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Abstract

The NIAID (National Institute for Allergy and Infectious Diseases) Biodefense Proteomics program aims to identify targets for
potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and
viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data,
including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological
reagents. The Biodefense Resource Center (www.proteomicsresource.org) has developed a bioinformatics framework,
employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data.
Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and
annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from
experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated
framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in
several case studies presented here. (1) The identification of a hypothetical protein with differential gene and protein
expressions in two host systems (mouse macrophage and human HeLa cells) infected by different bacterial (Bacillus
anthracis and Salmonella typhimurium) and viral (orthopox) pathogens suggesting that this protein can be prioritized for
additional analysis and functional characterization. (2) The analysis of a vaccinia-human protein interaction network
supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a
potential therapeutic target. (3) Comparison of complete genomes from pathogenic variants coupled with experimental
information on complete proteomes allowed the identification and prioritization of ten potential diagnostic targets from
Bacillus anthracis. The integrative analysis across data sets from multiple centers can reveal potential functional significance
and hidden relationships between pathogen and host proteins, thereby providing a systems approach to basic
understanding of pathogenicity and target identification.
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Introduction

The NIAID (National Institute of Allergy and Infectious Diseases)

Biodefense Proteomics program, established in 2004, aims to

characterize the pathogen and host cell proteome by identifying

proteins associated with the biology of microbes, mechanisms of

microbial pathogenesis and host responses to infection, thereby

facilitating the discovery of target genes or proteins as potential

candidates for the next generation of vaccines, therapeutics, and

diagnostics [1]. The program includes seven Proteomics Research

Centers (PRCs) conducting state-of-the-art high-throughput re-

search on pathogens of concern in biodefense and emerging/

reemerging infectious diseases, as well as a Biodefense Resource

Center for public dissemination of the pathogen and host data,

biological reagents, protocols, and other project deliverables.

The PRCs work on many different organisms, covering bacterial

pathogens (Bacillus anthracis, Brucella abortus, Francisella tularensis,

Salmonella typhi, S. typhimurium, Vibrio cholerae, Yersinia pestis), Eukaryotic

parasites (Cryptosporidium parvum, Toxoplasma gondii), and viral pathogens

(Monkeypox, SARS-CoV, Vaccinia). The centers have generated a

heterogeneous set of experimental data using various technologies

loosely defined as proteomic, but encompassing genomic, structural,

immunology and protein interaction technologies, as well as more

standard cell and molecular biology techniques used to validate
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potential targets identified via high-throughput methods. In addition

to data, the PRCs have provided biological reagents such as clones,

antibodies and engineered bacterial strains, other deliverables include

standard operating procedures (SOPs) and new technologies such as

instrumental methods and software tools and finally publications

related to all of these activities.

Consequently, there were a number of unique challenges facing

the Resource Center: (i) how to coordinate with the seven PRCs

with various pathogens, technologies, processes, and data types; (ii)

how to provide seamless integration of three institutions that make

up the Resource Center; and (iii) how to provide timely and effective

dissemination of newly discovered information to the user

community. In particular, due to the breadth of the program, the

potential user community is quite broad, from technology or

informatics experts who may want to reanalyze the data or develop

better algorithms, to a wide group of biomedical scientists who are

interested in mining the data for their own studies or just finding

new information on a protein or gene of interest quickly and easily.

Accordingly, we developed a set of functional requirements early

in the Biodefense Resource Center development: (i) to implement a

center-specific submission protocol and data release plan for timely

dissemination, (ii) to promote data interoperability, adopting

common standards (such as HUPO Proteomic Standards Initiative

[2,3,4]), defining a core set of metadata with mapping to controlled

vocabularies and ontologies, recommending preferred IDs for gene/

protein mapping, and (iii) to provide value-added annotation to

capture key findings and integration of the data with related

resources for functional interpretation of the data. Available online at

http://proteomicsresource.org, the architecture, initial content and

general features of the Biodefense Proteomics Resource were briefly

described elsewhere [5]. A breakdown of the Resources content by

organism, PRC and other criteria can be seen at: http://www.

proteomicsresource.org/Resources/Catalog.aspx. Tutorials and

help are provided on the website: http://www.proteomicsresource.

org/Resources/Tutorials.aspx , http://proteininformationresource.

org/pirwww/support/help.shtml#30

The objective of this study is to provide a systems approach to the

study of pathogen-host interactions, connecting the various types of

experimental data on genomics, proteomics and host-pathogen

interactions with information on pathways, regulatory networks,

literature, functional annotation and experimental methods. Having

most of this information accessible in one place can facilitate

knowledge discovery and modeling of biological systems. Like many

problems in data integration, it is easy to know the general outline of

what we want, but often much harder to implement and navigate

the information, especially if the original data crosses disciplinary,

laboratory and institutional boundaries. Here we describe in detail a

protein-centric approach for systems integration of such a large and

heterogeneous set of data from the NIAID Biodefense Proteomics

program, and present scientific case studies to illustrate its

application to facilitate the basic understanding of pathogen-host

interactions and for the identification of potential candidates for

therapeutic or diagnostic targets. Several scientific use cases are

presented that illustrate how one can search varied experimental

data from different laboratories and even ones researching different

infectious organism and their hosts to make potentially useful

connections that could lead to new hypotheses and discoveries.

