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Abstract

Background: The reaction of HIV protease to inhibitor therapy is characterized by the
emergence of complex mutational patterns which confer drug resistance. The response of HIV
protease to drugs often involves both primary mutations that directly inhibit the action of the drug,
and a host of accessory resistance mutations that may occur far from the active site but may
contribute to restoring the fitness or stability of the enzyme. Here we develop a probabilistic
approach based on connected information that allows us to study residue, pair level and higher-
order correlations within the same framework.

Results: We apply our methodology to a database of approximately 13,000 sequences which have
been annotated by the treatment history of the patients from which the samples were obtained.
We show that including pair interactions is essential for agreement with the mutational data, since
neglect of these interactions results in order-of-magnitude errors in the probabilities of the
simultaneous occurence of many mutations. The magnitude of these pair correlations changes
dramatically between sequences obtained from patients that were or were not exposed to drugs.
Higher-order effects make a contribution of as much as 10% for residues taken three at a time, but
increase to more than twice that for 10 to 15-residue groups. The sequence data is insufficient to
determine the higher-order effects for larger groups. We find that higher-order interactions have
a significant effect on the predicted frequencies of sequences with large numbers of mutations.
While relatively rare, such sequences are more prevalent after multi-drug therapy. The relative
importance of these higher-order interactions increases with the number of drugs the patient had
been exposed to.

Conclusion: Correlations are critical for the understanding of mutation patterns in HIV protease.
Pair interactions have substantial qualitative effects, while higher-order interactions are individually
smaller but may have a collective effect. Together they lead to correlations which could have an
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important impact on the dynamics of the evolution of cross-resistance, by allowing the virus to pass
through otherwise unlikely mutational states. These findings also indicate that pairwise and possibly
higher-order effects should be included in the models of protein evolution, instead of assuming that

all residues mutate independently of one another.

Background

The protease enzyme coded for by the pol gene of the
Human Immunodeficiency Virus HIV-1 plays a critical
role in the reproduction of the virus by cleaving the GAG
precursor protein in a sequence-specific manner into its
functional form, and as such, is a key target of several fam-
ilies of commonly used drugs used to control HIV infec-
tion [1]. Unfortunately, the virus has been able to evolve
resistance to many of these drugs, in part due to the high
mutation rates in the HIV genome [2]. The patterns of
mutations in protease are complex, involving multiple
key primary mutations that inhibit the action of drugs and
a host of accessory mutations that can modulate the
enzyme's stability or activity or otherwise enhance the fit-
ness of the virus. It is now understood that these muta-
tions do not occur independently of each other, but
instead are correlated, resulting in complex patterns of co-
evolving mutations [3-7].

Previous studies have mostly focused on correlations
between mutations in the HIV protease gene at the pair
level [3,5-7]. However, recognition that the observed
mutations may also be involved in higher-order interac-
tions has led to a few studies in which correlated pairs of
mutations are grouped using tools such as multidimen-
sional scaling [3,6], Bayesian networks [8], networks
defined by patterns of conditional selection pressure [5],
and clustering [9,10]. The underlying assumption is that
understanding higher-order interactions is important for a
complete understanding of the evolution of resistance in
HIV protease.

In this paper, we investigate correlations among HIV pro-
tease mutations at and beyond the pair level, and the
impact of drug treatment on the nature of those correla-
tions. We only consider the presence or absence of a non-
synonymous mutation relative to a defined wild-type
sequence, and not the precise base or amino acid substitu-
tion which has occurred. We develop a hierarchy of prob-
abilistic log-linear models [11] that can in principle
describe residue interactions of arbitrary order, and use
those to analyze HIV protease sequence data obtained
from patient cohorts with varying protease inhibitor (PI)
treatment histories.

We use "connected information" [12] to quantify inter-
residue interactions at the triplet and higher level. Unlike
the Bayesian network approach [13], the information-the-

oretic methodology allows us to distinguish intrinsic
three-body effects from the cases in which correlations
between three random variables can be attributed mostly
to pairwise interactions. The connected information view-
point of higher order correlation has not been previously
used in the analysis of mutational patterns in HIV pro-
tease, although it has been employed in a much more lim-
ited analysis of the V3 loop of the HIV envelope protein
[14], and log-linear models have been used to study pro-
tein-protein interactions [15]. We find that pairwise inter-
actions are necessary to achieve even qualitative
agreement with the mutational data, while higher order
interactions play an important role in predicting how fre-
quently sequences with several mutations appear in the
database. Simultaneous appearance of multiple muta-
tions may play an important role in the phenomenon of
multiple- or cross-resistance of the viral protease.

Results

Increased mutation frequencies under drug exposure

As has been previously observed [3], we find that the over-
all number of mutations seen in HIV protease increases
significantly with the number of PIs that the patient has
been exposed to. This is seen in Figure 1, where we show
the distribution of the number of mutations at drug-asso-
ciated positions for sequences isolated from the drug-
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Probability distributions for the total number of
mutations among the 41 drug-associated residues in
HIV protease for sequences obtained from the P10
(blue), P11 (red), and P12+ (green) cohorts.
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naive cohort (PIO), from a PI monotherapy cohort (PI1),
and from a cohort treated with 2 or more PIs (PI2+), as
estimated from the database described in the Methods.
For some residue positions, the increase in the mutation
frequency between the PI0 and PI2+ cohorts is nearly
eightfold, while other positions show no discernible
change (Additional File 1). This observed increase in
mutation frequencies at drug-associated sites is largely
responsible for the shift in the distribution shown in Fig-
ure 1.

