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Abstract

Background: Functional magnetic resonance imaging (fMRI) is a technology used to detect brain
activity. Patterns of brain activation have been utilized as biomarkers for various neuropsychiatric
applications. Detecting deception based on the pattern of brain activation characterized with fMRI
is getting attention – with machine learning algorithms being applied to this field in recent years.
The high dimensionality of fMRI data makes it a difficult task to directly utilize the original data as
input for classification algorithms in detecting deception. In this paper, we investigated the
procedures of feature selection to enhance fMRI-based deception detection.

Results: We used the t-statistic map derived from the statistical parametric mapping analysis of
fMRI signals to construct features that reflect brain activation patterns. We subsequently
investigated various feature selection methods including an ensemble method to identify
discriminative features to detect deception. Using 124 features selected from a set of 65,166
original features as inputs for a support vector machine classifier, our results indicate that feature
selection significantly enhanced the classification accuracy of the support vector machine in
comparison to the models trained using all features and dimension reduction based models.
Furthermore, the selected features are shown to form anatomic clusters within brain regions,
which supports the hypothesis that specific brain regions may play a role during deception
processes.

Conclusion: Feature selection not only enhances classification accuracy in fMRI-based deception
detection but also provides support for the biological hypothesis that brain activities in certain
regions of the brain are important for discrimination of deception.
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Background
Blood oxygen level dependent (BOLD) fMRI [1] has
been widely used to detect brain activity. Recently, brain
activation patterns detected by fMRI technology have
been used as biomarkers to detect deception (lie
detection) [2-10]. Currently, the existing rule-based
classification methods for deception detection have
already achieved excellent performance [5,6,9,10]. In
these studies, regions of interest were first identified
through performing conventional group-wise statistical
comparisons of brain activation patterns obtained
during lying and truth-telling sessions. Then, the activa-
tion patterns within the regions were used as input
features to derive various classification rules. Machine
learning algorithms have also been applied to perform
deception detection based on fMRI data [8]. The task is
commonly cast as a classification problem, in which pre-
processed BOLD signals in the voxels of fMRI images are
treated as input features and each input image is
associated with a class label. Using fMRI image data as
input for classification poses a major challenge due to
the high dimensionality of fMRI images. The images
usually consist of hundreds of thousands of voxels that
causes most of the contemporary classification algo-
rithms to suffer from overfitting – a phenomenon
whereby a classifier performs well on training data but
fails on new data. In this study, we investigated the
utility of different dimension reduction and feature
selection procedures in fMRI-based deception detection.
While this study concentrates on employing fMRI-based
biomarkers for deception detection, the principle devel-
oped in this study can be applied to other fMRI-based
biomarker for translational research, e.g., psychiatric
disease diagnosis and prognosis.

Results and discussion
Classification without feature selection
When dealing with high dimensional data, two types of
methods can be applied: dimensional reduction and
feature selection. We first investigated a few models that
perform high dimensional classification without select-
ing features. Contemporary state-of-the-art classifiers,
particularly partial least square (PLS) [11], random forest
(RF) [12] and support vector machine (SVM), have
achieved excellent performance in various high-dimen-
sional classification tasks, e.g., text categorization [13]
and microarray-based disease classification [14-16]. The
PLS algorithm deals with high dimensional data by
reducing the dimensionality of the data through a linear
project of data from a high dimensional space to a low
dimensional principal component space, with a con-
straint of maintaining the class separation in the low
dimensional space. RF handles high dimensionality by
averaging the output from a large number of