Methods

Biodefense Resource Center Infrastructure
Based on the functional requirements of the Resource Center, we

developed a bioinformatics infrastructure for integration of PRC

deliverables (Figure 1). In our workflow, multiple data types from

PRCs are submitted to the center using a data submission protocol

and standard exchange format, with the metadata using controlled

vocabulary whenever possible. For functional interpretation of the

data, we then map the gene and protein data based on identifier (ID)

mapping or if necessary using peptide or sequence mapping to

proteins in our data warehouse described below. All of the databases,

along with information on the PRCs and organisms under study are

listed in the proteomics catalog accessible from the web portal.

Protein-Centric Data Integration
The key design principal in the Resource Center is protein-centric

data integration. Here the diverse experimental data are integrated

and presented in a protein-centric manner where information is

queried and presented via common proteins and connected to

experimental data and the network of protein attributes, including

information on the encoding genes, protein families, pathways,

functions and more. In practice a protein-centric approach works well

as proteins occupy a middle ground molecularly between gene and

transcript information and higher levels of molecular and cellular

structure and organization. Proteins are often the functional

molecules in biological processes described by pathways, molecular

interactions and other networks. Protein families, in turn, have

proven to be invaluable in studying evolution and for inferring and

transferring functional annotation across species.

Master Protein Directory
Underlying the protein-centric data integration is a data warehouse

called the Master Protein Directory (MPD) where key information is

extracted from the primary data and combined for rapid search,

display and analysis capabilities. The MPD is built on the data and

capabilities of iProClass [6] a warehouse of protein information, which

in turn is built around UniProtKB [7] but supplemented with

additional sequences from gene models in RefSeq [6] and Ensembl [7]

and additional annotation and literature from other curated data

resources such as Model Organism Databases [8,9,10,11,12,13] and

GeneRIF [14]. The biodefense data are essentially additional data

fields added to a subset of iProClass entries to create the MPD.

Currently the MPD defines and supports information from the

following types of data produced by the PRCs: Mass Spectrom-

etry, Microarray, Clones, Protein Interaction, and Protein

Structure. More data types or attributes may be added in the

future if needed. Supplemental table S1 shows the common and

unique fields used in the MPD for each data type. An advantage of

the data warehouse design is that, if needed, additional fields can

be extracted from the primary data and easily added as new

attributes without greatly altering the existing database design or

query mechanisms. The MPD data is stored in an Oracle database

along with iProClass data. For data exchange, an XML file and

schema for the current MPD are available for download at:

ftp://141.161.76.88/pub/proteomics_ftp/rc/MD_data/ipro-

class_mpd.dtd

ftp://141.161.76.88/pub/proteomics_ftp/rc/MD_data/ipro-

class_mpd.xml

ftp://141.161.76.88/pub/proteomics_ftp/rc/MD_data/ipro-

class_mpd.xsd

The MPD including the website and FTP files is updated every

3 weeks in conjunction with iProClass or whenever new PRC data

is released.

Protein Mapping Process
The various Proteomics Research Centers all used different sources

and identifiers for the nucleotide and protein sequences in their

analysis pipelines and occasionally would change sources depending

on the experiment. This is a common problem encountered when

Pathogen-Host Omics Data
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attempting to combine data across research laboratories unless

identical sequence databases, processes, platforms and organism

names are used. Examples of database identifiers used include

Genbank/EMBL/DDBJ accessions and locus tags, UniGene acces-

sions, RefSeq accessions, IPI accessions, NCBI gi numbers and IDs

unique to a sequencing center or organism-specific database. The first

step was to map all experimental results to a common representation

of a protein. This was achieved by mapping all protein and gene IDs

and names to iProClass proteins. The majority of the mapping using

IDs from public resources was done using mapping services and tables

provide on the Protein Information Resource (PIR) web site (http://

proteininformationresource.org/pirwww/search/idmapping.shtml) and

FTP site (ftp://ftp.pir.georgetown.edu/databases/iproclass/). However,

some mapping problems needed to be addressed either by auto-

mated rules, direct sequence comparisons or manual analysis and

annotation.

