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Abstract
When modulators of neuromuscular function alter the motor neuron spike patterns that elicit muscle
contractions, it is predicted that they will also retune correspondingly the connecting processes of
the neuromuscular transform. Here we confirm this prediction by analyzing data from the cardiac
neuromuscular system of the blue crab. We apply a method that decodes the contraction response to
the spike pattern in terms of three elementary building-block functions that completely characterize
the neuromuscular transform. This method allows us to dissociate modulator-induced changes in the
neuromuscular transform from changes in the spike pattern in the normally operating, essentially
unperturbed neuromuscular system.
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Question
Neuromodulators regulate many neurophysiological processes. These processes are often
modeled as input-output relationships. Here we consider, for example, the neuromuscular
transform [1]: in a neuromuscular system, the transformation of the pattern of motor neuron
spikes to the waveform of muscle contractions that the spikes elicit (Fig. 1). Consider a
modulator that, to meet some physiological demand, must alter the output contractions in a
particular way. How can the modulator accomplish this? Experimentally, it is observed that it
generally alters the input spike pattern. Yet both theory and experiment strongly suggest that
this alone will often be insufficient. This is because the neuromuscular transform acts as a
constraining channel whose properties are tuned, at any particular time, only to a narrow range
of input patterns. When the input pattern is modulated outside this range, the output
contractions will not be able to follow [3]. To allow them to follow, the properties of the
neuromuscular transform must be retuned correspondingly [2]. We predict, therefore, that
physiological modulators of neuromuscular function, and of other comparable input-output
processes, will act simultaneously at two sites, altering in a complementary way both the input
and the input-output relationship (Fig. 1).
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How can we test this prediction with the natural spike patterns in the normally functioning,
minimally perturbed neuromuscular system? Here we apply an analytical method developed
by Stern et al. [11] that “decodes” [cf. 9,10] the contraction response to the motor neuron spike
pattern in terms of three elementary building-block functions that completely characterize the
neuromuscular transform, in the unmodulated and modulated system.

Data
To illustrate our approach and results, we work in this paper through the details of just one
representative example, using data from a single experiment performed in the cardiac
neuromuscular system of the blue crab Callinectes sapidus [5,7]. The data are shown in Fig.
2. The crab heartbeat is neurogenic, driven by the endogenous rhythmic activity of a simple
central pattern generator, the cardiac ganglion, embedded within the heart itself. In each cycle,
the cardiac ganglion generates a burst of motor neuron spikes (Fig. 2A, bottom) that produces
a contraction of the heart muscle (top). The system is endogenously modulated by numerous
modulators. In Fig. 2 we exogenously applied one of these, crustacean cardioactive peptide
(CCAP) [5,6], by superfusing it over the entire system, the cardiac ganglion as well as the heart
muscle. Expanded excerpts from the records in Fig. 2A before and during the modulation by
CCAP can be compared in B and C. Clearly, CCAP dramatically altered the motor neuron
spike pattern—most obviously, it greatly increased the frequency of the bursts, accelerating
the heart rhythm—as well as the size and shape of the contractions. We now ask, were the
changes in the contraction waveform due simply to the changes in the spike pattern, or did
they, as we predict, also require changes in the neuromuscular transform?

Method
Briefly, the method [11] assumes that the contraction response to the spike pattern is produced
by the operation of three invariant elementary functions, K, H, and F. Once we have identified
these, we will be able to predict the response to any arbitrary spike pattern, and so will have
achieved a complete spike-level characterization of the neuromuscular transform. With the
times of the spikes in an experimentally observed pattern as input, we use a least-squares
minimization to construct an estimated response, Rest, that best approximates the observed
response, Rexp. We assume that

(1)

where tti = spike times, i = 1, 2, …, n

K = single spike response or kernel

Ai = factor scaling the amplitude of K at each spike time

We further assume that Ai = A(ti), where

(2)

where H = function describing dependence on previous spikes
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F = nonlinear “dose-response” curve

A least-squares minimization is then implemented for . This expression
is converted into a continuous (integral) expression to take advantage of analytical techniques
in mathematics. Calculus of variations is then used to find the minimum. In the case of equation
(1), the resulting expressions that must be solved numerically are nonlinear in K and A, but are
solved as two separate linear equations, in terms of K and A respectively. The two equations
are solved in alternation, iteratively until a desired level of error tolerance is achieved. This
method is repeated to find H and F, as in equation (2). An important feature of the method is
that K, H, and F are not assumed to be of any particular analytic form (e.g., exponential).
Instead, each function value is treated as an independent degree of freedom, to be determined
by the algorithm. The initial guesses for the functions are constants, and the form of these
functions emerges as the computation runs.