It is of interest to ask which amino acid positions exhibit
elevated mutation frequencies under drug treatment.
Mutations at many of these positions are associated with
decreased HIV-1 inhibitor susceptibility, and it is useful to
classify mutations as belonging to "primary" vs "acces-
sory" resistance classes. The terms "secondary" and "com-
pensatory" have also been used as synonyms for
"accessory". The specific criteria for such a classification
are ad hoc in nature, but have generally been defined as
follows.

Primary mutations are usually selected first in the pres-
ence of the drug and confer resistance, even when present
as single point mutations [16,17]. They can be structurally
important, e.g. situated near the enzymatic active site, in
which case their effect on inhibitor binding can be ration-
alized due to their physical proximity to the inhibitor
[18]. In the case of protease, however, there are excep-
tions, as some mutations (such as positions 54, 76, 88 and
90) are situated far from the active site or have no direct
contacts with the substrate, yet still reduce drug suscepti-
bility [16]. The mechanism of action of these mutations is
not clearly understood [19].

Accessory mutations confer resistance only when present
with additional primary or accessory drug-resistance
mutations and have little or no effect on inhibitor suscep-
tibility on their own. Some of these mutations occur in the
absence of drug treatment, but their frequency of occur-
rence is observed to increase in treated patients. Accessory
mutations may "rescue" possible losses of activity or sta-
bility in the enzyme that may have been caused by a desta-
bilizing primary resistance mutation, and therefore may
have a compensatory function in restoring viral fitness
[20].

We make use of a primary and accessory classification
scheme based on the work of Shafer et al. [21-23,17]. We
define 17 primary drug resistance positions (residues 23,
24, 30, 32, 33, 46, 47, 48, 50, 53, 54, 73, 76, 82, 84, 88,
90) and 24 accessory drug resistance positions (residues
10, 11, 13, 20, 34, 35, 36, 43, 45, 55, 58, 60, 63, 71, 74,
75,77, 79, 83, 85, 89, 91, 93, 95). The remaining posi-

http://www.biomedcentral.com/1471-2105/10/S8/S10

tions are polymorphic mutations not associated with drug
resistance or are conserved sites [24,3,25,21,26,23].

As seen in Figure 2, the positions which exhibit the most
elevated mutation frequencies in PI2+ relative to PIO
sequences are for the most part primary and accessory
drug resistance positions. It is interesting to note that
sequences bearing mutations at any one of the 6 residues
with the most elevated mutation frequencies (10, 46, 54,
71, 82 and 90) are resistant to most of the current PIs,
including amprenavir (APV), indinavir (IDV), nelfinavir
(NFV), ritonavir (RTV), saquinavir (SQV), atazanavir
(ATV), and lopinavir (LPV). For instance, according to the
Stanford HIV database [16], the common mutations at
these residues (L10I, M461, 154V, A71V, V82A and L90M)
are associated with six or all seven of the drugs mentioned
above. On the other hand, primary drug resistance posi-
tions that show the least amount of change in their muta-
tion frequency (23, 30, 76 and 88) are generally inhibitor-
specific. For example, D30N is associated only with NFV
treatment, L231 and L76V are specific to two drugs each
(NFV and SQV, and IDV and LPV, respectively), while
N88D is specific to IDV, SQV and NFV treatment. Thus,
positions that provide drug resistance to multiple inhibi-
tors are more frequently mutated in the P12+ cohort than
positions that are specific to a small number of protease
inhibitors. Upon examination of 278 ligand-bound crys-
tal structures of HIV-1 protease, no heavy atom of residues
10, 46, 54, 71, or 90 is ever within 3.4 A of any ligand
bound at the cleft (data not shown). The atoms of residue
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Figure 2

Difference in the frequency of mutated residues
between patients treated with 5PIs and Pl-naive
patients for all positions in HIV protease. Red bars
correspond to primary drug resistnce positions, black bars
are accessory drug resistance positions, and grey bars are
positions not associated with drug resistance.
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82, however, do contact ligands in 54% of the crystal
structures examined.

Exhaustive analysis of residue pairs

We begin by investigating pair correlations and their asso-
ciation with the structure of HIV protease. Several groups
have studied pair correlations as a means of identifying
functionally dependent residues in the HIV protease and

other systems [6,5,4,3,7]. For each of the (822] =3, 321

pairs of positions, a 2 x 2 contingency table was con-
structed for both the drug-naive sequences and the
sequences treated by two or more drugs. The binomial or
"product moment" [11] correlation coefficient

51 = PCAmBu)P(An)P(By)
JPCAm)P(A0)P(Byr)P(Bo)

was calculated for both datasets, where for amino acid
position A we denote the wild-type state as A, and the
mutated state as A,,. Of the 3, 321 ¢ values, 98 from the
drug-naive and 223 from the treated set were considered
to be statistically significant with substantial correlations
(J¢l > 0.1, p < 0.001). These correlations match qualita-
tively with a prior study which used the same database but
had fewer sequences: the ¢ values of the top 15 positively
correlated pairs for the PI2+ cohort and those of Wu, et al.
[3] have a Spearman rank order correlation coefficient of
0.80 (data not shown). Furthermore, we observe larger ¢
values for pairs of drug-associated positions compared to
non-drug associated pairs (Figure 3), which is consistent
with previous observations [3].

(1)

Previous studies of pair correlations in protein families
have indicated that coevolving pairs of residues tend to lie
closer to each other in structure than random residue pairs
[27-31]. In the case of the HIV protease, the distribution
of ¢ values for drug-associated positions with distance
shows a characteristic triangular shape, particularly for the
PI2+ cohort (Figure 3B) [32]. In particular, distances asso-
ciated with the most correlated residue pairs (30-88, 54~
82, 32-47, and 37-77) are all within a few Angstroms of
each other. The triangular shape in Figure 3B is not sur-
prising, given that most of the drug-associated positions
are on the substrate cleft and thus tend to be relatively
close to each other in space. As a result, 78 pairs (36% of
the statistically significant pairs) are within 8 A of each
other. We also see no tendency for exposed residues to
preferentially coevolve, in contrast to previous studies on
mutation covariation in other protein families [27,29,15].

