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Abstract
Background: To allow direct comparison of bloodstream infection (BSI) rates between hospitals for
performance measurement, observed rates need to be risk adjusted according to the types of patients cared for
by the hospital. However, attribute data on all individual patients are often unavailable and hospital-level risk
adjustment needs to be done using indirect indicator variables of patient case mix, such as hospital level. We
aimed to identify medical services associated with high or low BSI rates, and to evaluate the services provided by
the hospital as indicators that can be used for more objective hospital-level risk adjustment.

Methods: From February 2001-December 2007, 1719 monthly BSI counts were available from 18 hospitals in
Queensland, Australia. BSI outcomes were stratified into four groups: overall BSI (OBSI), Staphylococcus aureus
BSI (STAPH), intravascular device-related S. aureus BSI (IVD-STAPH) and methicillin-resistant S. aureus BSI
(MRSA). Twelve services were considered as candidate risk-adjustment variables. For OBSI, STAPH and IVD-
STAPH, we developed generalized estimating equation Poisson regression models that accounted for
autocorrelation in longitudinal counts. Due to a lack of autocorrelation, a standard logistic regression model was
specified for MRSA.

Results: Four risk services were identified for OBSI: AIDS (IRR 2.14, 95% CI 1.20 to 3.82), infectious diseases
(IRR 2.72, 95% CI 1.97 to 3.76), oncology (IRR 1.60, 95% CI 1.29 to 1.98) and bone marrow transplants (IRR 1.52,
95% CI 1.14 to 2.03). Four protective services were also found. A similar but smaller group of risk and protective
services were found for the other outcomes. Acceptable agreement between observed and fitted values was
found for the OBSI and STAPH models but not for the IVD-STAPH and MRSA models. However, the IVD-STAPH
and MRSA models successfully discriminated between hospitals with higher and lower BSI rates.

Conclusion: The high model goodness-of-fit and the higher frequency of OBSI and STAPH outcomes indicated
that hospital-specific risk adjustment based on medical services provided would be useful for these outcomes in
Queensland. The low frequency of IVD-STAPH and MRSA outcomes indicated that development of a hospital-
level risk score was a more valid method of risk adjustment for these outcomes.

Published: 1 September 2009

BMC Infectious Diseases 2009, 9:145 doi:10.1186/1471-2334-9-145

Received: 16 December 2008
Accepted: 1 September 2009

This article is available from: http://www.biomedcentral.com/1471-2334/9/145

© 2009 Tong et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19719852
http://www.biomedcentral.com/1471-2334/9/145
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Infectious Diseases 2009, 9:145 http://www.biomedcentral.com/1471-2334/9/145
Background
Healthcare-acquired infection (HAI) is a major contribu-
tor to patient morbidity and mortality [1], particularly
bloodstream infections (BSI), which are expensive and
difficult to treat [2]. Queensland Health has initiated a
quality improvement programme, the Centre for Health-
care Related Infection Surveillance and Prevention
(CHRISP), which undertakes standardized surveillance of
HAI in public hospitals in Queensland.

To allow direct comparison of rates of HAI between hos-
pitals, observed rates need to be risk adjusted according to
the types of patients cared for by the hospital [3]. Without
risk adjustment, hospitals might be penalized for high
infection rates that arise due to the type of patients cared
for rather than quality of patient care [4]. For surgical site
infections, this involves risk adjusting individual patient
outcomes according to measures of health status and sur-
gical complexity [5]. However, for BSI, no individual data
are collected by CHRISP on the general patient popula-
tion, meaning that risk adjustment for hospital BSI rates
has to be done indirectly, based on attributes of the hos-
pital.

At present, expected BSI rates are crudely calculated for
three hospital strata (called "levels") which roughly corre-
spond to the size of, and types of services provided by, the
facility. Level I hospitals are tertiary teaching hospitals,
level II hospitals are large general hospitals and level III
hospitals are smaller general hospitals. Level I hospitals
tend to have higher rates of BSI than levels II and III hos-
pitals, and crude risk adjustment based on hospital level
allows for some of the between-hospital variation associ-
ated with patient case mix to be accounted for. However,
CHRISP is seeking a more objective approach to risk
adjustment based on hospital attributes (i.e. services pro-
vided) that are directly associated with BSI risk. The aim of
the present study was to identify hospital services associ-
ated with high or low rates of BSI and to evaluate the serv-
ices as indicators that can be used for improved hospital-
level risk adjustment.

