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Abstract

Background: The katydid genus Neoconocephalus (25+ species) has a prominent acoustic communication system and
occurs in large parts of the Neotropics and Nearctic. This group has been subject of numerous behavioral, physiological, and
evolutionary studies of its acoustic communication system. Two distinct life histories occur in this group: The tropical life
history incorporates multiple generations/year and direct egg development without environmental triggers. Temperate life
history is characterized by overwintering in the egg stage, cold trigger of egg development, and one generation/year. This
study reconstructs the phylogenetic relationships within the genus to (1) determine the evolutionary history of the
temperate life history, and (2) to support comparative studies of evolutionary and physiological problems in this genus.

Methodology/Principal Findings: We used Amplified Fragment Length Polymorphisms (AFLP), and sequences of two
nuclear loci and one mitochondrial locus to reconstruct phylogenetic relationships. The analysis included 17 ingroup and
two outgroup species. AFLP and mitochondrial data provided resolution at the species level while the two nuclear loci
revealed only deeper nodes. The data sets were combined in a super-matrix to estimate a total evidence tree. Seven of the
temperate species form a monophyletic group; however, three more temperate species were placed as siblings of tropical
species.

Conclusions/Significance: Our analyses support the reliability of the current taxonomic treatment of the Neoconocephalus
fauna of Caribbean, Central, and North America. Ancestral state reconstruction of life history traits was not conclusive,
however at least four transitions between life histories occurred among our sample of species. The proposed phylogeny will
strengthen conclusions from comparative work in this group.
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Introduction

The katydid genus Neoconocephalus (Karny 1907) is characterized

by loud calls that can be heard by the human ear for long distances

[1]. This group has been used to study many aspects of acoustic

communication, such as chorusing behavior [2,3], acoustic spacing

[4,5], mechanics [6] and energetics of calling [7–9], developmental

plasticity of calling behavior [10,11], recognition of conspecific

calls during phonotaxis [12–15], and sexual selection [16,17].

Many of these studies have been conducted comparatively among

several Neoconocephalus species; however, their power has been

limited without knowledge of the phylogenetic relationships within

this genus.

Systematics and biogeography of Neoconocephalus was reviewed in

detail [18]. Neoconocephalus species occur in grasslands in Neotrop-

ical and Nearctic regions. Twelve species of Neoconocephalus are

limited to the Nearctic (Table 1) and have life histories typical of

temperate katydids: they have one reproductive generation per

year (univoltine) and overwinter as diapausing eggs [19]. Eggs do

not start developing until after they are exposed to a period of cold

temperatures (JS, pers. observ.). All but two of these species have

wide ranges in North America. Only N. lyristes is limited to two

disjunct populations at the Atlantic coast and the Great Lakes, and

N. pahayokee is endemic to the Florida Everglades [19,20].

Three species with predominantly tropical distribution (N. triops,

N. affinis, N. maxillosus) occur in North America. N. triops is

widespread in the southern USA reaching as far north as Ohio

[21] and Missouri (JS, pers. observ.), while N. affinis and N.

maxillosus are limited to the southern parts of Florida [22,23].

These three species have life histories typical of tropical katydids

with several reproductive generations per year and egg develop-

ment starting directly after oviposition without an environmental

trigger[18].

The taxonomic treatment of the North American Neoconocephalus

is well established. Most species were described by 1915 [18], and

after the work of Walker and collaborators in the 1960s and 70s
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[19,20,24,25], there is little doubt that the 15 species mentioned

above constitute the North American Neoconocephalus fauna.

Unfortunately, the situation for the neotropical Neoconocephalus is

much more complicated. More than 100 species were named by

19th and early 20th century cataloguers [26]. The reliability of

these names is highly doubtful, as evidenced by the treatment of N.

triops: at least 14 synonyms are recognized today [22,26], with 4 of

them described in one monograph [27].

Walker and Greenfield [26] revised the taxonomy of Neocono-

cephalus from the Caribbean and Panama, recognizing 13 species,

including 5 new species (3 of these 13 species also occur in North

America). However, 36 Neoconocephalus species names had been

proposed prior to 1900, indicating that the early taxonomic work

is not reliable. Three of the 13 recognized [26] species (N. triops, N.

affinis, N. maxillosus) are widespread in the Caribbean and adjoining

continental mainlands. The other nine are known only from

restricted continental ranges and nearby islands or from one or a

few Caribbean islands (Table 1).

Phylogenetic relationships within this genus are largely unclear.