classification trees trained with relatively small number
of features. SVM employs kernel methods to project
training data into a high dimensional space to make the
data points separable and reduces overfitting through
maximizing the margin that separates the data from
different classes. Since each classification task is unique,
we first investigated how well these classifiers handled
the high dimensional data and if they performed well
over the fMRI-based deception detection. The PLS and RF
classifiers ran extremely slowly on the data with 65,166
features, which would render them impractical in the
real world application. We then tested the methods on
the data consisting of 1,070 voxels selected in our
previous study [5] as features. We applied leave-one-out
cross validation to estimate the accuracy, sensitivity and
specificity. Briefly, the performances of the above
classifiers were not satisfactory in terms of overall
accuracy. In PLS classification, models with different
number of principal components, from 5 to 10 and 15,
were trained. All models showed accuracy less than 60%.
In the case of the RF classifier, models were trained with
2,000 trees and the number of features for each tree
varied from 5 to 10, 50, and 100. The accuracies for all
trained models were smaller than 60%, which were
deemed to be non-satisfactory. Lastly, the accuracy of
SVM with the leave-one-out evaluation was 55.2%. The
above results indicate that the fMRI-based classification
is a unique task, in which directly applying conventional
classification algorithms in an out of box manner does
not perform well. The results also indicate that dimen-
sion reduction using PLS and RF failed to provide
practically acceptable performances.

Another approach to reduce the dimensionality of the
fMRI data is to sample the BOLD signals using a large
voxel size. In a recent report on fMRI-based deception
detection by Davatzikos et al [8], the dimensionality of
the fMRI image was reduced by sampling the BOLD
signals using 560 large voxels, which are of the size 16 ×
16 × 16 mm instead of the commonly used voxel size of
3 × 3 × 3 mm. Then, the BOLD signal was modeled using
a general linear model to produce a b-value for each
voxel (see Methods section). Using values from the
voxels as input features, their in-house-developed SVM
model achieved an outstanding accuracy in the study.
Adopting a similar strategy, we tested the performance of
SVM on the re-sampled BOLD signals from the subjects
of this study, and the overall SVM classification accuracy
was less than 60%. The discrepancy between our results
and those from Davatzikos et al. can be possibly
explained by the differences in the subject populations
and parameterization of SVM models. While the
resampling approach alleviates the difficulty of high
dimensionality, large voxels (~100 times the size of
conventional voxels) may potentially result in the loss of
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information regarding the anatomic structure involved
in the cognitive process of deception. This prompted us
in the direction of identifying the most discriminative
features through feature selection, instead of through the
dimension reduction approach.

Classification with feature selection
Methods for feature selection are mainly grouped into
two categories: the filter approach; and the wrapper
approach [17,18]. In the filter approach, feature selection
is only based on predefined relevance measures and is
independent of classification performance of specific
classifiers. We investigated five feature selection
approaches, including two filter methods, Fisher criter-
ion score (FCS) [19] and Relief-F [20], two wrapper
methods, GAR2W2 and GAJH [21], and an ensemble
method. Both wrapper methods use SVM as the classifier
and the genetic algorithm (GA) [22] to search for the
‘fittest’ feature subset. The ensemble method is designed
based on FCS, Relief-F, GAR2W2 and GAJH (see
Methods section). We applied these five methods on
the data with 65,166 features to identify the discrimina-
tive features.

To a varying degree, selection of features is a greedy
process for all above methods. As such, the results will be
biased by the samples used for training, especially when
the number of training cases is small. In order to address
this problem, we performed a ten-fold feature selection
to identify the features that consistently performed well.
The data set was divided into 10 folds. During each
iteration, we held one fold, put the other 9 folds of data
together and selected a set of 50 features based on these
9 folds. We repeated the process 10 times, which led to
10 sets of features for each approach: FCS, Relief-F,
GAR2W2 and GAJH. To evaluate the consistency of each
of these four methods, we identified the features that
were shared by 4 sets up to 10 sets. Furthermore, we also
identified the common features from all sets derived
using the above four methods, which can be referred to
as an ensemble method for feature selection. The
number of the identified common features is plotted
against the number of sets sharing them in Figure 1.
Comparing the within-methods consistencies of the two
filter methods, we found that the FCS method returned
no features that were share by more than 8 fold sets,
while the Relief-F method returned more features shared
by more sets. The results indicated that feature selection
according to FCS tended to be more easily biased by
training data than Relief-F. With respect to the between-
methods-consistencies, the features returned by the two
methods are largely disjointed: only 6 common features
were shared in both sets of 51 features (FCS) and 43
features (Relief-F), which indicates that different criteria