Problems and Solutions
Mapping difficulties fell into 4 categories: 1) One-to-many

mappings: a common problem, especially when eukaryotic host

proteins derived from alternate splicing or viral polyproteins are

involved. UniProtKB usually merges information on alternate splice

forms or polyproteins, which helped minimize this problem for our

purposes, but in cases where multiple mappings exist, we selected as

most informative the entry in the manually reviewed UniProtKB/

SwissProt section; if no SwissProt entry was found, the longer

sequence in UniProtKB/TrEMBL section was selected. Users could

always find the alternate mappings via the iProClass related

sequences link on the MPD entry page to precompiled BLAST

results on all iProClass sequences. 2) Retired sequences: genomic

sequences from databases such as RefSeq, IPI, or UniGene are not

static and, as information changes, some gene predictions and

translations are retired with each new build. Retired sequences often

required manual mapping by a curator to match original gene or

peptide results to current protein sequences. Primarily UniParc

(UniProt sequence archive) [15] was used for this purpose. 3)

Protein sequences not available in iProClass or any
public repository: this occurred most often with Toxoplasma

gondii whose genome sequencing was still in progress and stable

builds were not yet available. However, the problem also occurred

Figure 1. General infrastructure and information flow of the Biodefense Resource Center. The Master Protein Directory provides protein-
centric data integration, search and analysis capabilities. The Proteomics Catalog houses web pages with information on the PRCs, the NIAID
Proteomics Program and project related publications. The Proteomics Data Center contains complete experimental data and protocols for each PRC
data set in relational databases but is not integrated in the protein-centric manner. All databases are linked on the web.
doi:10.1371/journal.pone.0007162.g001

Pathogen-Host Omics Data
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in some well-characterized organisms like Vibrio cholera and Bacillus

anthracis. Several data sets contained information on annotated but

not translated pseudogenes. In the case of Vibrio cholera, 21 of 48

pseudogenes cloned and sequenced by the Harvard Institute of

Proteomics did not contain the annotated point mutation or frame

shift and appeared to produce full-length proteins [16]. In the case

of Bacillus anthracis, microarrays containing probes for 82 of 192

annotated pseudogenes also showed significant changes in RNA

expression in response to infection or other treatments [17,18,19].

In these cases, new database entries were created in the MPD to

house the results. 4) Alternate species or strain representations:

several experimental data sets reported sequence identifiers for

strains or variants other than the one used in the experimental

sample. This is not an uncommon situation as the genetically most

characterized variant is often an attenuated laboratory strain while

the more virulent strains are either not yet sequenced or the

sequence is of lower quality. Often microarray chips or mass

spectrometry databases are designed using the best available

sequence from the research strain, yet then use RNA and protein

samples from another similar virulent strain. The question here was

what organism strain to map to and represent on our website: the

strain the RNA or protein the sample came from, or alternatively,

the strain that matched the identifier and sequence used in the

research to detect the RNA or protein. For the MPD we chose to

map to the sequence identifier reported in the data files and related

publications, with the additional virulent strain information noted in

the results summary.

Search Design
Data Mining Design Goals. In consultation with NIAID

and PRCs within the project’s Interoperability Working Group,

we developed 3 goals for data mining. 1) All project data and other

deliverables should be available via browsing and simple keyword

searches. 2) The data and information provided by the resource

should be sufficient to allow a skilled researcher to download and

reanalyze or mine the data for additional information. 3) Our

target user was a biomedical scientist not expert in the technology

used to produce the data or in bioinformatics, thus the data,

procedures, publications and general results and conclusions of an

analysis should be relatively easy to find on the project website for

someone not familiar with the details of the particular technologies

used to generate it.

To allow both simple keyword searches and also Boolean

searches of the project data, we did the following: 1) We included

in the MPD only ‘‘validated’’ results that were determined by the

research centers to be significant using their methods. To do

otherwise would confuse users not familiar with the technology

and how results are filtered. Results that fell below the significance

threshold used by the research center were made available via

download of data sets at the FTP site. 2) ‘‘RAW’’ unprocessed

machine specific data would be stored by the PRC and available

on request. 3) To facilitate and simplify searches across

laboratories and data types, we omitted most data type or analysis

specific numerical values and statistics from the general MPD

search and display. These numerical values are usually platform,

laboratory and method dependent and cannot easily be used to

compare across datasets so including them might be confusing to

users. Instead, we focused on providing simple, yet powerful,

queries of experimental summaries where a user can query if a

gene/protein was presented in the results and, in some cases, if it

showed a reported increase or decrease in expression or

accumulation based on the PRC’s criteria. Once a set of proteins

of interest is identified, a user can then drill down to view the

specific experimental values and methods employed to generate

the particular dataset. Links to details in the publications are

provided and full data are available via FTP. Since all protein

attributes are included as search options, one can query beyond

simply protein names, accessions or project data and search

pathways, protein families, Gene Ontology (GO) terms, database

cross-references and many other attributes, providing many

powerful options to the users.