Methods
CHRISP was initiated in 2000 with joint funding from the
Australian Government Department of Health and Age-
ing, and Queensland Health, the Queensland government
public health service. Surveillance methods are described
in detail elsewhere [6], but here we provide a brief descrip-
tion of CHRISP surveillance of BSI. BSI data collection
commenced in February 2001 on a voluntary basis and
involved the 10 largest public hospitals in Queensland. In
May 2002, an additional 11 smaller general hospitals
were included. HAI (including BSI) data were collected by
infection control practitioners in each participating hospi-

tal using hand-held computing devices. Standard BSI def-
initions based on the United States National Nosocomial
Infection Surveillance (NNIS) system definitions were
used in all hospitals [7]. Patient de-identified data were
transferred to an electronic surveillance software package,
Electronic Infection Control Assessment Technology ver-
sion 4.2. (eICAT, CHRISP, Brisbane, Australia) from
which the data for this study were extracted. Ultimately,
data were available from 5 level I, 10 level II and 6 level III
public hospital.

Statistical analysis
Four types of BSI were investigated: Overall BSI (OBSI);
BSI caused by Staphylococcus aureus (STAPH); Intravascu-
lar-device-related S. aureus BSI (IVD-STAPH) and BSI
caused by methicillin-resistant S. aureus (MRSA), with the
latter two forming overlapping subsets of STAPH and
STAPH forming a subset of OBSI. As the frequency of
MRSA monthly counts (number of infections per month)
was low, with only 6.3 percent of all MRSA events being
multiple events in the same month, this outcome was
dichotomized to presence or absence of infections in each
hospital and month. All BSI infection data were collected
at an aggregated hospital level every month.

Split-sample validation was employed in the analysis. The
training dataset consisted of a retrospective cohort of hos-
pital-level monthly counts, comprising almost six years
(71 months) of longitudinal data, collected from February
2001 to December 2006. The validation dataset com-
prised one year of longitudinal data, collected from Janu-
ary to December 2007. Three level II hospitals with
multiple periods of missing longitudinal data were
removed prior to analysis. The remaining 18 hospitals
also had 11.3 percent missing outcome data because not
all of these hospitals had joined CHRISP and began con-
tributing data at the same time. However, these hospitals
did not have missing data from the period that they
started contributing. The training dataset had a total of
1122 observations.

Generalized estimating equation (GEE) Poisson regres-
sion models, typically used to compute population-aver-
aged parameter estimates, were developed to identify risk
and protective services for the OBSI, STAPH and IVD-
STAPH outcome. The total number of patient days per
month was used as an exposure variable in the models to
capture the activity level of the hospital in a particular
month. We used the quasilikelihood under the independ-
ence model information criterion (QIC), which is analo-
gous to the Akaike information criterion (AIC) [8] for
likelihood-based models, to select a parsimonious model
with the best fitting temporal autocorrelation structure. As
for AIC, a lower QIC indicates a better trade-off between
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model complexity and fit [9-11]. For the dichotomous
MRSA outcome, an independence logistic regression
model was developed to identify risk factor services.

Saturated models with the following 12 candidate medi-
cal services were fitted: acute renal dialysis, acquired
immune deficiency syndrome (AIDS), alcohol/drugs, car-
diac surgery, diabetes, hospice care, infectious diseases,
intensive care, plastic surgery, obstetrics and maternity,
oncology and bone marrow transplants. Five candidate
medical services were excluded due to collinearity: acute
spinal injury, burns, neurosurgery, obstetrics and inten-
sive care. Collinearity arose for a medical service when
there was minimal variation in that service across hospi-
tals. For example, the intensive care service was collinear
because it was offered by most hospitals and had a similar
distribution across hospitals to the infectious diseases
service. The general surgery service was also excluded
because it was provided by all hospitals.

Parsimonious models were sought by dropping non-sig-
nificant medical services using an -level of 0.05. Parame-
ter estimates for the GEE Poisson regression models were
expressed in terms of incidence rate ratios (IRR) and 95%
confidence intervals. Parameter estimates for the logistic
regression model were expressed in terms of odds ratios
(OR) and 95% confidence intervals.