Of the 26 statistically significant negatively correlated
pairs in the PI2+ cohort, 10 pairs involve either residues
30 or 88. Residue 30 is negatively correlated with posi-
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Figure 3

Scatterplot of distance vs ¢ statistic for drug associ-
ated positions in red and non-drug associated posi-
tions in black for the P10 (A) and P12+ (B) cohorts.
The value along the y-axis is the closest distance between any
two heavy atoms of the two residues based on the crystal
structure of wild type protease (PDB ID 1PRO).

tions 82, 10, 46, 90, 54, 73 and 84 (in decreasing order of
the magnitude of the correlation), while position 88 is
negatively correlated with positions 82, 73 and 54. It is
interesting to note that position 63, which has a high
mutation rate in both the PI0 and PI2+ cohorts, is nega-
tively correlated with positions 80, 52, 5, 83, 64, and 61,
of which only position 83 is associated with drug resist-
ance [3]. In fact, of the 23 unique positions involved in
the 26 negatively correlated pairs, most, but not all, are
positions of drug resistance. It is possible that the 7 non-
drug associated positions, 5, 15, 20, 52, 61, 64 and 80
play a role in the stability or function of the protein, even
if they do not interfere with inhibitors [33-35]. Residue
80, in particular is negatively correlated with three resi-
dues, 63, 71 and 90, all of which play either primary or
accessory roles in drug resistance.

Drug treatment has a significant impact on the pair corre-
. - 82
lations, as can be seen in Figure 4. Of the [ 5 ] = 3,321

pairs of positions, only 100 have statistically significant (p
< 0.001) ¢ values and are common to both the PI0 and
PI2+ cohorts, and of these, most of the positively corre-
lated pairs in the PIO cohort become more strongly corre-
lated in the P12+ cohort. However, some pairs of residues
which are weakly positively correlated in the PIO cohort
become negatively correlated in the P12+ cohort. There are
12 such pairs, almost all of which have at least one pri-
mary drug resistance position, and 8 of them involve
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Figure 4

Scatterplot showing the change in ¢ statistic upon
drug treatment, with drug associated positions in red
and non-drug associated positions in black. Only pairs
with statistically significant (p < 0.001) pair correlations are
shown. The solid line corresponds to no change upon drug
treatment.

either residue 30 or 88. It is interesting to note that in PI0
cohort sequences, residue 30 is positively correlated with
positions 24, 46, 54, 84 and 90, but becomes strongly
negatively correlated in the PI2+ cohort. The anticorrela-
tion of residue 30 with the other primary positions after
drug treatment has been previously observed experimen-
tally [36] and in a prior statistical study [3], but it is not
clear why this anticorrelation exists only in the presence of
drugs.

Additionally, the types of residues involved in pair corre-
lations changes upon treatment, with accessory positions
becoming more prominent: 10% of the correlated pairs in
the PIO cohort consist of a primary and an accessory posi-
tion, and that this combination increases to 31% in the
PI2+ cohort. Furthermore, 45% of the pairs in the PIO
cohort involve at least one accessory position, which
increases to 61% in the P12+ cohort. As expected, pairs of
non-resistance-associated positions decrease from 52% to
35%. It is interesting to note that the same trend is not
observed for primary positions: 57% of pairs in the PIO
cohort contain at least one primary position, and this is
essentially unchanged in the PI2+ cohort (59%). There-
fore, drug treatment causes correlated pairs involving pri-
mary and non-resistance associated positions to be
replaced by pairs involving primary and accessory posi-
tions.

http://www.biomedcentral.com/1471-2105/10/S8/S10

Exhaustive analysis of residue triples

To study interactions among mutations beyond the pair
level, we quantify the amount of information in the
observed distribution that cannot be explained by pair
correlation. This is done using the three-body "connected
information" [12], which is defined as the difference in
Shannon entropy S(P) = -2;p; log p; between the distribu-

tions P(A, B, C) and p (A, B, C), where the latter is the
maximum entropy distribution subject to the constraints
that all of its univariate and bivariate marginals are the
same as that of P(A, B, C):

19(A,B,C) = S[PP(A,B,C)] - S[P(A,B,C)].  (2)

Similarly, we define the two-body connected information
to be

19(A, B,C) = S[P(A)P(B)P(C)] - S[PP(A, B,C)].
(3)

The total information arising from correlation at any level
is given by the "multi-information" or the Kullback-Lei-
bler divergence between the observed distribution and the
prediction based on an independent model:

P(a,b,c)

(A B,C) = D' Plasb o) log 1 Lo

abc

= §(A) + S(B) + S(C) - S(A, B, C).

(4)
The maximum entropy distribution p (A, B, C) can be
thought of as being "in between" the independent model
and the observed distribution, since it is more constrained
than the independent model but does not have the full
correlation structure of the observed data (Figure 5). Since

I Ez) +1 53) =1, wWe can interpret the two- and three-

body connected information as the part of the correlation
that can be explained by pair interactions alone, and that
which arises from three-body interactions, respectively
[12].