To provide a robust text search for the website, we used the PIR

text indexing system [20] in which over 100 text fields and unique

identifiers from the MPD database are indexed using Callable

Personal Librarian (CPL) [21] which supports fast exact text

search, substring & wildcard text search, range search and Boolean

searches. Entry indexing and retrieval is supported by Oracle.

I: Unstructured keyword search. A simple keyword search

was implemented on every page of the resource’s website. This

searches all fields in the MPD. To further facilitate searches, the

protein name field is supplemented by also searching the

BioThesaurus [10] containing all gene and protein name

synonyms and textual variants for each protein from over 35

data sources. In addition, the default option searches all text from

the PubMed abstract for all project publications, an abstract of

each technology and all text in SOPs. The text indexed for

publications, technologies and SOPs was annotated with

additional standard keywords to facilitate searches. Figure 2

shows the results of a simple keyword search with hits for proteins,

reagents, publications, technologies and SOPs.

II: Structured text search. The MPD database contains

over 100 fields derived from iProClass and Proteomics Research

Center’s data. Currently 75 of these fields are available for

individual searches and can be combined with Boolean operators

as seen in some of the use case examples in this paper.

The protein-centric search results are presented in a customizable

tabular format where users can add or delete columns. Currently 62

fields can be customized. The tabular display has two modes: 1) a

default mode which displays fields common to all the supported data

types and 2) a data type specific mode which restricts the results to a

particular data type and displays fields specific to that data type. See

supplemental table S1 for a list of data type specific fields. Additional

filters for Proteomic Research Center and Organism are available as

pull down menus to aid browsing and viewing the results of queries.

Examples of these functions are illustrated in the scientific use cases

below and in help pages and tutorials available on the website. http://

www.proteomicsresource.org/Resources/Tutorials.aspx, http://

proteininformationresource.org/pirwww/support/help.shtml#30.

Results

Data Base Content – Browsing Pathogen-Host Omics
Data

The resource currently contains information on 35,112 proteins

from 58 datasets, 35,819 reagents, 75 SOPs, 31 technologies and

88 manuscripts. Table 1 shows statistics on proteins in the MPD.

Currently ,30% of the proteins are uncharacterized in that they

are called either ‘‘Uncharacterized’’ or ‘‘Hypothetical’’ and have

no other functional annotations or functional domains. Of these

uncharacterized proteins, ,85% have experimental data, such as

mass spectrometry, microarray, or protein interactions, associated

with them. The remaining 15% of uncharacterized proteins are

available as full length clones for further research. Though the

program is focused on pathogen proteins, about 32% of the

proteins are host proteins from mouse or human, as cell lines or

tissue samples from both these organisms were used as infection

models for multiple pathogens.

Pathogen-Host Omics Data
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Web-based Protein Search – Searching Pathogen-Host
Omics Data

Simple Keyword Search. Due to the popularity of internet

searches, support of unstructured keyword queries, even for structured

data, has become critical for any web site. To support this feature, the

default protein-centric search returns results for all project deliverables,

data, reagents, protocols, technologies and publications. An example is

shown in Figure 2 where a single keyword search ‘‘bacillus anthracis’’

finds 10,988 pathogen and host proteins with Mass spec, microarray or

protein interaction data and also 13,251 reagents in the Master

Reagent Directory (mostly ORF and Y2H clones and mutant bacterial

strains of Bacillus anthracis), 2 SOPs, 16 project publications and 2

technologies. The matched fields column allows users to refine their

queries and construct simple Boolean searches.

Biological Use Case Examples – Analyzing Pathogen-Host
Omics Data

Example I: Integrative Analysis. Structured fields allow

Boolean queries across organisms, data types and laboratories.

Figure 3 shows a query where we make use of the controlled

vocabulary in the ‘‘expression condition’’ field and searched for

common host proteins detected in studies of Bacillus anthracis and

Salmonella typhimurium infection in mouse macrophage cell lines.

Currently 222 proteins meet these criteria, mostly from mass

spectrometry studies by PNNL and the University of Michigan;

however, if we further restrict the search to include only those also

detected in microarray experiments, we find 16 proteins with mass

spec data from S. typhimurium infections at one research center, and

mass spec and microarray studies done using B. anthracis at another

research center. From the customizable results display shown in

Figure 3 we can view summary information on the proteins

detected. Full details on the protein and individual experimental

results are available via links [5].