In 1915 a phylogeny based on morphological characters was

proposed [28]. This phylogeny has been used until recently [18] to

propose evolutionary hypotheses on aspects of the communication

system. Since the genus Neoconocephalus has been intensively used

to study evolutionary questions, a well substantiated hypothesis

about the phylogenetic relationships within this genus will add

significantly to the value of comparative studies and the evolu-

tionary inferences drawn.

In this study, we reconstruct the phylogenetic relationships

within the genus Neoconocephalus to provide a tool for evolutionary

and comparative studies in this group and to determine if

temperate life history traits evolved once or multiple times among

North American Neoconocephalus. The closest relative of Neoconoce-

phalus is undoubtedly the old world genus Ruspolia (Schulthess

Schindler 1898) [18]. It has been proposed that Neoconocephalus

might be the result of a dispersal event from Africa to tropical

South America, as evidenced by individuals of Ruspolia that landed

on ships 1000 km off the African coast [29]. This scenario suggests

that the tropical life history represents the ancestral state in

Neoconocephalus, and that temperate life history traits evolved

subsequently as Neoconocephalus spread into North America. We test

this prediction and estimate the number of transitions between

tropical and temperate life histories in our sample of Neoconocephalus

species.

Materials and Methods

Taxon sampling
We restricted our phylogenetic analysis to the well-established

Neoconocephalus fauna of the Caribbean, and Central and North

America, as reliable information on the South American Neocono-

Table 1. The 25 species of Neoconocephalus with ranges in North America, Central America and the Caribbean.

Range Life history Sources

N. aduncus (Scudder 1879) Cuba tropical 2

N. affinis (Beauvois 1805) throughout Caribbean & Central America tropical* 2, 3, 4

N. bivocatus Walker Whitesell, Alexander 1973 Eastern USA temperate* 1, 4

N. carbonarius (Redtenbacher 1891) Cuba, Grand Cayman tropical 2

N. caudellianus (Davis 1805) South Eastern USA temperate 1, 4

N. ensiger (Harris 1841) Eastern USA temperate* 1, 4

N. exciliscanorus (Davis 1887) Eastern USA temperate* 1, 4

N. lyristes (Rehn and Hebard 1905) USA: Great Lakes region, New Jersey temperate 1

N. maxillosus (Fabricius 1775) throughout Carribbean tropical* 2, 4

N. melanorhinus (Rehn and Hebard 1907) USA: Gulf coast, Atlantic coast temperate 1

N. nebrascensis (Bruner 1891) Eastern USA temperate* 1, 4

N. occidentalis (Saussure 1859) Hispaniola tropical 2

N. pahayokee Walker and Whitesell 1978 USA: Everglades (Florida) temperate 1

N. palustris (Blatchley 1893) Eastern USA temperate* 1, 4

N. pinicola Walker and Greenfield 1983 Hispaniola tropical 2

N. pipulus Walker and Greenfield 1983 Jamaica tropical 2

N. punctipes (Redtenbacher 1891) Central America, Trinidad, Jamaica tropical 2,3,4

N. retusiformis Walker and Greenfield 1983 Puerto Rico, Mona tropical 1

N. retusus (Scudder 1878) Eastern USA temperate* 1, 4

N. robustus (Scudder 1862) Eastern USA, California temperate* 1, 4

N. saturatus (Griffini 1899) Tinidad, Grenada, St Vincent tropical 2

N. spiza Walker and Greenfield 1983 Central America tropical 2, 3, 4

N. susurrator Walker and Greenfield 1983 Trinidad tropical 2

N. triops (Linnaeus 1758) South, Central, North Am., Caribbean tropical* 1, 2, 3, 4

N. velox (Rehn and Hebbard 1914) South Eastern USA temperate 1

Species in bold are included in our phylogenetic analysis. Life history is given after Greenfield (1990) or as observed by the authors (asterisks). Temperate life history is
characterized univoltism and overwintering in the egg stage (eggs develop only after cold treatment). Tropical life history is characterized by direct egg development
and multivoltism. Sources: 1 [25] 2 [22] 3 [47] 4 own observations.
doi:10.1371/journal.pone.0007203.t001
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cephalus fauna is not available (see introduction). We included in our

sampling all Caribbean, North and Central American species with

wide distributions: the missing eight species from this range are

either endemic to one or a few Caribbean islands (N. aduncus, N.

carbonarius, N. occidentalis, N. pinicola, N. pipulus, N. susurrator) [22] or

have limited continental ranges (N. lyristes, N. pahayokee) [28]

(Table 1). Specimens of Belocephalus davisi Rhen and Hebard, 1916

and Bucrates malivolans (Scudder 1878) were used as outgroups in the

phylogenetic anaylses. Both Belocephalus and Bucrates are considered

close relatives of Neoconocephalus [25] and are grouped in the same

tribe (Copiphorini) [26]. Specimens of Ruspolia, the presumed sibling

of Neoconocephalus [18], were not available for our analysis. All taxa

included in our phylogenetic analysis were unequivocally identified

using the criteria given in [22,25]. The vouchers of all specimens are

kept in the collection of JS.