Since each function value is treated as an independent “parameter” of the fit, a possible concern
is that, if the number of data points of Rexp to be fit were to be almost equaled by the number
of parameters available to fit them, the method might “overfit” the data, that is, find a solution
tailored too specifically to that particular Rexp. The method in fact uses matrices that combine
all of the corresponding data points, for example at each time following each spike, from the
entire given dataset. The question is then simply, what is the ratio of the number of data points
to the number of parameters in a typical fit? Consider equation (1). Here the number of
parameters is n + k, where k is the number of function values of K and n is the number of spikes,
each of which is associated with one amplitude factor A. The number of data points, on the
other hand, is nk, if all the spikes are so far apart that their responses nowhere overlap (in this
case the algorithm simply finds the ensemble average of the responses), and smaller than nk
with overlap. With no overlap, there are thus nk/(n + k) data points per parameter. The ratio
increases with n and k, but decreases with overlap. Typically n and k are quite large, and there
is only moderate overlap. The ratio is thus sufficiently large. In the two portions of the data in
Fig. 2 decoded below, for example, n = 466 and 740, k = 100, and, with the overlap present in
the data, the ratio was computed to be ~13 and ~12 data points per parameter.

Overfitting can also be eliminated as a concern if the fit can explain new data, as our fits here
do (see below).

Results
Fig. 3 shows the functions K, H, and F decoded by the method from the unmodulated (open
circles) and modulated (filled circles) portions of the experiment in Fig. 2. Clearly, the
unmodulated and modulated functions differ: the neuromuscular transform was indeed
changed by the modulator. Some of the differences have reasonably intuitive interpretations.
For example, as the modulator accelerated the heartbeat by increasing the frequency of the
motor neuron spike bursts, the function K—the contraction shape elicited by each spike (Fig.
3A)—became faster at the same time.

It is, however, the entire set of the three functions K, H, and F, interacting with each other and
with the spike pattern, that determines the contraction waveform. The full shape of the
contraction waveform is therefore difficult to predict intuitively. But, knowing the spike pattern
and the functions K, H, and F, which in our analysis are all the components of the system, it
should be possible to reconstruct it. We demonstrate this in Fig. 4. If the decoding method is
valid, for example, the unmodulated spike pattern (e.g., that in row 1 in Fig. 4A), passed through
the neuromuscular transform composed of the unmodulated functions K, H, and F, should
reproduce the unmodulated contraction waveform that was really observed. Indeed, this is the
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case: compare rows 2 and 3 in Fig. 4A. Similarly, the modulated spike pattern (e.g., that in row
1 in Fig. 4B), passed through the modulated functions K, H, and F, should reproduce the
modulated contraction waveform. This, too, is the case: compare rows 2 and 4 in Fig. 4B.

What happens, now, when we pass the unmodulated spike pattern through the modulated
transform, or, conversely, the modulated pattern through the unmodulated transform? In both
cases, the predicted contractions are very unlike the real contractions, with shapes that probably
would be inefficient or completely unsuccessful in pumping blood. In the first case (row 4 of
Fig. 4A), the contractions are predicted to be abnormally fast, brief, and small. In the second
case (row 3 of Fig. 4B), the contractions are, conversely, too slow for the accelerated heart
rhythm and so can never relax completely, instead of the fast, large, yet fully relaxing
contractions that were actually produced by the modulator.

We performed a reconstruction like that in Fig. 4 for the entire dataset in Fig. 2, quantifying
the similarity between the real and the reconstructed contraction waveforms by computing the
root mean square (RMS) error between them. Fig. 5A shows the RMS error for each successive
5 s-long segment of the data in Fig. 2A when the spike pattern was passed through the
neuromuscular transform composed of either the unmodulated (open points) or the modulated
(filled points) functions K, H, and F. At the beginning of the experiment, when the spike pattern
was itself unmodulated, it produced relatively low error—that is, relatively realistic contraction
shapes, as in Fig. 4—when passed through the unmodulated transform but much higher error
when passed through the modulated transform. Later in the experiment, when the spike pattern
became modulated, the converse was true. Thus, realistic contraction shapes were produced
only when the spike pattern and the neuromuscular transform were both in the same modulatory
state. The differences in RMS error between different modulatory states either of the spike
pattern or of the transform were statistically highly significant (Fig. 5B).

With regard to our decoding method, too, Fig. 5 makes an important point. The decoded
functions K, H, and F are able to reconstruct not just selected data, as in Fig. 4, but every
segment of the dataset recorded under the same conditions—all of the segments lying within
the boxes in Fig. 5A from which the functions K, H, and F were decoded in the first place, but
also, without obviously worse error, also segments extending beyond the boxes. The functions
K, H, and F thus characterize the neuromuscular transform, as required, in a sufficiently general
manner to be able to predict contraction responses to new spike patterns.