Some benefits of the protein-centric mapping approach are

visible in the default display. 1) Minimizing redundancy, the

column PRC ID shows the different identifiers from different

databases used by the research centers. In the case of one protein

Q9WUA3/K6PP_MOUSE 6-phosphofructokinase type C (EC

2.7.1.11), a total of 9 identifiers from 4 different databases

Figure 2. Unstructured Keyword Query. A) The keyword ‘‘bacillus anthracis’’ hits results for project related proteins, SOPs, literature and
technologies. The query can then be refined further by using specific fields to form a structured query. Here the search is restricted to return only
proteins with interaction data. B) Multiple gene and protein IDs provided by the PRCs are merged into one representation of the protein. C) All data
types and experimental datasets from different centers are listed together. D) Matched fields are displayed to aid users in formulating queries. To
reproduce these queries use this URL: http://pir.georgetown.edu/cgi-bin/textsearch_cat.pl?search = 1&field0 = all&query0 = bacillus+anthracis&an-
dor1 = and&field1 = DATATYPE&query1 = interaction .
doi:10.1371/journal.pone.0007162.g002

Pathogen-Host Omics Data
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(Unigene, RefSeq, IPI, nr) were reported in the research results

that all represent either the gene or protein sequence for this single

mouse protein. 2) Discovery of additional experimental informa-

tion from other studies. Fifteen of the sixteen proteins found in the

query also have mass spec data from Caprion Proteomics, as

indicated in the ‘experiment’ column by Caprion_05, 06 and _10.

Caprion is studying Brucella abortus and using a similar mouse

macrophage model. Currently, only the data for uninfected

macrophages is available from Caprion. Additional data on

Brucella and mouse proteins from bacterial infected macrophages

should be included in future releases. From the results display, one

can follow links to view the iProClass protein report with executive

summaries of the results from the PRCs and information collected

from over 100 public resources or drill down to view the specific

peptides or expression values seen in these studies, read

publications and methods about the experiments or download

the data for additional analysis.

With a comprehensive protein data warehouse, one can also

broaden the search for relevant data and information from related

organisms using protein cluster or family information. In Figure 4

we illustrate this by selecting one protein, K1033_MOUSE, an

uncharacterized protein seen in three datasets from infected mouse

macrophages. Using the UniRef90 cluster ID [22] to query for all

proteins with at least 90% identity and no gaps, we find the human

homolog K1033_HUMAN was detected in HeLa cells infected

with vaccinia and monkypox virus. If we do a batch retrieval using

Uniref90 IDs from all 16 original mouse proteins, we find 12

human homologs were also detected in studies of orthopox

infection (not shown). The identification of a hypothetical protein

with differential gene and protein expressions in two host systems

(mouse macrophage and HeLa cells) infected by different bacterial

(Bacillus anthracis and Salmonella typhimurium) and viral (orthopox)

pathogens suggest that this protein should be prioritized for

additional analysis and functional characterization.

Example II: Combining data from different

studies. Discovering and comparing experimental results

across laboratories and data types can help lead to new

hypotheses for further experimentation [23,24,25]. Although

different laboratories use different sample preparation, detection

and analysis techniques making some direct comparisons difficult,

having the data together in one place allows queries and

comparisons between proteins and gene sets to be combined and

additional analysis undertaken.

In this example, data from different labs and data types are

combined for further analysis. A query of the MPD on data type

= ‘‘interaction’’ AND organism name = ‘‘virus’’ finds 33 vaccinia

virus proteins with interactions with human proteins determined

by Myriad Genetics. Browsing the results display shows that 25 of

the proteins were also seen in mass spec work published by PNNL

[26]. By combining the two experimental data sets Experiment =

‘‘MYRIAD_05’’ AND ‘‘PNNL_MS_09’’, we find 83 virus and

human proteins with both mass spec and interaction data from

each laboratory. Further investigation into the experimental

details shows that a protein interaction network was determined

by Myriad Genetics using a yeast-two hybrid assay to screen viral

bait proteins against a library of human prey proteins cloned from

different tissues. The mass spec data from PNNL was obtained

from viral preparations isolated from infected human HeLa cells.

The work from PNNL contained quantitative information in the

form of spectral counts and Accurate Mass Tag [27] intensities,

downloadable from the project FTP site. We combined all the

vaccinia plus human interaction data with peptide counts for each

protein and visualized the results using Cytoscape [28,29]. The

complete network of results is shown in Figure 5A.