We examined the degree of connected information in
both the PIO and PI2+ cohort sequences. The connected

information I&®) was calculated for all (832 ] =88, 560 res-

idue triples in the HIV protease as described in the Meth-
ods section below. In the PI0 cohort sequences, only 175
residue triples have statistically significant three-body
interaction at the p = 0.001 level, while the P12+ cohort
sequences have 6,300 significant triples. Furthermore, the
significant triples from the PI2+ cohort are enriched in
drug resistance associated positions: 32% of them consist
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The Shannon entropy for the family of all triplet dis-
tributions having the same univariate and bivariate
marginals as the data for the triplet 46-54-90 (P12+
cohort) plotted as a function of the parameter o
defined in Equation 8. The observed distribution is indi-
cated by the filled circle, and the entropies of the independ-
ent model (S;,4), the model with only pair interactions (S,;)

and the observed data (S,,,) are indicated, as well as I, and

multi

the connected information measures Ig) and Ig’). Spair 1S

the entropy of the distribution denoted by p? (A, B, C)in
the text which has the maximum entropy subject to the con-
straints that all of the univariate and bivariate marginals are
the same as the observed distribution, and is denoted in the
figure by a star.

of only drug associated positions, compared to 12% of the
full set of 88,560. In contrast, the significant triples from
the PIO cohort show no such enrichment: only 9% consist
solely of drug resistance associated positions.

The 10 triples with the largest 1) values from the P12+
cohort sequences are shown in Table 1, along with the
corresponding values of I,,,;,;. Residues from the largest

I£3) triple (46-54-90) are also displayed on the structure

of the HIV protease (Figure 6). As can be seen in Table 1,
the total contribution of three-body interactions to the
information content of the observed data is at most 10%.
Although this is a relatively small effect, there is a clear

association with drug therapy, with the largest I £3) values

increasing substantially with the number of PlIs the
patient was exposed to (Figure 7). There is relatively little

overlap between the largest 100 I £3) triples in the PI0 and

PI2+ cohorts, with only 11 triples in common. The impact

http://www.biomedcentral.com/1471-2105/10/S8/S10

Table I: The 10 triples in HIV protease from the P12+ cohort

sequences with the largest I(CS) (A, B, C) values (all three-body

interactions are significant with p <<> 10-¢).

residue triple Ig) A8 O | nutii (A, B, C)
46-54-90 0.03219 0.20170
46-71-90 0.03101 0.29041
46-82-90 0.03085 0.20640
82-84-90 0.02570 0.13237
10-46-90 0.02445 0.31475
46-71-73 0.02195 0.16610
36-46-90 0.02191 0.15949
46-54-71 0.02072 0.23595
46-77-82 0.02068 0.14573
20-82-90 0.02030 0.14661

of these higher-order interactions is particularly manifest
in the probability of the occurrence of three simultaneous
mutations in a given residue triple (Figure 8), which is sig-
nificantly increased compared to what would be predicted
based on a pair model for sequences from the P12+ cohort
(but not in sequences from the PIO cohort).

While all of the triples in Table 1 have three-body interac-
tions that are highly statistically significant, it is also
important to obtain a practical feeling for the magnitude
of these interactions. Let us consider the 46-54-90 triple.
In Figure 9 we show the correlation between the predicted
and observed probabilities for each of the 8 binary states
for the independent model (red) and the two-body fit
(black) for this triple in the P12+ cohort. It is clear that the
independent model fits the data poorly: the probability
that all three residues are mutated is underestimated by an
order of magnitude, and some of the others are over- or
underestimated by factors of 2 or 3. Although the two-
body fit does a better job of reproducing the observed
probabilities, it still leads to noticeable deviations from
the straight line for the 46-54-90 triple.

Another way in which the magnitude of the effect of the
three-body interactions can be visualized is by consider-
ing conditional probabilities for the 46-54-90:
P(54,]46,90,) = 0.4186, P(54,]46,90,) = 0.5508,
P(54,]46,90,) = 0.4359, and P(54,,]46,90,) = 0.0280.
All of these probabilities differ significantly from the inde-
pendent estimate of P(54,,) = 0.1178. We also see clear
evidence of "triplet correlation” in the data, in the sense
that the probability of a mutation depends very strongly
on the state of both of the other residues, e.g. residue 54
is much less likely to be mutated if both 46 and 90 are
wild-type than if only one of them is wild-type.
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Figure 6

Structure of the HIV protease dimer (PDB code
1HNO). The catalytic triad (residues 25, 26, and 27) is high-
lighted in green, while the residues from the triple with the

largest I(C3) in the P12+ cohort (46-54-90, see Figure 9) are

shown in red. Residue 90 is close to the catalytic triad,
whereas residues 46 and 54 are close to each other, with the
smallest distance between heavy atoms of 3.11 A).

Much of this probabilistic dependency, however, can be
accounted for by pair interactions. The corresponding
probabilities for the best-fit two-body model are
P (54,]46,90,) = 0.6286, PP (54,]46,90,) =

0.2236, PP (54,]46,90,) = 0.2316, and
P (54, 46,90,) = 0.0488. Even though this model con-

tains no three-body interactions, a qualitative "triplet cor-
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Figure 7
Distribution of the 100 largest I(C3) values for the PI0
(A), PII (B), and PI2+ (C) cohorts.
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Figure 8

Predicted vs observed probabilities for a triple
mutant for all triples of drug-associated positions in
the HIV protease using sequences from the PI0 (A)
and PI2+ (B) cohorts. Mutational states that were unob-
served in the database and would have an observed probabil-
ity maximum likelihood estimate of zero are not shown. The
dots correspond to the best fit pair-term model, and the red
lines of slope | correspond to the perfect agreement of the
predicted probabilities with those observed, which would be
obtained if the three-body interactions were included.

seen above
P (54,46,90,,) >

of the type remains (i.e.

