward the hypothesis
that age-related differences in the expression of absence seizures are associated with the ability of
the seizures to reset brain dynamics.
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1. INTRODUCTION
Epilepsy is one of the most common neurological disorders, second only to stroke, affecting
about 0.8% of the world’s population [1]. Although epilepsy occurs in all age groups, the
highest incidences are found in infants and the elderly. Absence epilepsy is a subtype of
generalized epilepsy manifested by seizures characterized by brief periods of impaired
consciousness (absence seizures). Human absence epileptic seizures are typically associated
with bursts of generalized 3 Hz spike-wave discharges (SWDs) in the electroencephalogram
(EEG). The usual duration is 3–10 sec, ranging up to a few minutes. The level of functioning
during a SWD depends in part on the duration of the seizure, and the recovery from such
episodes is usually fast, in the order of a few seconds.
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Animal modeling of absence seizures has been conducted in numerous studies. The defining
EEG events in rodents are 7–12 Hz generalized SWDs (Fig. 1) of variable duration with an
abrupt onset and abrupt termination, which usually occurs during passive wakefulness or sleep
[2,3]. In the previous study [4], numerous spontaneous bilateral cortical 7–9 Hz spike-wave
discharges were recorded in control and brain-lesioned animals spanning an age range from 2
to 30 months. As animals progress from mid-aged to aged periods, they can experience
hundreds of absence seizures per day [5].

A central feature of epilepsy is that it is characterized by seizures that are transient in nature
and occur spontaneously in a recurrent fashion. Epilepsy has been described as a dynamical
disease with pathological states characterized by the occurrence of abnormal dynamics [6].
From a dynamical perspective, a seizure may represent self-organizing behavior in which
widespread cortical areas make an abrupt transition to an ordered state and reset to a normal
state at the end of the seizure [7]. Nonlinear time-dependencies have also been reported in the
pattern of seizure occurrence, which indicate that seizures do not occur randomly, but rather
reflect determinism [8,9].

In an effort to better understand the relationship between aging and the differential expression
of SWDs, we studied the dynamical EEG properties of the epileptic brain. The concept of
“brain dynamical resetting” may provide some insights into the mechanisms underlying
increased seizure susceptibility of the aged brain. One way to quantify the effect of an event,
e.g. a seizure, is to estimate how dynamical EEG properties change after the event. A nonlinear
measure that is closely related to the rate at which information is produced, the short-term
maximum Lyapunov exponent (STLmax), was utilized to extract a dynamical profile of the EEG
signal over time for each recording channel. This measure has been found to be useful in
capturing and predicting system (brain) dynamics associated with transitions into and out of
epileptic seizures [10–15]. The overall goal of this study was to establish a clear relationship
between changes in the dynamical EEG properties of the brain and differences in the age-
related expression of SWDs.

2. STATE SPACE TOPOGRAPHY AND ANALYSIS OF iEEG
The state space portrait of a signal (time series) provides a visual representation of its evolution
in a multidimensional space over time. Its characteristics reflect the original characteristics of
the signal, and ultimately the system that generates the signal. The state space can be thought
of as a collection of all possible states that a dynamical state visits during its evolution. In
general, the state space is identified with a topological manifold. A p-dimensional state space
is spanned by a set of p-dimensional “embedding vectors,” each of which defines a point in
the state space, thus representing the instantaneous state of the system.

2.1. State Space Reconstruction
The theoretical basis for the relationship between a signal and its state space representation
generated by earlier work [16,17] was developed from the Whitney embedding theorem [18].
A state space portrait is created by treating each time-dependent variable of the system as a
component of a vector in a multidimensional space. Each vector in the state space represents
an instantaneous state of the system. These time-dependent vectors are plotted sequentially in
the state space to represent the evolution of the state of the system over time. For many systems,
this graphical mapping creates an object confined over time to a sub-region of the state space.
The geometrical properties of these confined objects, called “attractors,” provide information
about the global state of the system. The vector reconstruction is achieved as follows:
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where x(t) is the value at time t; τ is a fixed time increment; and p is the embedding dimension.
Every instantaneous state of the system is therefore represented by the vector X, which defines
a point in the p-dimensional state space. The intracranial EEG (iEEG), being the output of a
multidimensional system, has both spatial and temporal statistical properties. Components of
the brain (neurons) are densely interconnected and there exists an inherent relation between
the iEEG recorded from one site and the activity at other sites. This makes the iEEG a
multivariate time series. The state space reconstruction of the iEEG signal in a three-
dimensional state space (Fig. 2) was done using the method of delays [17].