Various methods have been tried and compared for filtering large

intra-species interaction networks to limit false positives and to select

the biologically relevant interactions [30,31,32,33,34,35]. Relatively

little has yet been done for inter-species pathogen-host networks.

Several common factors that have proved useful in other studies are

1) evaluating network hubs with many interactions and 2) using

correlations between interacting pairs with similar gene expression

patterns. For this small interactome, we looked for relatively

abundant proteins associated with multiple interactions. We

identified a single human protein interacting with three viral

proteins, three being the largest number of viral interactions seen

with a single host protein in this data set. The interactions are shown

in Figure 5B. The host protein Keratin, type II cytoskeletal 4

(P19013) interacts with three viral proteins (P11258 - 14 kDa fusion

protein, A27L; Q805H7 - Chemokine-binding protein C23/B29;

P17362 - Protein C6L). The 14 kDa fusion protein A27L is the most

abundant protein seen in this data set and participates in virus

penetration at during cell fusion [36,37]. A27L facilitates initial

attachment to cells by binding to glycosaminoglycans [38]. A27L is

found in all orthopoxviruses and has no cellular or entomopoxvirus

homologs. Additional viral proteins involved in attachment (D8L,

H3L) [39,40] and fusion (F9L, I2L) [41,42] were not observed. The

Chemokine-binding protein C23L belongs to a family of poxvirus

Table 1. Classification of MPD proteins.

Source Protein Count

All Organisms 35,112

Mus musculus (Mouse) 7,823

Toxoplasma gondii 6,678

Bacillus anthracis 5,854

Vibrio cholerae 3,732

Homo sapiens (Human) 3,526

Salmonella typhimurium 3,406

Salmonella typhi 2,061

Brucella abortus 944

Cryptosporidium parvum 609

Vaccinia virus 161

Monkeypox virus 130

Francisella tularensis 62

Yersinia pestis 75

Human SARS virus 6

Mass Spec Data 25,289

Microarray Data 7,031

Interaction Data 1,363

New Structures, (Domains) 6 (15)

Sequenced Clones 9,074

Uncharacterized Proteins 10,637

Proteins in Pathways 9,988

Classified in Families 24,953

With GO Terms 22,265

With Bioinformatics Resource Center Links 18,165

With Immune Epitope DB links 583

The content of the MPD as of July 2009. Numbers represent the total number of
proteins that meet the listed criteria, for example, have one or more GO term or
pathway or link associated with the protein.
doi:10.1371/journal.pone.0007162.t001
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chemokine-binding proteins that mimic the chemokine response

and prevent activation and chemotaxis of leukocytes [43,44].

Protein C6L belongs to a family of poxvirus paralogs that may

function as toll-like receptor inhibitors based on homology to A52R

[45,46,47]. Thus, this protein may modulate Toll/IL-1R signaling,

resulting in a diminished host immune response and enhancing viral

survival.

P19013 - Keratin, type II cytoskeletal 4, the host protein, has

tissue specificity in the suprabasal layer of the stratified epithelium

of the esophagus, exocervix, vagina, mouth and lingual mucosa,

and in cells and cell clusters in the mucosa and serous gland ducts

of the esophageal submucosa [48]. Transgenic knockout mice

have shown Keratin, type II cytoskeletal 4 to play an important

role in maintaining normal epithelial tissue structure [49]. Keratin

Figure 4. Queries on cluster or family information. Queries on cluster or family information can discover related information across laboratories
and host pathogen systems. Using the UniRef90 cluster ID for K1033_MOUSE, identified in Figure 3, to query for all proteins with at least 90% identity,
we find the human homolog K1033_HUMAN was detected in HeLa cells infected with Vaccinia and Monkypox virus [12].
doi:10.1371/journal.pone.0007162.g004

Figure 3. Structured queries across infectious agents and data types. A) Search for proteins detected in studies of Bacillus anthracis AND
Salmonella typhimurium infection that include microarray experiments, finds 16 host proteins from mouse macrophage cell lines. B) Results
include a large uncharacterized protein K1033_MOUSE. C) A customizable web interface allows users to add and view related information on
pathways of protein families. To reproduce these queries use this URL: http://pir.georgetown.edu/cgi-bin/textsearch_cat.pl?search = 1&field0 =
EXPC&query0 = Infection+Bacillus+anthracis&andor1 = and&field1 = EXPC&query1 = Infection+Salmonella+typhimurium&andor2 = and&field2 = datatype&
query2 = microarray .
doi:10.1371/journal.pone.0007162.g003
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4 in human saliva has been shown to interact with the protein Srr-

1 localized on the surface of Streptococcus agalactiae and to play a

critical role in colonization of this bacterial pathogen [50,51].