P (54,]46,90,) ~

relation”

p (54,,/146,90,)), indicating that non-trivial three-way
probabilistic dependencies can arise purely from pair cor-
relations [37]. Overall, three-body interactions do quanti-
tatively modulate the probabilities, but only to a small
degree, since 1 is an order of magnitude smaller than
I.iii even for the triples in Table 1. In other words, the
contribution of three-body interactions to any of the tri-
plet distributions that describe the mutational patterns of
protease taken three at a time is roughly 10% or less of the
effect induced by the pairwise interactions acting on these
positions. Nonetheless, there can be substantial effects on
a "micro level", such as the more than twofold difference
in P(54,,/46,,90,) seen here.

Increased higher-order interactions in larger residue
groups

The small but consistent systematic deviations seen in Fig-
ure 8B raises the possibility that these interactions could
combine synergystically to produce more substantial
effects over larger clusters of residues. Ideally, this would
be studied by fitting log-linear models to increasingly
larger clusters using the data from the P12+ cohort. How-
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Predicted vs observed probabilities for the residue
triple in HIV protease with the largest I(CS) in the

P12+ cohort (46-54-90). The black dots correspond to the
best-fit independent model, while the red dots correspond
to the best-fit pair-term model (Equation |1). The solid line
of slope | corresponds to perfect agreement of the pre-
dicted data with the observed, which would be obtained if
the three-body term were included.

ever, the size of cohort limits our ability to do this to clus-
ters of no more than ~ 15 residues. We begin by
examining the 10-residue group 20-32-46-48-53-54-58-
74-82-90, which was chosen to have the largest higher-
order interactions from among a limited set of residues
defined by the three key primary drug resistance positions
30, 82 and 90, and the known accessory positions associ-
ated with them. For this 10-residue group in the P12+
cohort, we observe strong pair interactions which bring
observed and predicted probabilities into qualitative,
order-of-magnitude agreement, weaker three-body inter-
actions which further improve the agreement, and very
weak four-body and higher interactions which have quan-
titative impact on a small number of state probabilities
(Additional File 2). This can be quantified in terms of con-
nected information: from the entropies of the of the
observed, three-body model, pair model, and independ-

ent distributions (Figure 10), we find that I (Cz) = S(ind) -

S(pair) = 0.4785, I(S’) = S(pair) - S(trip) = 0.1187, and the
sum of the remaining connected information measures of
fourth order and higher is S(trip) - S(obs) = 0.0703 (these
information theoretic measures were found to be robust

with respect to sampling error as determined by boot-
strap). When compared to I,,,;,; = S(ind) - S(obs) = 0.6676,

multi
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we see that three-body and higher-order interactions
make up 28% of the total correlation information. This is
substantial increase over the (at most) 10% contribution
from higher-order interactions to the observed triplet dis-
tributions. By contrast, the same 10-residue group for the
PIO cohort displays a substantially smaller overall degree
of correlation, as seen by the small I,,,,;,; in Figure 10.

We also studied the distribution of the total number of
mutations in the same 10-residue group (20-32-46-48-53-
54-58-74-82-90). Appropriate subsets of the state proba-
bilities determined above were summed to obtain the dis-
tribution of the total number of mutated residues for the
independent, two-body, and three-body models, and the
results are shown in Figure 11A. The distribution for the
independent model is very different from the observed
distribution: the probability of having no mutations is
considerably underestimated, and the upper tail is much
too thin. Adding pair terms greatly improves the "no
mutation" probability and considerably extends the
length of the tail. The tail length is further modulated by
the addition of the three-body interactions, bringing the
distribution very close to the observed probabilities.

It should be noted that since the univariate marginals are
preserved by all of the models, the mean total number of
mutations is the same for all 4 curves in Figure 11A. There-
fore, under- or overestimation of the total number of
mutations in one part of the distribution must be com-
pensated by over- or under-estimation (respectively) in

10

8 — —
> 6 - T
Q.
o
=
=
c I
[
4 — -
2 -
0
3residues 10 residues 15 residues
P12+ PIO PI2+ PIO P12+ PIO
Figure 10

Shannon theoretic entropy for the observed (black),
best pair-term model (red) and independent model
(blue) for the three-residue group 46-54-90, the 10-
residue group 20-32-46-48-53-54-58-74-82-90, and the
15-residue group 10-20-33-36-46-54-55-63-71-73-74-
82-84-90-93 for both the P10 and P12+ cohorts.
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Figure 11

Total number of observed (solid black curve) or pre-
dicted mutations in the 2,702 sequences of the PI2+
cohort for the 10-residue group 20-32-46-48-53-54-
58-74-82-90 (A) and the 15-residue group 10-20-33-
36-46-54-55-63-71-73-74-82-84-90-93 (B). The dashed
curves represent the predictions for the independent (blue),
pair-term (red), and pair+three-body model (green, not fit
for the 15-residue group).

another, implying that the curves must cross one other. To
quantify this effect, we can compare the predicted proba-
bilities for seeing 5 or more mutations under each model
and comparing to the observed probability. Those proba-
bilities are 0.0372, 0.1197, and 0.1030 for the independ-
ent, pair-term model, and pair+three-body model,
respectively, compared to the observed probability of
0.1007. The deviations of the first two from the observed
are highly statistically significant, while the latter has a p-
value of ~ 0.06. The qualitative distribution is well
accounted for by the pair interaction model, with the
three-body and higher interactions modulating the details
of the shape of the distribution, such as the increase in fre-
quency of 3-5 and 13-15 mutations, at the expense of a
decrease in the frequency of 6-10 mutations.