Goodness of fit analysis
For the count outcomes, the concordance correlation was
computed as a measure of agreement between the
observed and fitted values [12-14]. High levels of agree-
ment implied that the model's fitted values closely

matched the observed values. The Harrell's c-index was
also derived, as a measure of discrimination between hos-
pitals with higher or lower infection rates. For dichoto-
mous outcomes, the c-index is equivalent to the area
under the ROC curve (AUC).

For the dichotomous MRSA outcome, a Hosmer-Leme-
show test with 10 groups was performed to assess the
logistic regression model. A p-value greater than .05 indi-
cated no statistical evidence of a poorly fitting model.
Receiver operating characteristics (ROC) analysis was con-
ducted and the AUC was computed. The AUC measured
discrimination, which is the ability of the model to cor-
rectly predict the months with and without infections. An
AUC of 0.5 represented a model that predicts no better
than random guessing and an AUC of 1 represented a
model that predicts perfectly.

Level re-classification based on risk scoring
For count outcomes where the models had a low concord-
ance correlation, use of the regression model coefficients
to calculate expected rates for direct hospital-level risk
adjustment was not indicated. For these outcomes, and
for the MRSA outcome, which occurred with a low fre-
quency, an alternative risk-scoring approach [15] was
explored. In this approach, a risk score that reflected the
high and low risk services provided by a particular hospi-
tal was calculated by totaling the regression coefficients
from the applicable medical services provided by that hos-
pital. So, a hospital with an infectious diseases and cardiac
surgery service would have a risk score based on the sum
of the regression coefficients from those two services.

Table 1: Average monthly numbers of bloodstream infections and patient days by hospital level in Queensland, Australia, 2001-2007.

Hospital level by outcome Mean Standard Deviation Range (min to max)

OBSI
1 13.7 12.6 0 to 61
2 2.6 2.7 0 to 18
3 0.7 1.1 0 to 6
STAPH
1 2.6 2.4 0 to 13
2 0.8 1.1 0 to 8
3 0.2 0.4 0 to 3
IVD-STAPH
1 0.9 1.2 0 to 8
2 0.2 0.5 0 to 3
3 0.1 0.2 0 to 1
MRSA
1 0.6 0.9 0 to 4
2 0.2 0.5 0 to 3
3 0.03 0.2 0 to 1
Patient days
1 13464.1 6325.8 4775 to 26225
2 6564.0 3232.6 2205 to 17929
3 2476.7 1026.6 915 to 9635
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Homogeneous subgroups of hospitals with similar risk
scores were then identified and these groupings were used
to reclassify the original hospital levels. To demonstrate
the impact of re-classification, Bayesian shrinkage plots
[16,17] were created using risk-adjusted rates calculated
according to the original and re-classified hospital levels.
Shrinkage estimators have been used extensively to derive
better estimates of the true infection rates in hospitals.
They minimize the mean squared error of parameter esti-
mates between hospitals, adjust for variation in sample
size and account for regression to the mean for individual
hospitals. Statistical analyses were performed using Stata
10.1 software (StataCorp, College Station, TX, USA) and R
2.7.1 (R Core Development Team, Vienna, Austria).

Results
The mean BSI rate per month by outcome type and mean
number of patient days per month, stratified by original

hospital levels are displayed in Table 1. The results indi-
cated that level I hospitals had the highest rates of BSI and
they were the busiest group of hospitals with the highest
number of patient days per month. Level III hospitals
tended to have a very low number of infections per
month. Across all levels, the outcomes of IVD-STAPH and
MRSA were infrequent relative to OBSI and STAPH. Plots
of numbers of OBSI per month are presented for selected
hospitals in Figure 1.

Regression models
For the OBSI model (Table 2), the QIC suggested an
autoregressive (AR) structure of lag one was most suitable
for the correlation structure of the GEE. Four risk services
and four protective services were found. The concordance
correlation between the observed and fitted values on the
validation sample was 0.93 (95% CI .91 to .94), which
suggested strong evidence of agreement for the OBSI

Longitudinal plots of overall bloodstream infection rates in a sample of public hospitals in Queensland, AustraliaFigure 1
Longitudinal plots of overall bloodstream infection rates in a sample of public hospitals in Queensland, Aus-
tralia. A dashed vertical line splits training and validation subsets of the data, collected from 2001 to 2007. Hospitals 5, 7, 8 and 
10 were level I hospitals and the remaining hospitals were level II hospitals.
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model. The c-index was 0.83 (95% CI .81 to .86) which
indicated the model had a high ability to discriminate.
The highest OBSI rates among all hospitals were found in
hospital 7 and 10 (Figure 1); these two hospitals had all
four risk services found by the GEE Poisson model. The
risk for OBSI in these hospitals may be compounded as
these four risk services were found together.