Little is known about the mechanisms by which poxviruses

attach to and enter host cells. No receptor for virion attachment on

the host cell surface has been found. Poxvirus infection can occur

through interaction with human as well as mice airway epithelia,

[52,53] we propose that the protein interactions outlined above

may represent some of the initial interactions between host and

pathogen. Thus they represent potential therapeutic targets for

further investigation. This is the first report describing the

interaction of a poxvirus protein with a host Keratin, type II

cytoskeletal 4 protein.

Example III: Screening for Pathogen Specific Target

Proteins. Unequivocal identification of pathogens is important

so that adequate counter measures can be taken. Currently over

700 pathogenic and non-pathogenic bacteria have been

completely sequenced. The availability of sequence data allows

identification of proteins that are unique at different taxonomic

levels, thus providing a means to begin to distinguish pathogenic

from non-pathogenic species. However, if the initial screening

depends on sequence data alone, the list of potential targets for

laboratory validation can be relatively long; by supplementing

sequence results with experimental data one can prioritize the

target list for validation in the laboratory. We used such an

approach by computationally screening potential targets using

CUPID [54], PRC data and other computational means to

produce a list of potential targets.

Identifying species-specific proteins can be done with confidence

when multiple species and strains have been sequenced as is the

case with Bacillus anthracis. The approach relies on the fact that if a

gene is conserved over time within multiple strains it gives

confidence they will not be lost in the near future and hence are

ideal for diagnostic targets. These ‘‘core unique’’ proteins have

related sequences in all selected organisms (in this case all available

strains of Bacillus anthracis) but not in other related organisms. An

initial total of 327 proteins unique to the Bacillus anthracis proteome

were identified using the CUPID and UniProtKB version 13.0.

(Bacillus anthracis strain Ames isolate Porton, Bacillus anthracis strain

Ames ancestor, Bacillus anthracis strain Sterne were compared to

twelve other genomes in the Bacillus genus). The two closest

relatives of Bacillus anthracis as determined by CUPID are Bacillus

thuringiensis and Bacillus cereus. The species most closely related to

the selected organism is based on the best BLAST hits of its entire

Figure 5. Vaccinia virus, human protein interaction network. A) Triangular nodes represent Vaccinia proteins, round nodes human proteins.
Colors represent relative abundance as determined by peptide counts. Grey nodes represent no peptide data, green to yellow to orange to red
represent increasing spectral counts in the range of 3 to 543. B) The three interactions, discussed in the text. The host protein (Keratin, type II
cytoskeletal 4, UniProt: P19013) and three viral proteins (P11258 - 14 kDa fusion protein, A27L; Q805H7 - Chemokine-binding protein C23/B29;
P17362 - Protein C6L).
doi:10.1371/journal.pone.0007162.g005
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proteome [54]. One needs to be careful in choosing the diagnostic

targets that these two non-pathogenic organisms are not being

detected.

The initial list of 327 was refined to identify ‘‘core unique’’

proteins that are 100 amino acids or more in length. The 100

residue cutoff was used to ensure that the target list consisted of

proteins that are real (short proteins might not be real) and are

unique, as identification of homologs for short proteins is not

trivial [55]. This resulted in a list of 21 ‘‘core unique’’ proteins in

the pathogenic strains. It is possible that the proteins found may

have homologs in other organisms which were undetected by

CUPID because the genes were not annotated as open reading

frames To confirm their uniqueness, the 21 proteins were screened

for significant regions of similarity at the DNA level (either

pseudogenes or unannotated genes) using tBLASTn against the

NCBI nr database. Using NCBI’s nr which is produced

independently of similar, but not identical, sources as iProClass

also helps assure no sequences were missing from our warehouse.

This additional analysis resulted in a total of 10 Bacillus anthracis

specific proteins proposed as high-quality targets for development

of diagnostic probes. We then supplemented this information with

data from the PRC projects and Master Protein Directory to

create a matrix of information (Figure 6). Six of the ten targets

have data from the University of Michigan PRC showing that they

were differentially expressed in published microarray experiments.

Nine of the ten are available as clones produced by the Harvard

Institute of Proteomics. A search of all the microarray data from

the University of Michigan (using http://proteinbank.vbi.vt.edu/

ProteinBank/p/search/searchproteins.dll) showed that the four

proteins not differentially expressed (listed as clones only in

Figure 6) were still constitutively expressed well above background

in all studies (not shown). Either the proteins or the DNA coding

for these proteins can be used to develop and test pathogen

detection systems.