Genomic DNA was isolated from ethanol-preserved hind femurs

using a DNeasy Blood + Tissue Kit (Qiagen Inc., Valencia, CA,

USA). The concentration and quality of each DNA sample were

determined by spectrophotometry (NanoDrop 1000, Thermo

Scientific, Wilmington, DE, USA).

Molecular markers
AFLP. Amplified Fragment Length Polymorphism (AFLP)

banding patterns were generated using a modified version of the

protocol described in [30], that allowed for fluorescent detection of

labeled AFLP’s. Genomic DNA was digested with the restriction

enzymes EcoR I (Eco) and Mse I (Mse) (NEB, Ipswitch, MA,

USA). Synthetic double stranded DNA adaptors were ligated to

the overhanging ends of the respective restriction sites (Eco and

Mse). Preselective PCR, using 100 fold dilute digestion/ligation

product and the Eco+A (59-GACTGCGTACCAATTCA-39) and

Mse+A (59-GATGAGTCCTGAGTAAA-39) primers (IDT,

Coralville, IA, USA) were thermocycled at 72uC for 2 min,

followed by a 94uC for 30 sec denature, 56uC for 30 sec anneal

and 72uC for 2 min extension, repeated 30x, with a 60uC for

10 min hold. Selective PCR of 100 fold dilute preselective PCR

product, used one of two labeled Eco primers either Eco+AAC

(6FAM) or Eco+AGC (PET) (ABI, Foster City, CA, USA) and one

of five Mse primers, either Mse+ATA, Mse+AGA, Mse+AGC,

Mse+ACA or Mse+AAC. Primer-sets were amplified in separate

PCR reactions, using concentrations of labeled and unlabeled

primer of 0.04 mM and 0.2 mM, respectively, and the following

thermocycling conditions; 94uC for 2 min, 94uC for 30 sec

denature, 65uC reduced by 0.7uC/cycle (with a 1u/s ramp rate)

annealing, 72uC for 2 min extension, repeated 12x, followed

second cycle of 94uC for 30 sec, 56uC for 30 sec, and 72uC for

2 min, repeated 23x, with 60uC 30 min final hold. Individual

selective PCR products were multiplexed and diluted, which

resulted in a 1:10 dilute of each PCR product. Samples were

genotyped at the DNA Core Facility, University of Missouri, on an

ABI 3730 genetic analyzer, with Liz600 internal size standard

(Applied Biosystems, Foster City, CA, USA).

AFLP genotypes were analyzed in GeneMarker v1.6 (Soft-

genetic Corp, State College, PA, USA) using the AFLP analysis

setting.

Gene trees. Partial gene sequences were generated for 2

nuclear loci and 1 mitochondrial locus; Internal Transcribed

Spacer 1 and 2 (ITS1 & ITS2), the protein coding Histone 3 (H3)

and mitochondrial Cytochrome Oxidase I (COI). The data from

ITS1 and ITS2 was combined into a single ITS analysis. The ITS

loci are separated by the 5.8S rRNA gene, which is less than

1000 bp long. Given the close proximity of the two loci we assume

them to be tightly linked thus treat them as a single locus.

PCR amplification was performed on an Eppendorf Mastercy-

cler gradient (Eppendorf-Brinkman Instruments Inc., Westbury

NY, USA) using Taq DNA polymerase (GoTaq, Promega Corp.