2.2. Embedding Parameters for iEEG Reconstruction
An accurate representation of the system in a state space depends upon making appropriate
choices of the embedding dimension p and time delay τ. The choice of p for experimental data
such as ours is not a straightforward issue. According to Takens [17], if d is the fractal
dimension of the attractor in a state space, the embedding dimension p should be at least equal
to 2d + 1 in order to correctly reconstruct the attractor. Therefore, one of the first steps in
characterizing the properties of a system is to estimate the fractal dimension of the attractor.
The dimension helps to determine the position of a point on the attractor to within a certain
degree of accuracy. In addition, it provides a lower limit to the number of variables necessary
to model the system.

To ensure that the ictal (seizure) dynamics were captured, we calculated the fractal dimension
and the time delay from the iEEG recorded during the ictal period. For any attractor, the
dimension can be estimated by looking at the manner in which the number of points within a
sphere of radius r scales as the radius shrinks to zero. The geometric relevance of this
observation is that the volume occupied by a sphere of radius r in the dimension d behaves as
rd. The correlation function or correlation integral C(r) measures the probability that two
vectors on the attractor, selected at random, lie within a distance r of each other. This function
of two variables is an invariant on the attractor, but it has become conventional to look only at
the variation of this quantity when r is small. In that limit, it is assumed that

defining the generalized fractal dimension d when it exists. From the above equation, d can be
estimated in the limiting case as

In practice, we need to compute C(r) for a range of small r over which we can argue that the
function log [C(r)] is log[C(r)] linear in log[r] and then select the linear-like slope over the

range. Figure 3 shows a plot of  versus log [r] for an ictal segment where C(r) denotes
the correlation integral and r represents the attractor size. The curves correspond to different
values of the embedding dimension (p = 6, 7, 8, and 9) and a time delay of 15 msec. The
objective is to find a “middle” region in log [r] where the derivative (slope) is consistent. The
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figure illustrates the difficulties in establishing a clean, unsullied value of the correlation
dimension for experimental data.

Therefore, following the values used in human studies, we have used an embedding dimension
p = 7 for the reconstruction of the phase space. This value of p may be too small for the
construction of a state space that can reconstruct all interictal attractors of the brain, but it
should be adequate for detection of the transition of the brain toward the ictal stage if the
epileptic attractor is active in its space prior to the occurrence of the epileptic seizure.

The embedding delay parameter τ should be small enough to capture the shortest change (i.e.,
highest frequency component) present in the data, but should also be large enough to generate
(with the method of delays) the maximum possible independence between the components of
the vectors in the state space. These two conditions are usually addressed by selecting τ as the
first minimum of the mutual information between the components of the vectors in the state
space or as the first zero of the time-domain autocorrelation function of the data [19].
Theoretically, because the time span (p −1)× τ of each vector in the state space represents the
duration of a state of the system, (p −1)× τ should be at most equal to the period of the maximum
(or dominant) frequency component in the data. For example, a sine wave (or a limit cycle)
has υ = 1, then a p = 2×1+1=3 is needed for the embedding, and (p −1)× τ should be equal to
the period of the sine wave. Such a value of τ would then correspond to the Nyquist sampling
of the sine wave in the time domain. In the case of the epileptic attractor, the highest frequency
present is 70 Hz (the iEEG data are low-pass filtered at 70 Hz), which means that if p = 3, the
maximum τ to be selected is about 7 msec. However, because the dominant frequency of the
epileptic attractor (i.e., during the ictal period) in the animal iEEG was never more than 15 Hz,
according to the above reasoning, the adequate value of τ for the reconstruction of the state
space of the epileptic attractor with p = 7 is (7 −1)× τ = 67 msec, that is, τ should be about 11
msec [20].