All the ‘‘core unique’’ proteins detected in this study lacked

meaningful functional annotation (i.e., were annotated simply as

‘‘uncharacterized protein’’), which is not surprising as such unique

proteins are not easy to characterize. One protein identified as a

target is a remnant of a prophage protein. Such proteins are well

known to be related to virulence [56]. Another protein is from the

pXO2 plasmid. A similar approach was taken for Salmonella species

using CUPID and public PRC data and several candidate

diagnostic proteins are currently being validated in the laboratory

(data not shown).

Discussion

A systems approach to biology or medicine requires the sharing,

integration and navigation of large and diverse experimental data

sets to develop the models and hypotheses required to make new

discoveries and to develop new treatments. To date this has most

often been done with selected research data or within an institution

or program where common instrumentation and methods make

standardization of experimental practices and data management

easier to achieve [57,58,59]. Alternative approaches require a

reanalysis of all the data by a common methodology as has been

done in some data repositories [60,61] or assigning some common

statistical metric to all data of a certain type to allow functional

coupling [62]. These approaches are all potentially useful, but

practically difficult to achieve on a large scale with heterogeneous

data. The protein-centric approach we employed is a relatively

simple, yet powerful and practical, approach to integrate and

Figure 6. Ten potential diagnostic markers for pathogenic strains of Bacillus anthracis. The prioritized protein list was obtained by
computationally screening potential targets using CUPID [54], PRC data and other computational means described in the text.
doi:10.1371/journal.pone.0007162.g006
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navigate diverse sets of omics data in a manner useful for systems

biology. Proteins are often the biologically functional elements in

cellular networks; thus, many types of data can be mapped to and

through proteins as a common biological object.

The lightweight data warehouse approach used for the MPD

proved useful in practice, especially with large datasets as its simple

design and schema allows greater flexibility to add new data types

and to modify search and analysis capabilities. Similar lightweight

approaches and schemas designed to optimize queries have been

shown useful in integration of genomic data [63,64]. The main

drawback of this approach is that the warehouse does not contain

all the data. However, this is rarely a problem if the data are

available in some other data resource optimized for that particular

data type and if some upfront analysis of the user’s needs for query

and analysis options is performed. For example, our use case

analysis suggested that for microarray and mass spectrometry data,

individual raw intensities, machine-specific parameters and most

calculated numerical values were not required for general queries

and analysis across the combined data as these values were only

comparable between the particular analysis performed in one lab.

As a result, most numerical values were not included in the MPD

for the default search but are accessible for display via hyperlinks

to our Protein Data Center or FTP site. However, if a new

attribute appear or users request searches on a particular value

omitted from the warehouse, adding it is a relatively simple matter

of adding new data columns. For instance, in example II our

combination and analysis of mass spectrometry and protein

interaction data, we could include peptide counts directly in the

MPD for immediate download instead of retrieving them from the

ftp files. Of course, no one approach can be perfect, as in biology

and research there always seems to be exceptions and new data

and multiple approaches need to be accommodated.

Efforts to standardize reporting requirements, vocabularies and

develop common XML data formats for sharing data are welcome

and can greatly ease the transfer and automated processing of a

particular data type. However the current standards do not

necessarily guarantee integration as the problems of reconciling

gene and protein identifiers as well as differences in experimental

methodology remain. We investigated and employed a few

common data standards and ontologies in developing the

Biodefense Proteomics Resource. We provided some data using

mzData [65] and MAGE-ML [66] but also provided original data-

specific text files for download. We found that several ontologies to

describe experimental methods were useful but incomplete and

focused on higher eukaryotes and thus did not yet contain terms

needed for microbial pathogens. Most useful was the Gene

Ontology [67] which has been widely adopted to annotate and

classify large scale results and can be used for searching and

classification in the MPD.

Here we have presented some unique examples to illustrate

benefits, as well as the difficulties, associated with integration of a

very diverse set of omics research data across different data types,

laboratories and organisms. We illustrated with three examples

how potential therapeutic and diagnostic targets can be identified

from integrated data applying relatively simple and established

tools and techniques. We continue to focus on data integration to

allow biologists to find relevant data sets for further detailed

analysis using the approaches and tools of their choice. In general

the analysis of diverse omics data is an area of active research and

a number of useful tools are under active development including

cytoscape [28], bioconductor [68] and galaxy [69]. In the future a

more seamless integration between data repositories and analysis

tools such as these would be the most useful approach to add

additional analysis options for integrated data.

Supporting Information

Table S1 Current fields in the Master Protein Directory.

Common and data type specific fields are listed. Description of a

field’s purpose and examples of some content are shown. All fields

are text strings. For more information see schema at ftp://141.

161.76.88/pub/proteomics_ftp/rc/MD_data/iproclass_mpd.xsd.

Found at: doi:10.1371/journal.pone.0007162.s001 (0.08 MB

RTF)
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