return different features. Similar analysis on the features
returned by wrapper methods showed that the number
of common features was relatively small for the two GA-
based methods. This reflects the nature of GA in that
selection is stochastic and a large number of combina-
tion of features can have a similar fitness, due to the fact
that GA does not select individual features based on their
ranking. Instead, it attempts to identify the best
combination of features for classification. However, out
of the 11 and 10 features returned by GAR2W2 and
GAJH, respectively, 5 features were returned by both
methods – a significant intersection. Thus, although
fewer common features were identified by each of the
methods, the two wrapper methods using different
criteria were capable of identifying the same features
that were deemed discriminative. The figure also shows
that, as expected, more selected features were shared in
4–10 fold sets when the ensemble of 40 sets was pooled.
There were 124 common features shared in 4 fold sets
using the ensemble method, which were later mapped
back to the brain volume to identify regional brain
activation patterns associated with deception activities.

To evaluate the impact of feature selection on classification
performance, we used the common features identified in
the above steps from each method to train SVM and
evaluated the performance with the leave-one-out proce-
dure. The classification performance was measured in
terms of accuracy, sensitivity, specificity and positive
predictive value (PPV), and is shown in Figure 2A–D.
Although each of the filter methods identified more

Figure 1
The number of the identified common features. The
figure plots the number of the identified common features
against the number of sets sharing them.
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common features, they were not necessarily discriminative.
The performance using the features returned by both FCS
and Relief-F was worse than those using the wrapper
methods. Although fewer shared features were returned by
the wrapper methods in comparison to filter methods,
these features overall performed better than those derived
from the filter methods in terms of accuracy and sensitivity.
The observed superiority may be attributed to the
consistency of the feature selection and the relevance of
the features because a classifier and its theoretical error
bounds were involved in feature selection. Overall, the
feature sets returned by the ensemble feature selection
method outperformed those from each individual method.
There are two potential advantages of the ensemble feature
selection method. First, it combines the features selected
according to different selection criteria, and thus covers
different aspects of discrimination between classes. We
noted that in Panel C of Figure 2, the sensitivity of
classification for the ensemble method shows a "bell-
shaped" curve, in which the set of 60 features (shared by 7
fold sets) provides the most discriminative power. From
the ensemble method, the numbers of features shared by
4–10 candidate sets are greater than those from the
individual feature selection methods. The additional
features potentially make the classifier more resistant to
variances in the signals associated with each feature.
However, this does not indicate that more features result
in better performance.

Anatomic locations of the selected features
We mapped the 124 selected features from the ensemble
method back to the brain volume and inspected the
feature locations, which are shown in Figure 3. Panel A
of the figure shows the localization of the voxels selected
as discriminative features and Panel B shows the over-
lapping of the features selected in our previous and this
study. Interestingly, although the features are far apart in
the input feature vector for classifiers, they tend to form
clusters in the brain regions (Figure 3A). The correspond-
ing brain regions, reported for clusters of at least 2
contiguous voxels, were bilateral supplementary motor
area (BA 6 and 8), right medial superior frontal cortex
(BA 8 and 32), right middle frontal gyrus (BA 46), left
Rolandic operculum (BA 48), right putamen and
pallidum, right inferior orbitofrontal cortex (BA 11/
38), and left cerebellum. Supplementary motor area (BA
6 and 8) is one of the most frequently reported areas
across studies of deception [23]. There is general
correspondence (Figure 3B) between brain regions
identified in the present analysis and brain regions
previously reported to have predictive value in detecting
deception, such as supplementary motor areas (BA 6 and
8), right inferior orbitofrontal cortex (BA 38), and right
middle frontal gyrus (BA 46) [5].