Madison, WI, USA). ITS1 PCR primers were anchored in the

flanking 18s and 5.8s genes and ITS2 PCR primers were anchored

in the flanking 5.8s and 28s genes. Primer sequences for both ITS

genes correspond to the CAS18sF1 (ITS1 forward), CAS5p8sB1d

(ITS1 reverse), CAS5p8sFc (ITS2 forward) and CAS28sB1d (ITS2

reverse) of [31]. H3 primers (H3 AF and H3 AR) sequences were

from [32]. COI primers (Ron and Calvin) were from [33]. All

primers were used at a concentration of 10 mM. Thermocycling

conditions for all three primer-sets are as follows: Denaturation at

94uC 50 sec, annealing at 50uC 1 min (COI), or 51uC 1 min (H3

& ITS2), or 56uC 1 min (ITS1), extension 72uC 1 min, repeated

35x, with a final 72uC extension for 6 min. Amplified PCR

products were prepared for sequencing using an enzymatic clean-

up (1:1 ratio of Exonuclease I and Antarctic Phosphotase, New

England BioLabs Inc., Ipswitch, MA, USA) in a 1:10 reaction of

enzymes to PCR product and incubated at 37uC for 50 min.

Sequencing was performed at either the DNA Core Facility,

University of Missouri, Columbia, MO or at Cornell Life Sciences

Core Laboratories Center, Cornell University, Ithaca, NY, on ABI

3730 DNA Analyzers, using standard Big Dye Terminator cycle

sequencing chemistry (Applied Biosystems, Foster City, CA, USA).

Resulting sequence data was edited and aligned in Sequencher

v4.5 (Gene Codes Corp., Ann Arbor, MI, USA).

All sequence and AFLP data are available at GenBank

(Accession Numbers FJ913499-FJ913766).

Phylogenetic Analysis
AFLP. The AFLP character matrix was analyzed using either

Bayesian or distance based optimality criteria. Distance analysis

used a Nei & Li model [34] of genetic distance and bootstrapping

to measure nodal support, and was performed in PAUP* 4beta

v.10 [35]. A Bayesian approach does not restrict tree searches to

the most parsimonious trees and allows an evolutionary model to

be incorporated. The MCMC settings for each MrBayes [36]

analysis were 4 runs, of 10 chains each, for 2 million generations.

Runs were determined to have reached a stationary distribution

based on split frequencies reported in MrBayes and by plotting the

log likelihood values of the cold chain. The MCMC runs were

sampled every 100 generations, resulting in 20,000 trees per run.

Posterior probabilities were calculated after a ‘burnin’ of 5000

trees, from four independent MrBayes analyses. Because AFLP

data reports the presence or absence of characters, we used a

restriction site model for each analysis. The restriction site model

was binary, similar to the F81 models of [37], and used the

‘noabsencesite’ sub-model of MrBayes. The noabsencesite sub-

model best fits the nature of AFLP’s, because the DNA fragments

are anonymous and analysis cannot distinguish between the

absence of an allele and the absence of that locus [38].

Gene trees. Gene sequences were analyzed in both separate

and combined analyses [39]. Phylogenetic trees were inferred

using Bayesian optimality criterion implemented in MrBayes

v3.1.2 [39] and computed on the computer cluster at the

Computational Biology Service Unit at Cornell University

(Ithaca, NY). Models of nucleotide substitution were selected

using an Akaike Information Criterion (AIC) in MrModeltest 2.2

[40]. The MCMC settings for each MrBayes analysis were: 2 runs,

10 chains each, for 2 million generations. Each MrBayes analysis

was run three times independently to ensure that each run

achieved similar stationary likelihood values (cold chain in

stationary phase). Each run was considered to have reached a

stationary distribution based on split frequencies reported in

Neoconocephalus Phylogeny
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MrBayes and by plotting the log likelihood values of the cold

chain. The MCMC runs were sampled every 100 generations,

resulting in 20,000 trees per run. The first 5000 trees of each

Bayesian run were discarded as burnin, and the remaining trees in

each analysis were used to calculate the posterior probabilities and

50 % majority rule consensus tree.

Total evidence tree. The three gene alignments and AFLP

data were concatenated into a super matrix of 4089 characters and

all individuals (128) in this study. This approach allowed us to

preserve the alignments of individual data partitions. AFLP data

were available for 124 individuals and data for the three gene

sequences were available for 67 individuals (see Table S1). Data

for missing data partitions (i.e. AFLP or gene sequences) of an

individual were coded as question marks. For analysis in MrBayes,

models and priors were identical to those used to build each gene

tree and were unlinked between all partitions (genes, AFLP). This

tree was produced in the same manner as the gene trees (2 runs, 10

chains each, 2 million generations). The first 5000 trees of each

Bayesian run were discarded as burnin, and the remaining trees in

each analysis were used to calculate the posterior probabilities and

50 % majority rule consensus tree.