2.3. Positive Lyapunov Exponent in the iEEG
The Lyapunov exponents of a system are a set of invariant geometric measures that describe
the dynamical content of the system. In particular, they serve as a measure of the ease of
predicting the future state of the system. Lyapunov exponents quantify the rate of divergence
or convergence of two nearby initial points of a dynamical system, in a global sense. A positive
Lyapunov exponent measures the average exponential divergence of two nearby trajectories,
whereas a negative Lyapunov exponent measures exponential convergence of two nearby
trajectories. A zero Lyapunov exponent indicates the temporal continuous nature of a flow. If
a discrete nonlinear system is dissipative in nature, then a positive Lyapunov exponent
quantifies a measure of chaos. Consequently, a system with positive exponents has positive
entropy in that trajectories that are initially close together move apart over time. The more
positive the Lyapunov exponents are, the faster they move apart. Similarly, for negative
exponents, the trajectories move together in time. A system with both positive and negative
Lyapunov exponents is said to be chaotic. Stated differently, Lyapunov exponents quantify the
amount of linear stability or instability of an attractor or an asymptotically long orbit of a
dynamical system.

Wolf et al. [21] proposed an algorithm for calculating the largest Lyapunov exponent. First,
the state space reconstruction is made and the nearest neighbor is searched for one of the first
embedding vectors. After the neighbor and the initial distance (l) are determined, the system
is evolved forward for some fixed time (evolution time) and the new distance (l′) is calculated.
This evolution is repeated, calculating the successive distances, until the separation is greater
than a certain threshold. A new vector (replacement vector) is searched as close as possible to
the first one, having approximately the same orientation of the first neighbor. The short term
maximum Lyapunov exponent (STLmax) used in this study was estimated using the method
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proposed by Iasemidis et al. [23], which is a modification of Wolf’s algorithm. The measure
was termed “short-term maximum Lyapunov exponent” to distinguish it from those used to
study autonomous dynamical systems. Modification of Wolf’s algorithm was necessary to
better estimate STLmax in small data segments that include transients, such as interictal spikes.
The modification is primarily in the searching procedure for a replacement vector at each point
of a fiducial trajectory.

The first step in the calculation of STLmax is to divide the iEEG signal recorded from each
electrode (a one-dimensional time series) into sequential, non-overlapping segments of length
5.12 sec (1024 data points) and embed each segment in a 7-dimensional state space with a time
delay τ = 3 (15 msec), using the method of delays. The computation of the largest Lyapunov
exponent (Lmax) involved the iterative selection of pairs of points on the state space portrait
and the estimation of the convergence or divergence of their trajectory over time. More
specifically, the largest Lyapunov exponent is defined as the average of local Lyapunov
exponents Lij in the state space, that is

where N is the necessary number of iterations for the convergence of the Lmax estimated from
a data segment of n points (n = N·Δt), and

where Δt is the evolution time allowed for δ0 (xij) =| X (ti) − X (tj)|, the vector difference, to
evolve to δκ(xK) =|Y (ti + Δt) − Y(tj + Δt)|, the new vector difference, where Δt = k · dt and dt
is the sampling period of the data u(t). If Δt is given in seconds, Lmax is in bits/sec. Details of
this method, including the selection of parameters for calculating STLmax, and a variation of
Lmax for nonstationary signals like iEEG, have been described previously by Iasemidis and
colleagues [23,24].

Figure 4 demonstrates the STLmax profile derived from a single bipolar EEG channel for a 4-
month old animal and a 20-month old animal. The figure shows a drop in the STLmax value
during the SWD (both at time 0), and a postictal increase in values compared to the average
preictal value. Note that this postictal increase is more significant in the younger (4-month old)
animal.