For the STAPH models, the parsimonious GEE Poisson
model with an autoregressive structure of two lags is
shown in Table 3. Three risk services and three protective
services were found. The concordance correlation was
0.73 (95% CI .68 to .78). Thus there was moderate level
of agreement. The c-index was 0.82 (95% CI .78 to .86)
indicating a high level of discrimination.

IVD-STAPH had very low monthly counts with a large
proportion of zeroes (75.9%). The QIC results suggested
an autoregressive structure of lag 2 was most suitable. The

parsimonious GEE model with AR 2 correlation is shown
in Table 4. Three risk services and one protective service
were identified. The concordance correlation was 0.58
(95% CI .50 to .65), which indicated a low level of agree-
ment mainly due to the model being unable to predict a
substantial number of observed zeroes. However, the c-
index was moderately high at 0.78 (95% CI .72 to .85)
which suggested sufficient ability to discriminate between
lower and higher infection rates among hospitals.

MRSA had very low monthly counts with a large propor-
tion of zeroes (79.7%) and a maximum monthly count of
four events. The QIC suggested an independence structure
adequately reflected the correlation structure. The parsi-
monious logistic regression model is shown in Table 5.
Three risk services and one protective service were found.
The Hosmer-Lemeshow goodness of fit test with 10
groups suggested the model fitted adequately (χ2(8) =
6.74, P = .565). The AUC suggested good discrimination
between observed and fitted values (AUC = .81, exact 95%
CI .79 to .83).

Level re-classification based on risk scoring
Direct hospital-specific risk adjustment using the IVD-
STAPH model was not recommended due to the low con-
cordance correlation. Note, a GEE negative binomial
model and a zero-inflated Poisson (ZIP) model [18] were
also fitted for IVD-STAPH but resulted in similarly low
concordance correlations. Therefore, the risk scoring
approach was used for IVD-STAPH, and MRSA.

Table 6 demonstrates the calculation of the risk score, and
subsequent hospital reclassification for MRSA. Figure 2
shows a Bayesian shrinkage plot for five years of MRSA
surveillance data with risk adjustment by the original hos-
pital levels. The two and three standard deviation bound-
aries (sigma control limits) can be used to identify which
hospitals have significantly over or under-performed rela-

Table 3: Incidence rate ratios of Staphylococcus aureus bloodstream infections for services provided by public hospitals in Queensland, 
Australia.

Medical services GEE Poisson with a log link
IRR SE† (95% CI)† P-value

Alcohol/Drugs 0.81 0.07 (0.69 to 0.95) .011
Diabetes 0.53 0.11 (0.36 to 0.80) .002
Infectious diseases 3.91 0.82 (2.59 to 5.90) < .001
Plastic surgery 0.57 0.09 (0.42 to 0.79) .001
Maintenance renal dialysis 1.82 0.20 (1.47 to 2.26) < .001
Oncology 1.73 0.14 (1.47 to 2.04) < .001

QIC 817.95

aAR 2 correlation
† exchangeable standard errors were scaled by square root of Pearson χ2-based dispersion.

Table 2: Incidence rate ratios of overall blood stream infections 
for services provided by public hospitals in Queensland, 
Australia.

Medical services GEE Poisson with a log linka

IRR SE† (95% CI)† P-value

AIDS 2.14 0.63 (1.20 to 3.82) .010
Alcohol/Drugs 0.52 0.15 (0.29 to 0.93) .028
Coronary care 0.74 0.05 (0.66 to 0.84) < .001
Hospice care 0.84 0.07 (0.71 to 0.99) .041
Infectious diseases 2.72 0.45 (1.97 to 3.76) < .001
Plastic surgery 0.49 0.07 (0.38 to 0.64) < .001
Oncology 1.60 0.17 (1.29 to 1.98) < .001
Bone marrow transplants 1.52 0.22 (1.14 to 2.03) .004

QIC 1844.93

aAR 1 correlation
† exchangeable standard errors were scaled by square root of 
Pearson χ2-based dispersion.
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tive to their peers. Hospitals 1 and 12 performed signifi-
cantly worse than average at the 2 and 3 sigma control
limits.