Ancestral Character State Reconstructions
The character state for the life history (tropical or temperate)

was reconstructed on the total evidence consensus tree using

parsimony character tracing (MacClade) [41]. In addition,

character states were calculated for the same tree (using all

30,000 post burnin trees) with Bayesian methods in BayesTraits

[42] (30 million generations, 3 runs each, 50,000 burnin

generations). Statistical support for the Bayesian ancestral state

reconstruction was determined using posterior probabilities which

were calculated with the ‘MRCA’ command in BayesTraits [42].

Support of the reconstructed ancestral state was generated using a

log Bayes Factor test. The log Bayes Factor was calculated from

the harmonic means calculated with the ‘fossil’ command in

BayesTraits [42]. Character state reconstruction is considered

strongly supported if the log Bayes Factor is greater than 6 [42].

Results

AFLP
Our phylogenetic analysis included 119 individuals of the

ingroup and 5 of the outgroup (see Table S1) and utilized 1680

polymorphic AFLP characters (out of 2028 total characters). The

resulting data matrix yielded similar phylogenetic topologies using

both distance and Bayesian analyses. The majority-rule consensus

tree of the Bayesian analysis is given in Figure 1. All but 3 ingroup

species formed monophyletic clades, even when sampled from

distant localities. The 3 species of the ‘N. maxillosus clade’ (label M

in Figure 1) were not resolved (see below). The species with

tropical life history (i.e. direct egg development) branch off basally

in the phylogeny, while 7 of the 10 species with temperate life

history, form one monophyletic clade (label T). Sibling to this

temperate clade was N. triops, the only tropical species with a range

that extends into temperate North America [21]. Several basal

nodes of the tree had low posterior probabilities; however, these

lineages include six species with tropical life history and three

temperate species with egg diapause (N. velox, N. palustris, N. retusus).

We sampled two populations of N. maxillosus. Individuals from

Trinidad grouped with N. saturatus from the same island, while

individuals from Puerto Rico grouped with N. spiza collected in

Costa Rica. This was not due to errors in species identification, as

male calls of N. maxillosus are distinctly different from those of the

other two species, and all samples of the ‘N. maxillosus clade’ were

males collected while calling (see discussion).

Nuclear genes H3 and ITS
The phylogenetic analyses based on H3 and ITS contained 64

ingroup and 3 outgroup taxa (see Table S1). MrModeltest selected

the K80 model of nucleotide substitution for the ITS data set and

the GTR+I+G models for the H3 dataset. The ITS data set

resulted in 878 aligned base pairs and 106 parsimony informative

characters, while the H3 data set resulted in 308 aligned base pairs

and 24 parsimony informative characters.

Phylogenies based on either nuclear gene provided little

resolution at the species level (Figure 2a, b). Both phylogenies

grouped the seven species of the ‘temperate clade’ in the AFLP

tree together in one separate clade (label T in Figure 2). Also, N.

retusus, N. velox, and N. palustris appeared among tropical species in

both nuclear phylogenies.

The H3 phylogeny grouped N. maxillosus, N. saturatus, and N.

spiza together (label M, Figure 2a). In the ITS tree, these three

species grouped together with N. triops and the temperate clade,

which was congruent with their position in the AFLP tree. Finally,

N. affinis was polyphyletic in the ITS tree: individuals from

Trinidad group separately from N. affinis from Costa Rica and

Puerto Rico (Figure 2b).

Figure 1. Phylogeny of Neoconocephalus based on AFLP
analysis. Majority rule Bayesian AFLP phylogeny of 17 species of
katydids. The species, as identified after [22,25] are indicated by color
coding. Five species are represented by multiple geographic popula-
tions; CR = Costa Rica, FL = Florida, USA, NJ = New Jersey, USA,
MO = Missouri, USA, PR = Puerto Rico, TN = Tennessee, USA, TT = Trini-
dad, and TX = Texas, USA. Nodal Support values, reported above nodes,
are posterior probabilities in percent. Asterisks at the species names
indicates temperate life history. The individuals included in this analysis
are listed in the Table S1 in the sequence as they appear in this tree.
doi:10.1371/journal.pone.0007203.g001
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Figure 2. Phylogeny of Neoconocephalus based on nuclear genes. Bayesian phylogeny of Neoconocephalus using partial nDNA sequences H3 (a)
and ITS (b). Nodal support values given as posterior probabilities in percent; asterisk indicate 100%. The temperate clade and the N. maxillosus clade are
indicated by labels ‘T’ and ‘M’, respectively. Branch lengths drawn to scale. The taxa included in these phylogenies are listed in Table S1. Asterisks at the
species names indicates temperate life history. Species are indicated by colored lines.
doi:10.1371/journal.pone.0007203.g002
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Mitochondrial gene COI
The COI tree contained 64 ingroup and 3 outgroup taxa

(table 1). DNA sequencing resulted in 875 aligned base pairs and

287 parsimony informative characters. The tree was constructed

using a GTR+I+G models of nucleotide substitution.