3. SEIZURES AS INTRINSIC MECHANISMS OF CONTROL
It has been postulated that seizures may be intrinsic mechanisms that serve to reset the brain
from an abnormal state back to a more normal state [25,26]. This theory suggested that epileptic
brains, being chaotic nonlinear systems, repeatedly make abrupt transitions into and out of the
ictal (ordered) state based on the following observations: (i) a positive Lyapunov exponent in
the EEG; (ii) presence of nonlinearities in the ictal EEG; (iii) existence of spatiotemporal
transitions (from chaos to order); and (iv) resetting of spatiotemporal dynamics by the seizure
(to a more chaotic state). It follows intuitively that failure to sufficiently reset the brain by a
seizure may increase the susceptibility of the epileptic brain to a subsequent seizure.
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3.1. Resetting of Spatiotemporal Chaos: From Order to Chaos
A seizure can be characterized by a significant drop in the value of the Lyapunov exponent
associated with it, thereby suggesting a sudden and brief transition to a highly ordered state.
Following the seizure, these values are reset to a larger value compared with the immediate
preictal values, suggesting that the seizure promotes the brain to revert to a normal functioning
state that is more chaotic. The above observations constitute further support for the working
model of dynamical state transitions underlying the evolution of epileptic seizures proposed
in early literature [23–26]; this working model explained the temporal evolution of the
maximum Lyapunov exponent in terms of a modified “cusp catastrophe model” [27–29]
wherein a sudden bifurcation in system dynamics occurs when the system enters the local cusp
of singularity of a folded surface S, due to a change in intrinsic parameters. A plausible
hypothetical intrinsic feedback and resetting mechanism in the brain is shown in Fig. 5.

3.2. Resetting and Age-Related Seizure Expression
In animal studies, several investigations using models of aging have shown an enhanced seizure
susceptibility associated with older animals. We postulated that the functional anatomy of the
brain changes as it ages resulting in global changes of brain operation that are reflected in part
by a changed expression of SWDs. One approach to characterize these global changes is to
employ dynamical measures of brain activity, which offers the possibility to understand how
changes in the dynamics of neuronal networks could result in SWDs - sudden manifestations
of paroxysmal widespread oscillations. To compare and contrast the dynamical EEG properties
of 4- and 20-month old male rats as a means to delineate differences in age-related expression
of SWDs, we estimated STLmax values to test for differences in peri-ictal (surrounding a
seizure) dynamical properties of the EEG.

Four young adult (4-month old) and four aged (20-month old) male rats were included in the
study. Fifty SWDs from each animal were used to estimate the dynamical properties during
the peri-ictal period. We estimated the STLmax values for a 2-min EEG epoch recorded before
and after each SWD using the algorithms described above. The values were computed for each
EEG channel and averaged across electrodes to calculate overall pre-ictal, post-ictal, and
difference (STLmaxpost – ictal − STLmaxpre – ictal) values for each SWD in each animal. A
statistical comparison (by a nested two-way ANOVA test, where the random factor (rats) is
nested within an animal group) of dynamical values during the pre-ictal period (2 min before
a SWD) showed no significant difference between the 4- and 20-month old animals in
STLmax values (p > 0.05). However, the same statistical test performed on post-ictal dynamical
values (2 min after a SWD) revealed a significant difference between the two groups in
STLmax values (p < 0.05). To compare how effective each SWD was in resetting the animal’s
brain to a normal interictal state, we computed the difference between average pre-ictal and
post-ictal dynamical values. The test of these “resetting” values suggested that the “resetting”
was significantly more effective in the 4-month old cohort compared with the 20-month old
cohort, evident from STLmax values (p < 0.05). Figure 6 illustrates the comparison of the
differences between pre-ictal and post-ictal periods between animals in the two age groups.