http://www.biomedcentral.com/1471-2105/10/S8/S10

To see if the synergistic effects seen for the 10-residue
group become even stronger for 15 residues, we repeated
this analysis for the 15-residue group 10-20-33-36-46-54-
55-63-71-73-74-82-84-90-93 (Figure 10), which was
chosen by selecting the residues with the largest change in
mutation frequencies upon PI treatment. For the PI2+

cohort, we find that I(Cz) = S(ind) - S(pair) = 1.1810, the

sum of the remaining connected information measures of
third order and higher is S(pair) - S(obs) = 0.8249 and I,,,,;;,;
= S(ind) - S(obs) = 2.0059. The contribution of three-body
and higher-order interactions now make up 41% of the
total correlation information. However, this result may
somewhat overestimate the true amount of higher-order
correlation. A fit with a three-body model (Equation 12)

gives an estimate of I&) of 0.2638, and the ratio

I(C3) /(I(Cz) + I(C3)) =18% represents a lower bound on the

contribution from correlations beyond the pair level. A
more complete account of the many issues involved in
estimating the amount of higher order correlation and its
precision and accuracy for finite data sets will be the sub-
ject of a future communication. The comparison of the
predicted and observed distributions of total number of
mutations bears out this result (Figure 11B), showing
more pronounced differences between the observed
(black) and pair-model (red) distributions. In addition to
the overestimation of the upper tail similar to that seen for
the 10-residue group, we now also see that the pair model
cannot reproduce the bimodal shape seen in the observed
data. Again, the same 15-residue group for the PIO cohort
shows considerably weaker overall correlation (Figure
10).

Discussion and conclusion

Treating HIV protease with drugs results in the appearance
of complex mutational patterns: observed mutations are
not limited to the active site and often occur in groups that
involve two or more residues. Furthermore, some muta-
tions occur even in the absence of drugs, presumably fol-
lowing neutral rather than adaptive evolution. To study
correlations between different residue positions in HIV
protease, we have developed a hierarchy of models that
allows us to include inter-residue correlations of arbitrary
order within a consistent framework. Using only HIV pro-
tease sequences as input, we find that pair interactions
become common and quite strong after PI treatment. In
fact, it is often impossible to achieve even qualitative
agreement with the data without including the two-body
terms (Figures 9, 11, and Additional File 2). This finding
calls into question a common assumption employed in
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current probabilistic approaches to phylogeny [38] that
most residues evolve independently.

We have developed an information-theoretic method to
study interactions between mutations beyond the pair-
wise level. Our approach is based on the notion of the

connected information 153) (Equation 2) [12]. While

there are a variety of quantitatively different measures of
pair correlation [11,39] that may differ in their sensitivity
in various regimes, they all measure essentially the same
qualitative feature of the observed data. On the other
hand, no single summary statistic can capture all of the
various characteristics of higher-order behavior, leading
to multiple descriptions that provide complimentary
information. Connected information is one intuitive sta-
tistic that provides insight into the degree of structure in
the data beyond the pair correlation level.

Connected information provides information which is
complementary to Bayesian network analyses based on
factorizations of the joint probability. It can readily veri-

fied that I&) = 0 if at least one of the random variables is

independent of the other two, or if the joint distribution
involves conditional independence (e.g. P(A, B, C) =
P(A)P(B|A)P(C|A)). However, a joint distribution with
triplet-level probabilistic dependencies (in the sense that
two of the variables are independent of each other, but the
third depends jointly on the state of the other two, e.g.
P(A, B, C) = P(A)P(B)P(C|A, B), or if P(A, B, C) cannot be
factorized into any simpler form) could still be consistent
with no three-body connected information if the observed
triplet distribution is the maximum entropy distribution
relative to its marginals. Thus, even if a Bayesian network-
style analysis shows that a given triple cannot be factor-
ized into any simpler form, that "triplet correlation" could

still be consistent with a very small or zero I*), indicating

that the observed behavior is dominated by two-body
interactions. In fact, it has been shown that very complex
correlation patterns among random variables can arise
from large numbers of weak pairwise interactions [37].

Other information-theoretic measures of "higher-order
correlation" have also been proposed, including higher-
order mutual information, which measures "frustration"
or the degree of synergy vs redundancy among several ran-
dom variables [40]. While this measure has been used in
the analysis of HIV envelope protein sequence data [41],
its interpretation is considerably less intuitive. Similarly,
ad hoc methods for finding putative clusters of mutually

http://www.biomedcentral.com/1471-2105/10/S8/S10

correlated residues [3,9,8,10] cannot reliably uncover sets
that have intrinsic higher order interactions, as defined by

large I £3) (data not shown).

Plotting ¢ values for pairs of residues as a function of the
distance between them (Figure 3B) reveals that while
some large pair correlations arise from direct contacts
between residues (e.g. ¢ ~ 0.8, d < 5 A), there are also
strong correlations (¢ ~ 0.5) between amino acids sepa-
rated by 15 A or more, making physical coupling between
them very unlikely. To provide an example of the former,
we consider mutations involving residues 30 and 88. The
closest distance between heavy atoms of residues 30 and
88 is just 3.66 A, making likely some sort of physical inter-
action between them. Mutations at residue 30 are strongly
and uniquely associated with resistance to the protease
inhibitor nelfinavir, and there exists a strong correlation
between mutations at positions 30 and 88 [42] which
may be due in part to a compensation of the loss of a sur-
face negative charge from the D30N mutation being
restored by N88D [9].