The COI phylogeny was well supported and most nodes were

resolved with strong statistical support (Figure 3). As in the

previously shown trees, the temperate clade of seven species was

well supported by the COI data set. Similarly, the N. maxillosus-

group and N. triops were close relatives of the temperate clade.

However, N. retusiformis (collected in Puerto Rico) was grouped

among the N. maxillosus from Puerto Rico. N. retusus grouped as the

sibling to the N. maxillosus-group. The two other temperate species,

N. velox, and N. palustris grouped, as in the previously described

trees, with the tropical species.

Two populations of N. exiliscanorus had divergent mitochondrial

haplotypes. The Missouri population grouped with N. robustus and

N. bivocatus, both also collected in Missouri. The N. exciliscanorus

population from New Jersey grouped with N. velox and N.

nebrascensis.

Combined analysis of ITS, H3, and COI
The analysis of the combined ITS, H3, and COI data set was

dominated by the 287 parsimony informative characters in the

COI data set which accounted for nearly 70% of the 417

informative characters in the 3 gene combined analysis. The

Bayesian phylogeny of the combined data sets is given in Figure 4.

The combined analysis corroborated the monophyly of a

temperate group of 7 species. It placed the tropical N. maxillosus

group (including N. retusiformis) as sibling to the temperate groups,

with N. triops branching off basally to these groups. However, the

support for this branch was low (0.56), leaving the position of these

three clades (temperate clade, N. maxillosus-clade, N. triops)

questionable. The 3 other temperate species (N. retusus, N. velox,

N. palustris) were distributed among the tropical species. As in the

COI tree, the combined analysis showed N. exciliscanorus as

polyphyletic within the temperate clade.

Total evidence tree
We present the total evidence tree, which combines the AFLP

tree and the three gene trees (Figures 1–3) in Figure 5. Individuals

of each species (except N. maxillosus) grouped together in distinct

clades, even when collected from different locales. Nodes to

species, as well as more basal nodes were all extremely well

supported (posterior probabilities above 0.98).

The clade of 7 temperate species (label T) appeared again in the

total evidence tree. Within this clade, N. nebrascensis and N.

caudellianus grouped as sibling species. The N. maxillosus clade (label

M) contained in the total evidence tree N. retusiformis. As in all

individual trees, N. maxillosus remained polyphyletic: individuals

from Puerto Rico were the sibling clade to N. spiza. while N.

maxillosus from Trinidad formed one clade with N. saturatus from

the same island. Three species with temperate life history (N. velox,

N. retusus, N. palustris) were distributed among the tropical species.

Ancestral state reconstruction: Temperate and Tropical
Life history traits

We estimated the ancestral state for life history (temperate with

egg diapause vs. tropical with direct egg development, Tab. 1) on

the topology of the total evidence tree (Figure 5). We assigned the

character state of the outgroup as ‘uncertain’. Using parsimony,

both character states (tropical/temperate) are equally likely to be

the ancestral state in Neoconocephalus and require four character

changes. The Bayesian method also failed to produce conclusive

results: the tropical life history had somewhat higher posterior

probability to be the ancestral state (0.58) than the temperate state

(0.41), but this was not well supported in the log Bayes factor test

(logBF = 1.03; logBF .6 are considered strong support [42]).

Figure 3. Phylogeny of Neoconocephalus based on a mitochon-
drial gene. Bayesian phylogeny of Neoconocephalus using partial COI
mtDNA sequences. Nodal support values are posterior probabilities in
percent; asterisk indicate 100%. The temperate clade and the N.
maxillosus clade are indicated by labels ‘T’ and ‘M’, respectively. Branch
lengths drawn to scale. The taxa included in this tree are listed in Table
S1. Asterisks at the species names indicates temperate life history.
Species are indicated by colored lines.
doi:10.1371/journal.pone.0007203.g003

Neoconocephalus Phylogeny
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Discussion

We estimated the phylogeny of the genus Neoconocephalus using

several molecular markers. Both the AFLP and the COI data

provided resolution at the species level. Two nuclear loci (H3, ITS)

did not provide resolution of the species, but did resolve deeper

nodes. The four phylogenetic trees were largely congruent with

only minor discrepancies. Accordingly, the total evidence tree was

extremely well supported, and all but one species were

monophyletic in this tree. This supports the reliability of the

current taxonomic treatment of the Neoconocephalus of the

Caribbean and Central and North America as outlined in [18].