The anatomic overlapping of the selected features with
the brain regions from the previous studies indicates that
the feature selection procedure provides another means
to identify the brain regions that may be involved in the
psychological process of deception. However, it should
be noted the method in this study for identifying the
brain regions is significantly different from the previous
ones. In the previous analysis [5], all fMRI images
associated with one type of event, e.g., truth or lie, were
pooled from all subjects, followed by group-wise
comparison to identify the regions with differential
brain activities. Therefore, the procedure was not
classification oriented, and the features from this
procedure resulted in a relatively poor classification
performance using our methods. On the other hand, the
feature selection approach from this study combines the
procedure of using t-maps to remove background noise
and selecting features that are relevant to the classifica-
tion. Therefore, it is not surprising that the features from
this task-oriented procedure significantly enhanced
classification performance.

Conclusion
In this study, we investigated the utility of feature
selection in fMRI-based detection of deception. The high
dimensionality of fMRI data makes it a difficult task to
directly utilize the original data as input for classification
algorithms. Our results indicate that feature selection not

Figure 2
The classification performance using the selected
features. (A) Classification accuracy. (B) Sensitivity. (C)
Specificity. (D) PPV. The leave-one-out procedure was
employed to evaluate the performance of SVM in deception
detection using the selected features. The performance was
measured in terms of accuracy, sensitivity, specificity and PPV.
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only enhances classification accuracy in fMRI-based
detection of deception when compared to the models
that rely on dimension reduction, but also provides
support for the biological hypothesis that brain activities
in certain regions of brain are important for the
discrimination of deception. While these conclusions
were obtained in the setting of detection of deception,
the general approach of feature selection is applicable to
the identification of other fMRI-based biomarkers.

Methods
fMRI data processing
The data are from a previously published study of fMRI
detection of deception [5]. Briefly, a test participant was
instructed to take a ring or a watch before the fMRI scan
and was asked to lie regarding which object he/she took.
Then, fMRI scans were acquired while the subject
responded to the visually presented questions. Four
types of questions were asked: neutral, truth, lie and
control. All images associated with one type of event
from a subject were grouped and were modeled with a
general linear model using the statistical parametric
mapping (SPM2) software package [24]. For each
subject, the procedure produced 4 parametric maps,
referred to as b-maps, corresponding to the 4 types of
questions. Each voxel in these maps contained the
estimated parameter of the general linear model,
reflecting the influence of the event on the BOLD signal.
Pooling the data from 61 subjects led to a data set
consisting of 61 b-maps labeled with truth class and 61
maps labeled as lie class. In order to normalize the
influence of the events, the b-maps corresponding to
the lie and truth events were further compared to that of
the neutral event to produce truth-vs-neutral and lie-vs-
neutral t-statistics maps, referred to as t-maps. A standard
gray-matter map was applied to the b-maps and t-maps,
such that the values of 65,166 voxels corresponding to
brain gray matter were retained and used as input
features for classification. Through a series of test, we
found that the classification performances of all classi-
fiers were consistently better using t-maps rather than
b-maps (data not shown) as input. Therefore the
following results reflect using t-maps as input features.

Classification without feature selection
In order to make a comparison to classification with
feature selection in deception detection, partial least
square (PLS) [11], random forest (RF) [12] and support
vector machine (SVM) were used to perform high-
dimensional classification without feature selection. We
have used LIBSVM [25], a library for SVM and packages
of PLS and RF implemented in the R language

Figure 3
The anatomic locations of the selection features.
(A) The 124 selected features from the ensemble
method were mapped back to the brain volume. (B)
Overlay of the selected features to the regions identified
by group-wise statistical analysis. The 124 selected
features from the ensemble method were mapped
to the brain regions identified by group-wise statistical
test. In the figure, the 124 selected features are marked
with the red color and the regions identified by
group-wise statistical test are marked with the
blue color.
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downloaded from the Comprehensive R Archive Net-
work (CRAN) [26].