It is possible that chains of intermediate interactions
result in long-range coupling between two coevolving yet
physically distant residues [43]. However, because non-
zero values of /; indicate a presence of direct interactions
between residues i and j in our model [15], we can decom-
pose such "energetically connected pathways" into contri-
butions from separate pairs. In contrast to a previous
study [15], we find that non-zero values of 4; are only
weakly correlated with distance (Additional File 3). This
lack of correlation is not entirely surprising, since even
direct interactions between a pair of residues need not
have a purely physical origin. Indeed, if protein fitness is
a non-linear function of its stability or enzymatic activity
[44], two mutations can be correlated because they com-
pensate each other by making independent and opposite
contributions to the overall fitness, even if there is no
direct or indirect physical interaction between them [45].
By the same argument, the three-body terms also result
from a mixture of physical and epistatic (compensatory)
origins.

We have shown that three-body and higher-order correla-
tions have the largest effect on the probabilities of the
simultaneous occurrence of multiple mutations in the
HIV protease (Figure 11). Since both this and previous
studies have found that the total number of mutated posi-
tions is correlated with treatment by multiple protease
inhibitors (Figure 1) [3], the presence of higher-order
interactions may influence how protease reacts to multi-
ple drugs, and could have an important impact on the
evolution of cross-resistance, for example, by providing
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the virus with an "escape hatch" of large numbers of
mutations. Higher-order interactions could also impact
the time evolution of mutations by allowing the virus to
pass through otherwise unlikely mutational states. We
have seen that the impact of higher-order interactions in
10 to 15 residue clusters is at least a factor of two larger

than the largest I (c3) values for residue triples (approxi-

mately 20% or more of the total entropy change). One of
the outstanding questions raised by this work is whether
the impact of higher-order interactions for HIV evolving
under the pressure of multiple drugs continues to become
stronger for larger residue groups (ultimately the set of all
41 drug-associated positions). Unfortunately, there is not
enough sequence data to perform such an analysis. Short
of obtaining additional data, it may also be possible to
explore this question by constructing synthetic data sets

using 4;and 4;values consistent with an observed I (Ca ) dis-

tribution at the level of residue triples (i.e. Figure 7C).

The sequence-based approach presented here is not lim-
ited to the HIV protease and its response to drug treat-
ment, and should be equally useful in studies of the
evolution of drug resistance in other systems. Moreover, it
will be of interest to extend our techniques to other exam-
ples of short-term neutral and adaptive evolution, includ-
ing controlled evolution in the lab accompanied by
protein sequencing at different timepoints. Recent work
has suggested that evolutionary pathways of proteins are
relatively restricted and may be predictable in general
[46], and specific methods for predicting the mutational
dynamics of HIV protease have been proposed, based on
Bayesian network models [47] or pairwise conditional
selection pressure [5]. A better understanding of the
nature of the probabilistic dependencies underlying the
network models should lead to improved prediction strat-
egies. However, our model cannot distinguish between
physical and epistatic origins of the observed co-evolu-
tion. To do this, we need a different approach which
would explicitly introduce protein fitness as a function of
residue energies (including interactions across protein-
protein and protein-ligand interface). These energies
would be fit against the sequence data, resulting in a pre-
diction that decomposes observed inter-residue correla-
tions into the physical and epistatic parts. This approach
is currently being pursued in our laboratories.

Methods

HIV sequence database

Aligned and annotated HIV-1 protease amino acid
sequences were obtained using the web interface of the
Stanford HIV Drug Resistance Database http://hivdb.stan
ford.edu/cgi-bin/PI_Form.cgi[16]. The sequences are all

http://www.biomedcentral.com/1471-2105/10/S8/S10

classified under the HIV-1 Main group, subtype B. For the
purposes of this paper, we are considering only the
number of protease inhibitors and not the specific combi-
nations of protease inhibitors used in the treatment. There
are 13,608 sequences in this curated set, of which 8,229
sequences are drug naive, 2,677 sequence are associated
with PI monotherapy, and the remaining 2,702 sequences
are associated with between 2 through 6 protease inhibi-
tors.

Calculation of higher-order interactions

For residue triples, we compute [ £3) by writing the triplet

probability distribution in log-linear form [11]:

P(A,B,C) =exp(Ay + ApA + AgB+ A:C + A,3AB + ApBC + A4 AC + A,5cABC),

(5)
where we assign numerical values to the states of A, B and
C, eg 0and 1. We find P (A, B, C) by setting A, = 0
in Equation 5 and fitting the six parameters 4; and 4; to
the values that maximize the likelihood of the data under
a multinomial model [48]. However, in the triplet case it
is possible to avoid direct nonlinear optimization: let us
represent the 8 observed probabilities by the vector

Po = (Pooos Poom: Pomor Pomm? Pmoos Pmom: Pmmos Pummm )
(6)

where, e.g. po0 = P(Ay B, Cp)- It is sufficient to consider
only the three marginals P(A,,), P(B,), and P(C,), and
three suitably chosen bivariate marginals, e.g. P(A,,, B,,),
P(A,, C,), and P(B,, C,,), since the remaining 9 bivariate
marginals can be reconstructed as combinations of these:
P(Aml BO) = P(Am) - P(Am’ Bm)l P(AO/ Bm) = P(Bm) - P(Aml
B,,). P(A, By) =1-P(4,,) - P(B,,) + P(A,,, B,,) etc. The six
marginals can then be written as a matrix equation involv-
ing py:

00001111 P(A,,)
00110011 P(B,,)
01010101, [ PC,
oo0o0o00011[°7|prA4,B,)
00000101 P(A,,,C,,)
00010001 P(B,,,C,,)

(7)
Since the matrix multiplying p, is rectangular with dimen-
sions 6 x 8, it has a two-dimensional null space, with basis
vectorsn; =(1,0,0,0,0,0,0,0) andn,=(0,-1,-1, 1, -1,
1, 1, -1). Then, any linear combination ¢;n, + a,n, added
to py will not change the marginals. However, ¢, and «,
cannot be chosen independently without violating the
normalization of p,: we must choose ¢; = @, = a. There-
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fore, the family of all possible distributions that have the
same univariate and bivariate marginals are mapped out
by the parameter « using the relation

P« =Po ta(l,-1,-1,1,-1,1,1,-1), (8)
where the feasible values of « are constrained by the non-

negativity requirement for probabilities. Furthermore,
Aapc = 0 in Equation 5 implies that

P0O00PmMmmOPOmmMPmoOm _ ¢ 9)
POm0Pm00POOmPmmm

Therefore, to find P (A, B, C) it suffices to find the value
of a which satisfies Equation 9:

(r000+2) (Pmm0+2) (POmm+e) (Pmom+a) _ 1
(Pomo—a)(Pmoo—a)(Poom—a) (Pmmm—)

’

(10)

leading to a cubic equation in « [11].