In the AFLP tree, N. exciliscanorus was monophyletic, while in the

COI tree two populations appeared in separate positions:

specimens from New Jersey grouped with the N. nebrascensis/

Figure 4. Phylogeny of Neoconocephalus based on the com-
bined analysis of the nuclear and mitochondrial genes. Bayesian
phylogeny of Neoconocephalus using the combined H3, ITS and COI
data sets. Nodal support values are given as posterior probabilities in
percent; asterisk indicate 100%. The temperate clade and the N.
maxillosus clade are indicated by labels ‘T’ and ‘M’, respectively. Branch
lengths drawn to scale. The taxa included in this tree are listed in Table
S1. Asterisks at the species names indicates temperate life history.
Species are indicated by colored lines.
doi:10.1371/journal.pone.0007203.g004

Figure 5.Total evidence tree of Neoconocephalus. Bayesian
phylogeny of 17 Neoconocephalus species based on the combined
analysis of the AFLP and gene trees given in Figures 1, 2, and 3. The
phylogeny was pruned for visual simplification. Each tip of the pruned
phylogeny represents a monophyletic group. Nodal support values are
given as posterior probabilities in percent; asterisk indicate 100%. The
temperate clade and the N. maxillosus clade are indicated by labels ‘T’
and ‘M’, respectively. Branch lengths are not drawn to scale. Asterisks at
the species names indicates temperate life history.
doi:10.1371/journal.pone.0007203.g005
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N. caudellianus clade, while the Missouri population was sibling to

N. robustus/N. bivocatus. This is likely an artifact due to an inherent

problem with mitochondrial trees. Mitochondrial capture, e.g.

through hybridization, and subsequent fixation of the captured

mitochondrial haplotype may result in misleading phylogenetic

information [43,44]. The total evidence tree supported the

conclusions from the AFLP analysis and a monophyletic species

in the temperate clade. Extant ranges of N. exciliscanorus overlap

extensively with N. robustus, N. caudellianus, and N. nebrascenesis, and

at our collection sites of N. exciliscanorus we also found N. robustus as

well as N. nebrascensis (Missouri) or N. caudellianus (New Jersey) in

close vicinity.

Throughout our analysis, N. maxillosus was polyphyletic. The

Puerto Rico population grouped with N. spiza (collected in Costa

Rica) in the AFLP, gene, and total evidence tree (Figures 1, 4, 5).

The Trinidad population grouped with N. saturatus from the same

island in the AFLP and total evidence tree, however in the

combined gene tree (Figure 4) one Trinidad individual grouped

with the Puerto Rico individuals, another with N. saturatus. The

calls of N. maxillosus are continuous, while both N. spiza and N.

saturatus produce short chirps repeated at 1–5 chirps/s [22]. All

individuals of N. saturatus and N. maxillosus from Trinidad were

males (Tab. 2) collected while calling. In addition, N. maxillosus is

morphologically distinct from the sympatrically occurring N.

saturatus, so the misidentification of the species is extremely

unlikely. The grouping of the Trinidad population of N. maxillosus

with N. saturatus therefore suggests gene flow between these two

species in Trinidad and/or South America. The alternative

explanation of convergent evolution of these two populations

appears unlikely as the Puerto Rico and Trinidad N. maxillosus

were uniform in seemingly unrelated morphological and call traits.

Also the placement of the Trinidad individuals in the gene tree

does not support this alternative.

Call traits and ranges of siblings
Male Neoconocephalus produce species specific calls which females

use to localize and approach males for mating [18]. Typically,

among co-occurring species calls differ distinctly in their temporal

pattern, which allows females to selectively approach conspecific

males [14,22,45]. Species with similar temporal patterns are

typically not found signaling at the same time and place.

The total evidence tree (Figure 5) suggests several pairs of sibling

species with similar calls but separate distributions. For example,

N. robustus and N. melanorhinus both produce continuous calls with

fast pulse rates. N. melanorhinus is a habitat specialist which occurs

only in salt marshes, while N. robustus is widespread in grasslands of

the eastern USA [25]. Both N. nebrascensis and N. caudellianus

produce discontinuous calls with similar temporal pattern. The

ranges of the two species overlap only marginally, with N.

caudellianus being limited to the south-eastern USA and N.

nebrascensis occurring in the north-central USA [25]. The two

sibling species N. palustris and N. punctipes are very similar in body

size as well as in spectral and temporal call characteristics [22,25].

