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Abstract

The first enantioselective synthesis of biologically active 6-amino-5-cyanodihydropyrano[2,3-c]
pyrazoles has been achieved through a cinchona alkaloid-catalyzed tandem Michael addition and
Thorpe-Ziegler type reaction between 2-pyrazolin-5-ones and benzylidenemalononitriles. The
reaction may also be carried out in a three-component or a four-component fashion via the in situ
formation of these two components from simple and readily available starting materials. The desired
products were obtained in excellent yields with mediocre to excellent enantioselectivities (up to
>99% ee).
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Dihydropyrano[2,3-c]pyrazole derivatives have very important biological activities, such as
anticancer,12 antimicrobial, 1P anti-inflammatory, 1€ insecticidal, 14 and molluscicidal activities.
1e.f They are also potential inhibitors of human Chk1 kinase (Fig. 1).19 Due to their biological
significance,! there has been considerable interest in developing synthetic methods for 6-
amino-5-cyanodihydro-pyrano[ 2,3-c]pyrazoles.2~8 These compounds may be readily
obtained from the reaction of 4-arylmethylene-5-pyrazolone and malononitrile, 23 or 2-
pyrazolin-5-ones and benzylidenemalononitriles.3 The overall reaction is a tandem Michael
addition and a Thorpe-Ziegler type reaction (an enol addition to a cyano group) followed by
tautomerization.3 It should be pointed out that these compounds may exist in the 1,4-dihydro
or 2,4-dihydro tautomeric forms when the N1 position is unsubstituted. Although most studies
assigned the 1,4-dihydro structure to these derivatives,2~ recent X-ray crystallographic data
prefer the 2,4-dihydro tautomer.>:6

Since benzylidenemalononitriles may be synthesized in situ from aromatic aldehydes and
malononitrile under the reaction conditions, these compounds may also be synthesized through
a three-component reaction of 2-pyrazolin-5-ones, malononitrile, and aromatic aldehydes.*>
Most recently, a four-component synthesis by using hydrazine hydrate, acetoacetate,
malononitrile, and aromatic aldehydes has also been demonstrated.® Nevertheless, to our
knowledge, an enantioselective synthesis of these interesting compounds has not yet been
realized.’

*Corresponding author. Tel.: +1 210 458 5432; fax: +1 210 458 7428. E-mail address: cong.zhao@utsa.edu (C.-G. Zhao).
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During our ongoing research in developing novel organocatalytic enantioselective methods for
the synthesis of biologically active compounds,® we became interested in the asymmetric
synthesis of 6-amino-5-cyanodihydro-pyrano[2,3-c]pyrazoles. Herein we wish to report the
first enantioselective synthesis of these derivatives through a tandem Michael addition-Thorpe-
Ziegler reaction, using some readily available cinchona derivatives as the catalyst.?

Initially we studied the synthesis with 3-methyl-2-pyrazolin-5-one (10a) and
benzylidenemalononitrile (11a) as the model substrates. Several readily available cinchona
alkaloid derivatives (Scheme 1) were screened as the catalysts. The results are summarized in
Table 1.

As shown in Table 1, when quinine (1) was used as the catalyst in CH,Cl, at rt, a yield of 80%
of the product 12a was obtained with a low ee value of 23% (entry 1). In contrast, when cupreine
(2) was used as the catalyst, product 12a was obtained in high yield of 92% with an excellent
ee value of 96% (entry 2). Nevertheless, 9-epi-cupreine (3) leads to a lower ee value of 65%
(entry 3). When 9-epi-amino-9-deoxyquinine (4) was applied as the catalyst, a racemic product
was obtained (entry 4). Similarly, poor enantioselectivities were achieved with quinine-derived
thiourea catalysts 57 (entries 5-7). A low ee value of 22% for the opposite enantiomer was
also obtained when quinidine (8) was used as the catalyst (entry 8). It is most surprising that
cupreidine (9), the pseudo-enantiomer of cupreine (2), also leads to poor enantioselectivity of
the other enantiomer (6%, entry 9). Thus, this screening identified cupreine (2) as the best
catalyst for the reaction. The results also suggest that the reaction is very sensitive to the subtle
changes in the catalyst structure. Further screening of the reaction conditions revealed that
chloroform is also a good solvent for this reaction (entry 10), while THF, ether, benzene, and
acetonitrile are worse ones (entries 11-14). Lowering the reaction temperature to 0 °C shows
no improvement in the enantioselectivity (data not shown). Furthermore, control experiments
also indicate that the product does not racemize under the reaction conditions (data not shown).

The absolute configuration of the major enantiomer obtained in Table 1, entry 2 was determined
to be R according to the X-ray crystallographic analysis of the product 12a (Fig. 2).10 Our data
also indicate that the product exists in the 2,4-dihydro tautomer form®:6 in the solid state.