4. CONCLUSION
As in human epilepsy, transitions from the interictal to the ictal state in the rat involve a
transition from a chaotic (high STLmax) to a more ordered (lower values of STLmax) state. The
transitions observed in the iEEG in human and rat temporal lobe epilepsy are consistent with
early publications that introduced the concept of “dynamical diseases” [30–34]. This concept
was introduced to explain how biological systems can make transitions between normal and
pathophysiological states. Periodic state shifts observed in biological disorders, such as
Cheyne–Stokes respiration, periodic hematopoiesis, and penicillin-induced neuronal spiking,
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were demonstrated to be similar to state transitions that occurred in certain mathematical
models of low-dimensional nonlinear systems [31,35].

The mean STLmax difference values (post seizure–pre seizure) were significantly different
between 4-month old and 20-month old naive animals (4 months > 20 months; p < 0.05), which
suggested that the age-related increase in SWD expression is associated with a decrease in
seizure-related dynamical effect (resetting), as the animal ages. The results of this study suggest
that the recovery of the brain back to its normal interictal state following SWDs was better in
young adult animals compared with aged animals. This interpretation is supported by higher
post-ictal dynamical values as well as a larger difference between post-ictal and pre-ictal
dynamical values.

Mackey and Glass [30] speculated that certain periodic diseases arose because of a bifurcation
in the behavior of a control system. Even in simple mathematical models of such systems,
transitions between normal and pathological states, or between ordered and chaotic states, can
result from small changes in the value of a control parameter [6,30,31,33]. If dynamical diseases
can be explained on this basis, then it may be possible to use this information to construct
optimal therapeutic responses based on manipulation of a control parameter [33] or by external
perturbations using techniques developed for the control of chaotic systems. Furthermore,
models of coupled chaotic oscillators have given several insights into prediction of seizures
and the resetting phenomenon [36]. Other studies modeling dynamical transition in nonlinear
coupled map lattice systems have also shown similarities with the transitions in an epileptic
brain [37]. Techniques applied for controlling chaos in dynamical systems, such as coupled
map lattice systems, may also prove to be useful in controlling spatiotemporal chaos in the
epileptic brain.
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Fig. 1.
A sample of a generalized SWD recorded from a rat. The F3, C3, and P3 abbreviations refer
to skull screw electrodes overlying left frontal, central, and parietal regions of the animal’s
brain, respectively; F4, C4, and P4 refer to the brain areas on the right. An “F3-C3” label
corresponds to an EEG channel produced by the output of one differential amplifier with inputs
from the F3 and C3 electrodes.
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Fig. 2.
(a) Ictal segment of a filtered iEEG recorded from the hippocampus of a rat, (b) Reconstructed
iEEG segment in 3-D state space.
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Fig. 3.
Derivative of the correlation function calculated for a rat iEEG ictal segment (2000 points)
created from vector spaces of dimension p=6, 7, 8, and 9, with respect to ln (r). Consistency
is observed in a broad range of ln (r) with slopes that lie in a range of values from 2 to 4.
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Fig. 4.
STLmax values estimated from a single bipolar channel of EEG from a 4-month (a) and 20-
month (b) old animals, before, during, and following an absence seizure (SWD), each lasting
approximately 5 sec. The estimation of the STLmax values was made by dividing the signal into
non-overlapping segments of 5.12 sec each and using p = 7 msec and τ = 15 msec for the phase
space reconstruction. The onset of the seizure, at time point 0, is associated with a drop in
STLmax. In the immediate postictal period, STLmax has been reset to a value exceeding that of
the preictal period. Note: STLmax values are reset to a higher average postictal value compared
to the average preictal value in the 4-month old animal.
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Fig. 5.
Conceptual schematic showing intrinsic brain feedback control responsible for seizure
generation. Seizure expression is determined by an internal feedback control mechanism
utilizing the brain state; the generator is activated until the normal state is reached (effective
resetting) by the intrinsic controller.
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Fig. 6.
Age-related differences in resetting (difference between post-ictal and pre-ictal STLmax values)
between young (4-month old) and aged (20-month old) animals.
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