N. punctipes has tropical life history and occurs in Central America,

while N. palustris has temperate life history and occurs in North

America (Table 1).

In contrast, there was at least one clade with sympatric species,

that differ notably in call traits. The ranges of N. robusts, N. bivocatus,

and N. exciliscanorus overlap largely [25], and the three species

commonly communicate within hearing distance of each other (JS,

KFH, personal observations). The calls differ markedly from each

other, with N. bivocatus having a different pulse pattern from the two

other species [13], and N. exciliscanorus having a discontinuous call

in contrast to the continuous calls of the two other species [18].

The pattern of allopatric siblings with similar call patterns

suggests that ecological factors may have driven the diversification

of Neoconocephalus. However, the sympatric clade with different call

patterns suggests that at least in some cases the communication

system played a role in the diversification of this group. Whether

novel call patterns initiated diversification and ultimately specia-

tion, or whether the changes of the communication system

followed ecological diversification (e.g. through reinforcement

[46]) is at this time not clear. Large comparative studies of male

calls and female call recognition in the framework of the

phylogeny presented here are required to address this question.

Life History
The ancestral state reconstruction of the life history traits based

in the total evidence tree did not provide an answer regarding the

ancestral life history of Neoconocephalus. However, the total evidence

tree provided strong evidence that life history traits have changed

multiple times independently within our sample of species. Thus,

life history traits appear to be evolutionarily plastic, which should

facilitate the transitions from tropical to temperate habitats (or vice

versa).

We restricted our analysis to the well described Neoconocephalus

fauna of the Caribbean, and Central and North America. Almost

certainly, more Neoconocephalus species exist in South America, but

no reliable taxonomic information is available [18]. The range of

N. triops, a species with tropical life history, reaches from temperate

regions of North America, through the Neotropics into the

temperate regions of South America [26]. Likely, additional

species with temperate life history are present in the temperate

regions of South America.

Assuming that the initial dispersal of Ruspolia/Neoconocephalus to

the new world took place from tropical (West)-Africa to tropical

South America, it appears likely that the tropical life history

represents the ancestral state. Accordingly, during the dispersal

into North America temperate life history traits would have

evolved multiple times. The ‘temperate clade’ of seven North

American Neoconocephalus species suggests an adaptive radiation

following the evolution of the temperate life history. The species in

this clade occur in diverse habitats including prairies (N. bivocatus),

forest edges (N. nebrascensis), freshwater marshes (N. exciliscanorus),

and salt marshes (N. melanorhinus) [19,25]. The species of this clade

are also diverse in their calls, encompassing the range of temporal

and spectral call parameters of all described Neoconocephalus calls

[18,25].

However, the data presented here neither support nor rejects

the tropical life history as ancestral state of Neoconocephalus. To

answer this question future phylogenetic studies will have to

include the South American Neoconocephalus fauna as well as

temperate and tropical species of the old world genus Ruspolia.

Our proposed phylogeny of the genus Neoconocephalus raised

several ecological and evolutionary questions. It will inform

comparative studies regarding the function and evolution of the

acoustic communication system. Neoconocephalus has served as a

model to study the evolution of male calls and female preferences.

The phylogenetic background presented here will strengthen

conclusions from such studies. Due to the large body of data

available for this group, this proposed phylogeny will be a powerful

tool for future studies.

Supporting Information

Table S1 List of all individuals included in the phylogenetic

analysis of Neoconocephalus. The position from the top in the

AFLP tree (figure 1) is given, as well as the names used in the gene
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trees (figures 2–4). For US-localities we give the County, for other

localities we give the town closest to the collection site. Country/

State: CR Costa Rica, FL Florida (USA), MO Missouri (USA), NJ

New Jersey (USA), PR Puerto Rico, TN Tennessee (USA), TT

Trinidad and Tobago, TX Texas (USA). Collected by: DS D.

Sattmann, JS J. Schul, KFH K.H. Frederick-Hudson, M.K.

Brueggen, OMB O.M. Beckers, RLS R.L. Snyder, SLB S.L. Bush

Found at: doi:10.1371/journal.pone.0007203.s001 (0.31 MB

DOC)
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