Figure 3 shows that when risk adjustment was performed
using the re-classified levels (based on the risk score), hos-
pital 12 remained an outlier but hospital 1 was clearly
within the 2 and 3 sigma control limits. Thus hospital 1,
which had been re-classified from level II to level I (Table
6), was under control. When deriving the shrinkage ratios
for MRSA, the estimate of the between-hospital variation
of the true rates was obtained. With the original levels, the
variation between hospitals was 0.332. With the new lev-
els, the variation decreased to 0.138.

Discussion
This study aimed to develop and evaluate risk adjustment
for BSI rates at a hospital level, based on services provided
by those hospitals. Risk adjustment is clearly necessary
given the large differences in rates between hospital levels
across all four infection outcomes (Table 1; Figure 1). Our
results suggest that hospital-specific risk adjustment based
on medical services provided is strongly recommended
for OBSI and STAPH. Expected infection counts (calcu-
lated using patient day denominators), may be obtained
directly from the risk-adjustment models. By contrast,
hospital-level risk adjustment with a risk score approach
is recommended for IVD-STAPH and MRSA in lieu of
direct hospital-specific risk adjustment. These methods
may be used to derive less biased observed-expected ratios
of monthly BSI than the crude approach currently being
used, where risk adjustment is based on the hospital level,
and CHRISP is currently implementing risk adjustment
using the models presented in this report.

The risk-adjusted ratios may be implemented on the y-axis
in funnel plots [19] and Bayesian shrinkage plots for con-
tinuous quality improvement. Shrinkage plots for MRSA
demonstrate that hospital 1, reported as an outlier using
the original hospital level classification, was found to be
under control using our re-classified hospital levels. Table

6 indicated that the hospital, originally classified as a level
2 hospital, was reclassified as a level 1 hospital using the
risk score based on the logistic regression model. This was
because the hospital offered acute renal dialysis and infec-
tious diseases services, which were the highest risk services
found in the MRSA model. Hospital 1 actually had the
highest risk score among all hospitals. It was also found
that between-hospital variation in rate estimates was
higher for the original, crudely adjusted values than in the
new risk-adjusted values. This is further evidence to sup-
port the reclassification, as the new levels produced a
more homogenous group of true rates within each level,
and demonstrates that the risk scoring approach has had
a significant impact on the interpretation of observed
MRSA rates.

AIDS, infectious diseases, oncology, renal dialysis, cardiac
surgery and transplant services were found to be high risk
services for BSI in one or more models. This is unsurpris-
ing given the compromised immune state of most
patients cared for by AIDS, oncology and transplant serv-
ices, and the large number of invasive procedures con-
ducted in oncology, renal dialysis and cardiac surgery
wards. Infectious disease services were highly collinear
with intensive care services and the finding of infectious
disease services as high risk could relate to the health sta-
tus and number of invasive procedures experienced by

Table 5: Odds ratios of methicillin-resistant Staphylococcus 
aureus bloodstream infections for services provided by public 
hospitals in Queensland, Australia.

Medical services GLM binomial with a logit link
OR SE (95% CI) P-value

Acute renal dialysis 2.77 0.58 (1.83 to 4.18) < .001
Cardiac surgery 1.59 0.31 (1.08 to 2.32) .017
Infectious diseases 3.12 1.04 (1.62 to 5.99) .001
Plastic surgery 0.48 0.16 (0.25 to 0.93) .029

AIC 867.04
QIC 258.56

Table 4: Incidence rate ratios of intravascular device related Staphylococcus aureus blood stream infections for services provided by 
public hospitals in Queensland, Australia.