Feature selection methods
We employed the Fisher criterion score (FCS) and Relief-
F, which are two filter methods for feature selection. FCS
ranks features according to their capability to separate
different classes [19] and ignores feature dependence.
For a problem with two classes, a feature’s FCS is
calculated (as Equation (1)) by dividing the distance
between the feature’s means by the sum of variance
within each class. In Equation (1), m i

+ and m i
− are

means of feature i’s values belonging to the positive and
negative classes respectively, and s i

+ and s i
− are the

feature i’s standard deviations of the positive class and
the negative class, respectively.

F i i

i i
i =

+ − −

+ + −
( )

( ) ( )

m m

s s

2

2 2
(1)

On the other hand, Relief-F [20] uses a weighting
approach to rank features. For a two-class task, Relief-F
repeatedly draws a random instance from the data set.
Then, k nearest neighbors of the instance are selected
from the same class and the opposite class, leading to
two sets of cases. Iterating through each feature, the
weight associated with the feature is adjusted. The
weighting scheme strives to minimize the averaged
distance, evaluated with a feature of interest, of the
instance to its neighbors of the same class while
maximizing the averaged distance to the neighbors of
the different class.

We also employed two wrapper methods proposed and
implemented by Fröhlich et al [21] for feature selection.
Both wrapper methods use SVM as the classifier and the
genetic algorithm (GA) [22] to search the feature space
for the ‘fittest’ feature subset. GA [22] is an optimization
algorithm inspired by biological principles of evolution.
In GA, features are encoded as alleles on a chromosome,
in which a "1" indicates the corresponding feature
(allele) is selected for classification. A fittest feature set
is identified by a series of random mutations and
crossovers of chromosomes. During iterations, the
features were selected by the GA algorithm, and the
performance criteria of the SVM based on the selected
features were used as fitness functions for the GA
algorithm for further selection. In this study, two criteria –

the radius margin (R2W2) bound [27] and the Jaakkola-
Haussler (JH) bound [27-30] – were used as fitness
functions for GA algorithms. These criteria reflect the
theoretical leave-one-out error bounds of an SVM based
on a given set of features. The wrapper feature selection
methods based on these criteria are referred to as

GAR2W2 and GAJH [21], respectively. The overall
procedure of feature selection with FCS, Relief-F,
GAR2W2 and GAJH is shown in Figure 4.

For a nonlinear problem, SVM tries to find an optimal
soft margin hyperplane by solving the following dual
problem

max ( ) ( , ),a a a a a

a

W y y K x x

subject to

i

i

n

i j i j i j

j

n

i

n

i

= −

≤ ≤

∑ ∑∑1
2

0

G G

  CC for all i n and yi i

i

n

     = =∑1 0, , , ,… a

(2)

where
G
xi and

G
x j are training samples, C is the

regularization parameter used to trade-off between
margin maximization and error minimization, K is a
kernel function, the size of the training data set is n, and
a = (a1, ..., an).

As defined in Equation (3), the R2W2 bound for the
expectation of the test error is defined based on the
square of the ratio of the radius of the sphere enclosing
the training data over the margin of the hyperplane
separating the data.

EP
E R W

nerr ≤ { ( *)}
,

2 2 a (3)

where a* is the solution of Equation (2), and 1/W2(a*)
is the size of the maximal margin. The radius R of the
sphere is calculated as follows,

Figure 4
Procedure of feature selection with the filter and
wrapper methods. In the figure, GAR2W2 and GAJH
follow the procedure marked with the blue color; FCS and
Relief-F flow the dark-red-colored path.
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where b = (b1, ..., bn).

The JH bound is defined as Equation (5) for an SVM
without threshold. The function ψ (v) in the equation is
equal to 0 if v ≤ 0; 1 otherwise. Perr

n−1 is the probability of
test error of an SVM classifier built on the training set of
size n-1.
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