The scope and limitation of this enantioselective synthesis were next examined under the
optimized conditions (with 5 mol % catalyst 2 in CH,Cl, at rt).10 The results are listed in Table
2. As shown by the results in Table 2, besides 11a (entry 1), other benzylidenemalononitriles
also participate in this reaction. However, the enantioselectivity of the reaction drops
considerably if there is a substituent on the phenyl ring of the benzylidenemalononitrile. For
example, the reaction of para-halogen-substituted benzylidenemalononitriles produces the
expected products in high yields, but the ee values of the obtained products are only mediocre
(48-62% ee, entries 2-5). Other electron-withdrawing groups at the para-position, such as,
cyano and nitro groups, also lead to low ee values of the products (entries 6 and 7). Electron-
donating groups (Me and MeO) at para-position also diminish the enantioselectivity of this
reaction (entries 8 and 9). By comparing the results in entry 4 and entry 10, it is evident that
moving the substituent to the meta-position leads to even worse enantioselectivity of the
product. These results hint that the enantioselectivity of this reaction is most likely governed
by steric factors instead of electronic factors. Moreover, replacing the methyl group in 3-
methyl-2-pyrazolin-5-one (10a) with a larger ethyl group (10b) also leads to much poorer ee
value of the product 12k (38% ee vs 96% ee, entries 1 and 11). Similar results were obtained
with the product 121 of 3-phenyl-2-pyrazolin-5-one (10c, entry 12). The use of
hexylidenemalononitrile (entry 13) instead of benzylidenemalononitriles also led to a poor ee
value (28%) of the product 12m.
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Multi-component reactions involving domino processes allow molecular complexity and
diversity to be created by the formation of several new covalent bonds in a one-pot
transformation. This methodology has emerged as a powerful synthetic strategy.12 Most
recently, this approach also found many applications in organocatalysis. 13 Since
benzylidenemalononitriles (11) may be formed in situ from aromatic aldehydes and
malononitrile under the reaction conditions,*> we also studied the three-component reaction
of 10a, an aromatic aldehyde (13), and malononitrile (14). The results are listed in Table 3.11

As shown by the results in Table 3, indeed, when cupreine (2) was used as the catalyst, the
desired product 12a may be obtained in 80% yield and 96% ee by using 10a, 14, and
benzaldehyde (13a) as the substrates (entry 1). Since 1 equiv of water was formed under the
three-component reaction conditions, some drying agents were intentionally added to the
reaction mixture to evaluate their effects on the enantioselectivity of this reaction. When 1
equiv of Nay,SO4 was used, the ee value of the product was improved to 99% ee (entry 2).
However, adding 4 A molecular sieves as the drying agent led to slightly inferior ee value of
94% (entry 3). The yields were also slightly lower in both cases as compared to the reaction
without drying agents. Nonetheless, the effects of these additives are more complicated. For
example, with p-chlorobenzaldehyde (13c), molecular sieves prove to give the highest ee value
(70%, entry 6) of the product 12¢, which is much higher than those obtained without the additive
or with NaySOy (entries 4 and 5). However, with p-bromobenzaldehyde (13d), both additives
give worse enantioselectivities of the product 12d (entries 8 and 9) than the reaction without
these additives (entry 7). Under these individually optimized conditions, higher ee values of
the products may be obtained by using the three-component reaction than by using the two-
component reaction (Table 3, entry 2 vs Table 2, entry 1; Table 3, entry 6 vs Table 2, entry 3;
Table 3, entry 7 vs Table 2, entry 4).

Next the four-component reaction was studied with cupreine (2) by using hydrazine hydrate
(15) and acetoacetate (16) as the precursors for the in situ formation of compound 10a. The
results are listed in Table 4. Benzaldehyde (13a) leads to formation of expected 12a in 28%
yield and 16% ee (entry 1). Again various drying agents were evaluated for their effects on the
stereoselectivity. Much improved ee values were obtained after adding 1 equiv of MgSQO4 or
Na,SQOy, or molecular sieves (entries 2—4) to the reaction mixture, with Na;SO4 giving the best
results (entry 3). By adding 2 equiv of Na,SO4 and carrying out the reaction at 0 °C, a single
enantiomer of 12a may be obtained (entry 5). Similar results may also be achieved in other
solvents, such as chloroform (entry 6), acetonitrile (entry 7), and THF (entry 8), except for
benzene (entry 9). Whereas this four-component reaction leads to the highest ee value of
product 12a, the yield is considerably lower than the two-component or the three-component
reaction. Higher yields may be achieved for other aldehyde substrates, such as p-chloro (13c),
p-bromo (13d), p-nitro (13g), and p-methoxybenzaldehyde (13i), but the enantioselectivities
obtained were only low to mediocre (entries 10-13).

In summary, we have developed the first enantioselective method for the synthesis of 6-
amino-5-cyanodihydropyrano[2,3-c]pyrazoles via a two-component, a three-component, or a
fourcomponent reaction using cupreine as the catalyst. The enantioselectivity of this reaction
was found to be highly dependent on the reaction conditions and on the structure of the catalysts
and the substrates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A biologically active 6-amino-5-cyanodihydropyrano[2,3-c]-pyrazole.
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Figure 2.
ORTEP drawing of the product 12a.

Tetrahedron Lett. Author manuscript; available in PMC 2009 November 13.

Page 7



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Gogoi and Zhao

3:R'=0H,R?=H
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5:R' = -CH=CH,, R? = OMe 8:R=Me
9:R=H

6: R' = -CH,CHj3, R? = OMe
7:R'=-CH=CH,, R =H

Scheme 1.
Structure of the screened catalysts.
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