Medical services GEE Poisson with a log linka

IRR SE† (95% CI)† P-value

Infectious diseases 3.35 0.89 (1.99 to 5.64) < .001
Plastic surgery 0.46 0.13 (0.26 to 0.81) .008
Maintenance renal dialysis 1.50 0.25 (1.08 to 2.08) .016
Oncology 1.89 0.26 (1.44 to 2.48) < .001

QIC 507.79

aAR 2 correlation
† exchangeable standard errors were scaled by square root of Pearson χ2-based dispersion.
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patients in intensive care units and other collinear serv-
ices. Another possibility is that hospitals with infectious
disease units might perform better at BSI surveillance,
with a higher probability of identifying and reporting BSI
cases. This requires further investigation. We note that
exclusion of the three level II hospitals with missing data
potentially reduced the power of the statistical models to

identify risk and protective services, and might have intro-
duced an immeasurable source of bias.

Although hospital-level risk adjustment based on hospital
services is a more objective and refined approach than
that based on crude hospital levels, hospital services
remain an indirect indicator of patient case-mix. Use of
service-specific infection rates (which were not available
in the current study) or attribute data of individual
patients (also not available for the general patient popu-
lation) would facilitate a more accurate and robust
approach to risk adjustment. Further research will focus
on developing risk-adjustment models that incorporate
more sophisticated denominators such as central line-
days to calculate BSI rates [20]. CHRISP is in the process
of initiating a pilot of central line-day data collection
within a major hospital. It is possible that variation in sur-
veillance quality could contribute to observed variation in
BSI rates between hospitals. We cannot capture this in our
models but if a hospital signals (i.e. has a higher than
expected rate), an investigation should be conducted and
this will determine if the signal is a reporting artifact or a
result of an infection control break down. While our vali-
dation results suggest that the models were robust over
time, we do not have data available from another geo-
graphical area (e.g. Australian state) for external valida-
tion purposes but that is something we wish to investigate
in the future.

Table 6: Reclassification of hospital levels for methicillin-resistant Staphylococcus aureus bloodstream infection risk-adjustment in 
public hospitals in Queensland, Australia

Hospital ID MRSA risk 
score

Reclassified 
level

Original level Acute Renal 
Dialysis

(Coeff 1.02)

Cardiac 
Surgery

(Coeff .46)

Infectious 
Diseases

(Coeff 1.14)

Plastic Surgery
(Coeff -.73)

1 2.2 1 2 Yes No Yes No
13 1.9 1 1 Yes Yes Yes Yes
7 1.9 1 1 Yes Yes Yes Yes

10 1.4 1 1 Yes No Yes Yes
2 1.4 1 2 Yes No Yes Yes

12 1.0 2 2 Yes No No No
9 1.0 2 2 Yes No No No

14 1.0 2 3 Yes No No No
17 1.0 2 3 Yes No No No
8 0.5 2 1 No Yes No No
5 0.4 2 1 No No Yes Yes
6 0.3 2 2 Yes No No Yes

19 0 3 2 No No No No
4 0 3 1 No No No No

15 0 3 3 No No No No
16 0 3 3 No No No No
20 0 3 3 No No No No
21 0 3 3 No No No No
23 0 3 2 No No No No
18 0 3 2 No No No No
24 0 3 3 No No No No

Yes = Medical service available
No = Medical service not available
Reclassification is based on risk scores derived from the medical services provided and coefficients from logistic regression models of the relationship 
between each medical service and the monthly occurrence of infection in each hospital.

Bayesian shrinkage Observed/Expected plot of methicillin-resistant Staphylococcus aureus bloodstream infection rates in public hospitals in Queensland, Australia, 2003-2007, with risk adjustment by crude hospital levelsFigure 2
Bayesian shrinkage Observed/Expected plot of 
methicillin-resistant Staphylococcus aureus blood-
stream infection rates in public hospitals in Queens-
land, Australia, 2003-2007, with risk adjustment by 
crude hospital levels.
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Conclusion
The results of the models are generalizable to the network
of public hospitals in Queensland. While the estimates of
the models themselves may not be generalizable to other
healthcare systems with different patient case mixes and
organization of medical services, the statistical methods of
risk-adjustment presented here are widely applicable to
other healthcare systems that collect BSI surveillance data
at an aggregated hospital level. The Australian govern-
ment is currently mandating S. aureus BSI as a key per-
formance indicator, and risk-adjustment will be essential
to ensure that hospitals that offer high risk services will
not be unfairly penalized given their underlying propen-
sity of their patients to develop BSI. Therefore, the imper-
ative is great for more objective methods of risk
adjustment such as the approach outlined in this report.
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