Conclusion
To change the contraction waveform, CCAP appears to have acted, as predicted, by changing
simultaneously both the input motor neuron spike pattern and the properties of the input-output
relationship, the neuromuscular transform. Both changes were required: either one without the
other would not have succeeded.

As in other neuromuscular systems [2], the change in the neuromuscular transform is very
likely brought about by peripheral action of CCAP on the heart muscle to change its response
to the motor neuron spike pattern. In vivo, CCAP is released from projections of neurosecretory
CNS neurons that terminate in the pericardial organs, neurohemal structures adjacent to the
heart [5,6]. Thus, CCAP is released as a neurohormone that (as in our experiment here) has
access both to the cardiac ganglion and the heart muscle. Anatomically, it is therefore quite
capable of exerting multiple actions throughout the cardiac system. Indeed, in recent
experiments [6] we have discerned at least three primary actions of CCAP in the system, two
probably on the cardiac ganglion and one on the heart muscle that, as our analysis here predicts,
changes the contraction response even to the same spike pattern. The mechanism of this
peripheral action may include modification of the transmission at the cardiac neuromuscular
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junctions or of the contractility of the heart muscle itself. There is extensive precedent for both
mechanisms in invertebrate, as well as vertebrate, neuromuscular systems [2,4,12].

Our analytical method was able to dissociate the two actions of CCAP from each other in the
normally operating, essentially unperturbed neuromuscular system. For full power, however,
this approach will clearly be well complemented by perturbation techniques. For example, to
test our understanding of the system, we would like to repeat the reconstructions in Fig. 4
experimentally. If we fire the real motor neurons in the modulated pattern but in the
unmodulated system, or conversely in the unmodulated pattern in the modulated system, do
we obtain the contraction waveforms predicted in row 3 of Fig. 4B and row 4 of Fig. 4A,
respectively? Methods for controlled experimental stimulation of the crab cardiac system,
albeit requiring its further dissection, have been developed [8] and such experiments are in
progress.
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Fig. 1.
The question. K, H, and F are the functions that characterize the neuromuscular transform in
our analysis.
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Fig. 2.
The data, from a representative semi-intact working heart preparation [6,7] of Callinectes. A,
top: heart muscle tension. A, bottom: cardiac ganglion motor neuron spike pattern, recorded
extracellularly in a connective leading from the ganglion to the muscle. 10−6 M CCAP was
superfused; the lag before the response reflects the dead volume of the perfusion system. B and
C expand the unmodulated and modulated excerpts in the small boxes in A. The large boxes
in A indicate the unmodulated (175 s of data, with 466 spikes) and modulated (100 s of data,
with 740 spikes) portions of data that were used to decode, respectively, the unmodulated and
modulated functions K, H, and F in Fig. 3.
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Fig. 3.
The unmodulated (open circles) and modulated (filled circles) functions K, H, and F decoded
from the portions of data within the large boxes in Fig. 2A.

Stern et al. Page 12

Neurocomputing. Author manuscript; available in PMC 2009 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Representative contraction waveforms reconstructed by passing the unmodulated (A) and
modulated (B) spike patterns shown in row 1 (taken from Fig. 2) through the unmodulated
(row 3) and modulated (row 4) functions K, H, and F. The contraction waveforms that were
really observed are shown in row 2. Note different time scales in A and B.
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Fig. 5.
Statistics of the reconstruction of the entire dataset. A: root mean square (RMS) error between
the real contraction waveform Rexp and the reconstructed contraction waveform Rest when a
reconstruction like that in Fig. 4 was performed for each successive 5 s-long segment of the
data in Fig. 2A with either the unmodulated (open points) or the modulated (filled points)
functions K, H, and F. The continuous curves are simply smoothed curves through the points
to show their average trend. The boxes are reproduced from Fig. 2A to indicate the portions of
the data from which the unmodulated and modulated functions K, H, and F were decoded. B:
means ± SE of the RMS errors from A, comparing four conditions: unmodulated spike pattern
segments reconstructed with the unmodulated functions K, H, and F (bar 1) and with the
modulated functions (bar 2), and modulated spike pattern segments reconstructed with the
unmodulated functions (bar 3) and with the modulated functions (bar 4). Specifically, the
points included in the appropriate bars of B were all those lying within the boxes in A. Statistical
significance was tested with ANOVA on ranks followed by pairwise multiple comparisons
using the Holm-Sidak method; “***” indicates p < 0.001.
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