To obtain the maximum entropy distributions for more
than three binary random variables, nonlinear optimiza-
tion is unavoidable. However, instead of directly maxi-
mizing the entropy subject to the marginal probability
constraints, we maximize the likelihood subject to the
constraints that the A's vanish beyond a given order [48].
In most cases, the latter will be more computationally effi-
cient since the number of 4 variables grows polynomially
with the number of variables, while the dimensionality of
the null space defined by the marginal probability con-
straints (which is one-dimensional for three variables)
increases exponentially with the number of variables.

In general, we fit data on mutation and wild-type amino
acid counts to the following hierarchy of probabilistic
models: the independent model P(A, B, C,..) =
P(A)P(B)P(C)U, the "two-body" model:

P(A,B,C,..) = exp(Aq + ZM + Z 20 (1)
i ij
and the "three-body" model:

P(A,B,C,...) = exp(A, + z 2+ z Al + 2 A lIK),
i ij

ijle
(12)

where A is the vector of parameters, the indices (i, j) and
(i, j, k) run over all distinct combinations of {A, B, C,...}
with i # j and i # j # k, respectively, and I, ], and K are
numerical values of the corresponding random variable
(we use 0 for wild-type and 1 for mutant). For an n-variate

http://www.biomedcentral.com/1471-2105/10/S8/S10

distribution P(A, B, C,...) there are n(n - 1)/2 pair param-
eters A;and n(n - 1)(n - 2)/6 three-body parameters 4;, (4,
is a normalization constant). The independent model was
determined by forming products of the observed univari-
ate marginals. The magnitudes of the 4;and 4;; parameters
in the two-body model are related to the mutation fre-
quencies at site i and pair correlations between sites i and
j, respectively. In fact, the magnitudes of 4; in the context
of a two-body model have been proposed as a measure of
"direct information", i.e. the part of pair correlation
resulting from direct coupling [15]. It should be noted
that the relative magnitudes of 4; is dependent on the
choice of the numerical values assigned to the random
variables I, ] and K in Equations 11 and 12. In this work,
we assign values of 0 and 1 for wild-type and mutant,
respectively, for computational convenience. It has been
argued, however, that a more appropriate choice of
numerical values is one which is symmetric about zero,
e.g. + 1, which allows "gauge constraints" to be intro-
duced [15]. While this choice will affect the the values of
ﬂij and their interpretation as "direct information", it will
not change the best-fit two-body or three-body probabili-
ties and consequently will have no impact on the values

of I and related measures of higher-order interactions.

The two-body model for n = 3 was fit by solving Equation
10 exactly [49]. If no feasible solution of Equation 10

exists, then | ES) was set to zero. For n > 4, the unknown

parameters in Equations 11 and 12 were determined by
maximizing the multinomial log-likelihood

L(A) = ZNi In P(i), (13)

where i is one of the 27 states, N; is the number of times

that state was observed, and P(i| 1) is the predicted proba-
bility for state i to be observed given the vector of param-
eters 4. Maximization was performed numerically using
the "nlm" function of the R software package [50]. All
entropy and connected information values are given in
natural log units. Statistical significance of the three-body
interactions was estimated using the likelihood ratio test
under the null hypothesis that the data were generated by

P (A, B, C) by Monte Carlo sampling. For all of the res-
idue triples in Table 1, the p-values for the observed likeli-
hood ratio were too small to be estimated (p <<> 10-9),
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indicating very strong statistical significance for the three-
body interaction.
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Additional File 1

Mutation frequencies for selected positions in the HIV protease as a
function of the number of PIs the patient was exposed to. Data is shown
for residues 10 (black, solid line), 54 (red, solid line), 90 (green), 71
(blue), 46 (orange), 77 (black, dashed line), and 35 (red, dashed line).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S8-S10-S1.pdf]

Additional File 2

Predicted vs observed probabilities for the 2,, mutational states of the
ten-residue group 20-32-46-48-53-54-58-74-82-90 in HIV protease
for the P12+ cohort. Mutational states that were unobserved in the data-
base and would have an observed probability maximum likelihood esti-
mate of zero are not shown. The black dots correspond to the best-fit
independent model, the red dots correspond to the best-fit pair-term model
(Equation 11), and the green dots correspond to the best-fit three-body
model (Equation 12). The solid line of slope 1 corresponds to perfect
agreement of the predicted data with the observed, which would be
obtained if all higher-order terms were included.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S8-S10-S2.pdf]

Additional File 3

Scatterplot of distance vs \;; parameters estimated using I and J values
of + 1 as described in the Methods for the 15-residue group 10-20-33-
36-46-54-55-63-71-73-74-82-84-90-93 in the P12+ cohort. The value
along the y-axis is the closest distance between any two heavy atoms of the
two residues based on the crystal structure of wild type protease (PDB ID
1PRO).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S8-S10-S3.pdf]
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